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Troubleshooting unresponsive sensor nodes is a significant challenge in remote sensor network deployments.
While prior work often targets low-end sensor networks, this article introduces a novel diagnostic tool, called
the telediagnostic powertracer, geared for remote high-end sensing systems. Leveraging special properties of
high-end systems, this in situ troubleshooting tool uses external power measurements to determine the inter-
nal health condition of an unresponsive node and the most likely cause of its failure. We develop our own low-
cost power meter with low-bandwidth radio, propose both passive and active sampling schemes to measure
the power consumption of the host node, and then report the measurements to a base station, hence allowing
remote (i.e., tele-) diagnosis. The tool was deployed and tested in a remote solar-powered sensing system
for acoustic and visual environmental monitoring. It was shown to successfully distinguish between several
categories of failures that cause unresponsive behavior including energy depletion, antenna damage, radio
disconnection, system crashes, and anomalous reboots. It was also able to determine the internal health condi-
tions of an unresponsive node, such as the presence or absence of sensing and data storage activities (for each
of multiple applications). The article explores the feasibility of building such a remote diagnostic tool from the
standpoint of economy, scale, and diagnostic accuracy. The main novelty lies in its use of power consumption
as a side channel, which has more availability than other I/O ports, to diagnose sensing system failures.
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1. INTRODUCTION

This article introduces a novel diagnostic system, called the telediagnostic powertracer,
geared for remote high-end sensor network deployments, where the cost of in situ
node maintenance is high. This telediagnostic system uses external low-bandwidth
measurements of power consumed by sensor nodes to distinguish between several
types of node failures, such as failures induced by energy depletion, radio failures,
and software failures (e.g., system crashes). It is also able to infer the state of the
application from power traces, such as whether or not sensing and data storage are
operational on an unresponsive node. It is common that nodes of dedicated high-end
sensor deployments constitute valuable assets such as embedded computers, high-end
sensors, and expensive energy supplies and storage. For example, in this article, we
use a testbed [Yang et al. 2009] that is composed of sensor nodes that cost more than
$ 2,000 each. Therefore, one can easily accrue a total cost that justifies investment in
additional diagnostic mechanisms and components.

The work described in this article is motivated by the need to reduce the cost of
troubleshooting remotely deployed sensing systems. When remotely deployed nodes
become unresponsive, it is generally hard to determine what caused some node to
become silent without sending a person to the field. If the cost of such field trips
is high, remote damage assessment becomes highly desirable to assess the need for
intervention. For example, if the cause of the problem is energy depletion (in a solar-
powered system), there may not be much that can be done about it until the energy
source is restored (e.g., weather improves). On the other hand, if the cause is attributed
to a transient error (e.g., a system crash), power-cycling the system remotely may fix
the problem. If the cause is attributed to a hardware malfunction (e.g., a radio failure),
the urgency of repair may depend on whether or not the failure has affected the ability
of the application to sample and store data. If the application continues to sample and
locally store data, then there may be no need for immediate intervention. In contrast,
some failures may require urgent attention. For instance, it is urgent to intervene if
there is evidence of water damage that may cascade to other nodes or devices. Another
example, experienced by the authors on one occasion, was a node that entered a cycle
of repeated reboots. The cycle ultimately led to a hardware failure. Early intervention
could have saved the node. Our telediagnostic system provides strong clues as to what
might be wrong with a node, making it possible to plan intervention accordingly.

Prior work on sensor network troubleshooting [Whitehouse et al. 2006; Yang et al.
2007; Liu et al. 2010; Tolle and Culler 2005; Krunic et al. 2007; Sundaram et al. 2009;
Wang et al. 2011] often focused on bugs that alter system behavior but do not render
nodes unresponsive. Hence, a diagnostic system could monitor and communicate node
states via regular radio. We cannot use techniques that require the participation of
failed nodes in this article since we investigate silent nodes that, by definition, cannot
communicate. Some work [Ramanathan et al. 2005; Rost and Balakrishnan 2006]
concerned itself with localizing which node or link failed or malfunctioned when sensor
network performance is impaired. Indeed, while other network nodes can localize a
peer’s failure, in this article, we take the next step of understanding why the identified
peer went silent, as well as retrieving its coarse-grained internal state. Moreover, most
of these aforementioned works target low-end sensor nodes (e.g., Tmote and MicaZ
motes), while we focus on troubleshooting high-end sensing systems, whose special
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properties (e.g., relatively high power consumption and high cost) make some solutions
that are infeasible for low-end systems become feasible.

When the primary communication channel of a node goes silent due to a failure,
a secondary channel is needed to communicate further information on its state. By
“secondary channel,” we mean any mechanism (not necessarily a radio) that conveys or
“leaks” information. Several tools [HP iLO 2010; IBM Remote Supervisor 2010; Dyer
et al. 2007] were proposed to diagnose target systems using different kinds of I/O ports,
such as serial ports or PCI. The applicability of these solutions is, however, restricted by
the availability of such ports on the system. Deployed sensor nodes might, for example,
be optimized for power, enclosure cost, or waterproofing ease. Hence, unnecessary I/O
ports might be removed. Considering that sensing, communication, computation, and
storage necessarily need power, power consumption may be used as a side channel to
infer the states of nodes to be monitored. Compared to other I/O ports, it has a more
universal applicability.

Therefore, in this work, we investigate the degree to which power consumption
measurements of an unresponsive node can be used as a side channel to help diagnose
the causes of node silence. Specifically, for energy and cost efficiency, we attach an
external low-end power meter with its own radio to each deployed node to sample the
node’s power consumption, and then the traces of power consumption are wirelessly
transmitted to a diagnostic base station, where diagnostic schemes use the received
traces to infer the cause of node silence, as well as the health status of the applications
on the node.

In this work, we propose two diagnostic schemes. The first scheme, which we initially
introduced in Khan et al. [2010], relies on the passive sampling of power consumption
and identifies node states based on their built-in power signatures. With this scheme,
before runtime diagnosis, we collect power traces and train a classifier for each possible
combination of applications and failure modes, and then use the classifier to classify the
received power traces during runtime. Note that the number of diagnostic states grows
exponentially with the number of applications. However, this classifier-based diagnostic
scheme is still applicable in many deployments that have very specific purposes and
thus do not run a wide range of different applications concurrently.

In case a deployment does run a large number of concurrent applications, we propose
another diagnostic scheme that, instead of just passively measuring the host’s power
consumption, places a module into each host to actively inject unique power patterns
(watermarks) into the power consumption traces based on the current system status.
Since watermarks adhere to a pre-agreed-upon code, there is no need for prior training.
We have implemented both these passive sampling and active watermarking schemes
and compare their performance in this article.

While the approach of exploiting power traces to diagnose problems using our teledi-
agnostic system is applicable, in principle, to a wide array of high-end sensing systems,
we present it and evaluate its performance on a specific deployed platform, called
SolarStore [Yang et al. 2009]. The platform is intended for high-bandwidth sensing
applications such as structural, acoustic, or video monitoring. It bundles higher-end
solar-powered sensor node hardware with data storage and communication services.
It therefore serves as a good example of the types of high-end sensing systems that
our powertracer is designed to help troubleshoot. We show that, by remotely analyzing
low-bandwidth power traces collected by cheap wireless power meters attached to the
deployed SolarStore nodes, it is possible to infer useful information about the nature
of node failures when they occur, as well as recognize some coarse-grained application
states.

The rest of this article is organized as follows. Section 2 introduces related work
on sensor network troubleshooting. Section 3 discusses general design guidelines. Sec-
tion 4 presents the implementation of powertracer on a SolarStore testbed. Section 5
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and Section 6 explore various diagnostic algorithms based on passive sampling and
active watermarking, respectively. Section 7 discusses the limitations of our current
work along with possible future extensions and improvements. The article concludes
with Section 8.

2. RELATED WORK

Reliability of deployed systems has always been a great challenge in wireless sensor
network research. Traditional troubleshooting tools, including simulation and emula-
tion [Levis et al. 2003; Girod et al. 2004; Wen and Wolski 2006; Polley et al. 2004;
Eriksson et al. 2009; Du et al. 2010], are good at predeployment testing in a controlled
lab environment, where one can afford the luxury of changing and inspecting code,
restarting nodes, and replacing broken hardware as necessary [Cao et al. 2008; de
Jong et al. 2009; Lodder et al. 2008]. In contrast, troubleshooting deployed systems,
especially those deployed in remote outdoor environments [Werner-Allen et al. 2005;
Zhang et al. 2004; Yang et al. 2009; Ingelrest et al. 2010; Dyo et al. 2010], is a signifi-
cantly harder problem.

Quite a few tools were developed to troubleshoot deployed systems remotely. Some of
this work focuses on identifying the cause of anomalous network behavior by discover-
ing which node or link failed or malfunctioned. For example, Sympathy [Ramanathan
et al. 2005] infers node or link failures from reduced network throughput. Memento
[Rost and Balakrishnan 2006] implements a distributed failure detector by having
nodes in the network cooperatively monitor each other. Besides localizing failures,
other tools were designed to inspect system states and identify programming bugs
[Whitehouse et al. 2006; Yang et al. 2007; Sundaram et al. 2009; Wang et al. 2011].
PAD [Liu et al. 2010] tries to reconstruct a global view of the network from partial in-
formation provided by different nodes and identify problems such as software crashes,
hardware failures, and network congestion. SNMS [Tolle and Culler 2005] can be used
to gather system-wide performance statistics such as packet loss and throughput.
NodeMD [Krunic et al. 2007] runs a runtime detection algorithm for early detection of
failure symptoms. Agnostic Diagnosis [Miao et al. 2011] is designed to identify unknown
failures through analyzing the correlations among different system metrics such as the
radio-on time and the number of packets transmitted. Kamal et al. [2014] propose a
framework that exploits in-network packet tagging using the Fletcher checksum and
server-side network path analysis to detect persistent path changes that are indicative
of network failures. Nie and Ma [2011] and Nie et al. [2012] propose a couple of content-
centric diagnostic strategies that study the relationship between sensory readings and
node failures/misbehaviors without introducing additional diagnostic traffic. A common
underlying assumption of these tools is often that the deployed system is accessible
through the normal data channel and can provide information when requested. When
deployed sensor nodes become unresponsive, prior approaches can, at best, localize the
failed node. In contrast, in this article, our goal is to infer further information on the
unresponsive node, such as whether any applications are still running (albeit unable
to communicate).

When the main communication channel is down, tools are needed to retrieve di-
agnostic information from side channels. For example, for the purpose of managing
computer servers in a remote data center, out-of-band tools, such as remote supervisor
adapters1 for IBM x86-based servers and iLO2 for HP servers, have been used. They
offer access to servers that are otherwise compromised. These tools are usually based
on a System-on-Chip architecture, having their own processor, memory, battery, and
network connections. They access the host via I/O ports (e.g., PCI or IPMI). While

1ftp://ftp.software.ibm.com/systems/support/system_x_pdf/48p9832.pdf.
2http://h18013.www1.hp.com/products/servers/management/remotemgmt.html.
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such ports are ubiquitous in server farms, it is not clear that they are as popular with
specialized embedded devices optimized for other deployment considerations such as
form-factor, waterproofing, or enclosure cost.

The idea of out-of-band management has also been utilized in telecommunications
[Horak 2007] with the very different purpose of exchanging call control information.
In the sensor network community, researchers have also investigated an out-of-band
methodology for developing and testing deployed systems. For instance, DSN [Dyer
et al. 2007] can be deployed as an additional wireless backbone network for an existing
system. A DSN node (e.g., a mote) is attached to each sensor node through a dedicated
connection (e.g., via UART ports) to observe, control, and reprogram the sensor node.

Compared to the previously mentioned approaches, power consumption is a more
general channel that is available on every system that needs power to perform. It has
already been demonstrated [Kansal and Zhao 2008; Chuang et al. 2005] that power sig-
natures can provide helpful information for the system designer to detect and diagnose
problems. Another example is the Nonintrusive Load Monitoring (NILM) algorithm
that analyzes the energy consumption of a segment of a building and determines what
appliances are in use in that segment without requiring meters to be individually at-
tached to those appliances. The seminal work on NILM [Hart 1992] classifies loads
into categories based on their power consumption profiles and presents a clustering-
based algorithm for detecting transitions between discrete appliance states based on
predetermined profiles of those states. Many other NILM algorithms have been devel-
oped, but they typically require electric meters with high sampling rates [Sultanem
1991; Li et al. 2005]. However, meters with high sampling frequencies are typically
too expensive to be deployed as add-ons to sensor nodes. Besides the cost, more en-
ergy would be required to transmit and process their measurements. Fortunately, we
are interested only in gross-level assessment of state, to tell whether or not applica-
tions are still running. In fact, it has been shown [Zhou and Xing 2013] that even
high-throughput data can be transmitted between the power meter and the host node
through voltage/current load modulation. However, the communication only happens
during node inactive periods, within which most onboard components fall asleep (i.e.,
power consumption is relatively stable) and thus there is very little interference on
the modulation and demodulation process. This inactive period usually does not exist
on high-end sensing systems, where multiple applications and operating system pro-
cesses are concurrently running and complicated hardware components are present.
We show in this article that one can infer gross-level state information of high-end
sensing systems using low-end meters with low sampling rates.

This work is also inspired by security research. In the field of computer security, side
channels have long been pursued for the purpose of obtaining confidential information
from computers. Electromagnetic emanations can be a rich source of data [Kuhn 2005].
Particular attention has been paid to analyzing the emanations of smartcards, and it
has been demonstrated that private keys can be extracted from smartcards by analyz-
ing their power consumption and radiation [Gandolfi et al. 2001]. Recent smartcard
designs explicitly prevent such attacks. Acoustic emanations from certain machines
also carry information, although it is not clear if it can be used to compromise crypto-
graphic material without the assistance of a malicious agent on the machine in question
[Asonov and Agrawal 2004; LeMay and Tan 2006]. We borrow the idea of exploiting
side channels from security research. Favoring simplicity, we investigate the merits of
using low-frequency power traces as the side channel.

3. GENERAL DESIGN OF TELEDIAGNOSTIC POWERTRACER

Our objective is to perform remote gross-level damage assessment on unresponsive
nodes in high-end sensing systems, such as what may have caused them to stop
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Fig. 1. A power-based telediagnostic system as an “add-on” to a sensing system. The watermark generator
is needed only when the active sample scheme is used.

communicating and what the status of the applications might be. Our results show
that a high-end sensing node does indeed have a different low-frequency power
consumption signature in different normal and abnormal states, leading to the design
of a telediagnostic powertracer. Our design follows two main objectives:

Diagnostic Subsystem Generality: It should operate as an external tool and should
be generally applicable to most high-end host systems. Since power consumption is a
very general channel that is available on every system that needs power to perform, in
this work, we study the possibility of using a power-based telediagnostic tool. Moreover,
such a tool should require as few changes as possible to the host system. The hardware
installation of the tool is simply plugging in a power meter, while one should design
its software to be as simple as possible to make it easier to migrate on different host
systems.

Diagnostic Subsystem Efficiency: A diagnostic subsystem should not cost, in ei-
ther components or energy, a sizable fraction of original sensing node cost. Although
high sampling frequencies can increase the accuracy of system state estimations, high-
frequency Analog-to-Digital Converters (ADCs) are more expensive than low-frequency
ADCs, and more energy is required to transmit and process their measurements. There-
fore, we aim to devise diagnostic algorithms that can accurately identify node states
using meters with low sampling rates.

Following these objectives, we design the telediagnostic powertracer as in Figure 1.
It includes a low-cost power meter, one per sensor node, that periodically samples the
current and voltage of its host node. These meters are wirelessly connected via direct,
low-bandwidth links to a low-end base station, called the diagnostic base station, that
collects the power traces and runs various diagnostic algorithms to infer the status of
unresponsive nodes based on the collected power traces.

Specifically, there are two ways to sample the node’s power consumption. One is
passive sampling, which just passively samples the host node without requiring any
support from the host. The other is active watermarking, which places a watermark
generator (as shown in Figure 1) into each host to actively inject unique power patterns
(watermarks) into the power consumption traces based on the current system status.
These two schemes have their own pros and cons, so we investigate both in the article.

Power watermarks can be generated by manipulating the power consumption rate
of its host node. For instance, it can alter the CPU load, generate memory or disk
operations, or even toggle some peripheral devices. However, for the design objective
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of generality, the means (e.g., hardware device) chosen for manipulating power con-
sumption should not be specific to a particular sensing system. More importantly, it is
desirable for the watermark generator to manipulate the power consumption of a key
piece of hardware (e.g., the CPU rather than peripheral devices) that is necessary for
application execution as well. This ensures that failure of the watermark generator due
to failure of this piece of hardware can still be correctly interpreted as an indication of
application failure, since the application would then fail as well.

In principle, the availability of independent low-bandwidth wireless communication
on the power meter can also be exploited by the monitored node to send a distress
signal if the node’s main radio fails. We do not exploit it in this article for two reasons.
First, if node failure is brought about by a system crash or energy depletion, having
an extra radio on the failed node would not help as the node would not be able to use
it anyway. Second, and more importantly, it requires connecting the monitored system
to the radio of the diagnostic system and developing a driver for such a radio on the
hardware of the monitored system, both of which make this solution deeply coupled
with the monitored system and thus violates our design goal of diagnostic subsystem
generality.

One should understand that adding a diagnostic subsystem to a remotely deployed
sensor network necessarily increases the number of components that are deployed
in the field and hence increases the odds of component failure. The simplicity of the
meter, however, where it merely measures and communicates power samples at a low
rate, makes it likely that the more complex monitored sensing application will fail
first. For example, residential power meters are presently contemplated that should
operate uninterrupted for approximately 10 years. Failure of diagnosis, from a user’s
perspective, occurs only when both systems have failed, which has a lower probability
than failure of the monitored system alone.

Finally, we emphasize that the diagnostic system described in this article is intended
to help a remote operator determine the status of deployed, unresponsive nodes. Nodes
that remain responsive can, in general, use other solutions for health monitoring. For
example, they can run a local diagnostic routine and report its outcome periodically.
Such solutions have been discussed at length in previous literature and hence are not
a part of the contribution of the work presented in this article.

4. IMPLEMENTATION ON SOLARSTORE TESTBED

We deployed the telediagnostic subsystem in conjunction with an outdoor solar-powered
testbed called SolarStore [Yang et al. 2009], which aims at high-end data acquisition for
environmental monitoring applications. Local storage is available on each node to cache
the sensory data when the base station is disconnected. This testbed is a good example
of high-end, multiapplication sensing systems that our tool aims to troubleshoot.

4.1. Hardware

The testbed consists of nine sensor nodes with sensing, communication, and storage
capabilities. Figure 2 shows an outside view of a node, as well as the components inside
the node enclosure. Each node is powered by one 12-volt deep cycle battery (DEKA
8G31). For the purpose of perpetual operation, the battery is charged by a set of two
solar panels. An Asus EEE PC is used as the computing device of each node. It has
a 900 MHz Intel Celeron CPU, 1GB DDR2 RAM, and 16GB solid-state disk and runs
a Linux operating system. In addition, on each node, a Linksys WRT54GL router is
configured to the ad hoc mode to support high-bandwidth communication between
nodes. Moreover, one of its two antennas is extended outside of the node enclosure for
better signal reception, and thus may be damaged by lightning, rain, or wild animals.
The router and PC inside the enclosure are also subject to all sorts of failures caused by
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Fig. 2. Outside and inside look of a node in the solar-powered sensor network testbed.

Fig. 3. Our power meter with a wireless radio.

natural events (e.g., overheating or water damage) in the harsh outdoor environment.
In order to avoid over discharging the battery, a controller (Xantrex C35) watches the
battery voltage, disconnects the power of the host node when the battery voltage is
below the threshold 10.5 volt, and switches it on when the battery voltage is restored
above 12.5 volt. A wake-up timer on the EEE PC motherboard is used to power on the
PC automatically when the power is back.

On each sensor node, separately from the previous components, the telediagnostic
powertracer system is installed. Its power meter intercepts the connection between
the energy subsystem and the computing subsystem of each node and reports readings
back to a diagnostic base station. As shown in Figure 3, the meter is composed of two
circuit boards. The first is a custom design that incorporates an Allegro ACS712 hall
effect current sensor capable of measuring current consumption of up to 5 amps and
an op-amp-based difference amplifier to enhance the precision of the meter. The output
from the amplifier is connected to an ADC on an off-the-shelf Digi XBee radio, which is
itself the second circuit board. The XBee radio we selected is the basic XBee that uses
the 802.15.4 protocol and has a 1mW maximum transmit power. The base station has
a matching XBee radio to receive measurements. If the power meters cannot reach the
diagnostic base station in one hop, their XBee radios can be configured to use the built-in
firmware modules to form a mesh network [Digi XBee]. Therefore, the transmission of
power consumption samples to the diagnostic base station is solely through the network
formed by the power meters and is independent from the monitored subsystem. The
meter samples at 1kHz and averages the measurements in batches to compensate for
the noise in the measurements. For example, the batch size is 220 by default, which
entails an effective sampling rate of 4.5Hz. By varying the size of sample batches, we
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Fig. 4. An indoor node with a power meter measuring its power consumption.

can achieve different sampling rates. The entire meter consumes about 871mW, which
is only 6% of the host node. The total cost for the parts in each meter is around $59.41,
which is about 3% of the cost of the host node (about $2,000).

Per our design guidelines, the diagnostic subsystem must be independent from the
monitored subsystem. Thus, it is ideal that the energy needed for the power meter
itself comes from an independent battery. This is needed to reduce the chances of
correlated failures such as energy depletion that causes both the host node and its
power meter to fail. However, in our solar-powered testbed, we connect both the meter
and the monitored system to the same battery, charged by the solar cell, leveraging the
fact that the power meter needs a lower voltage to operate, compared to the monitored
system. For example, in our case, the lowest voltage at which the power meter operates
reliably is 6.2 volt, whereas the voltage threshold for the monitored system is 10.5 volt.
We connect the meter directly to the battery, bypassing the discharge controller. In this
way, the meter continuously reports readings even after the host node is shut down
due to energy depletion.

For the sake of this experimental study, we also set up an indoor testbed, where the
computing subsystem of each node is a clone of the one in the outdoor testbed, while the
energy subsystem is replaced by power supplies that can be connected or disconnected
using X10 modules to emulate the action of the load controller of a solar cell. Figure 4
shows an indoor node with a power meter measuring its power consumption. Due to the
difficulties of accessing the remote outdoor testbed, we always test any newly proposed
scheme or application before we deploy it on the outdoor testbed. In this case, we tested
and validated our proposed telediagnostic powertracer first on the indoor testbed and
then deployed it on the outdoor testbed (i.e., every node of the outdoor testbed is
connected to one telediagnostic power meter). The experiments are conducted based on
the power consumption traces collected from the outdoor testbed.

4.2. Diagnosis Objectives

The objective of our diagnostic subsystem is to determine the cause of connection fail-
ures that happen to deployed host nodes and the current status of the applications that
are supposed to be running on those nodes. Namely, hardware and software failures
that do not impair the connectivity of a node to the outside world are not the focus of our
subsystem. Given a network connection to the node, one can always run all sorts of ad-
vanced diagnostic and debugging tools to achieve more fine-grained system diagnosis.

Typically, the common failure causes in remote deployments are known from past
experience. For example, our initial experience with SolarStore suggests that the most
common failure cause is energy depletion. In fact, energy depletion is not an actual
“failure” state on this solar-powered platform. No human intervention is needed as a
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Fig. 5. One node drowned in the flood by heavy rains.

node will eventually come back to life when its energy is restored. However, energy
depletion also makes nodes unresponsive, so we need to tell it from other failure cases
when it occurs.

Other causes of unresponsive behavior of nodes include operating system crash,
infinite loops involving a node reboot, and short circuit due to water damage (shown
in Figure 5). Under those failures, all applications on the failed node would be dead
and stop collecting new data. Therefore, it is desirable to make a field trip as soon as
possible to repair the node to minimize the data loss and contain the hardware damage.

A node also becomes silent if its WiFi router fails or the router is still on but the
outside antenna is damaged (e.g., by an animal). These two types of failures may not
affect the ability of applications to sample and cache data locally. In such cases, there
may be no need for immediate intervention, so we can batch multiple such repairs into
one trip to save the cost. Therefore, in addition to distinguishing the hardware failures
noted earlier, we also target identifying the states of applications on unresponsive nodes
(i.e., whether or not applications are still functioning correctly and storing data). There
are two applications that run on our current deployment performing acoustic and video
recording of local wildlife near a forest, namely, (App-I) collection of bird vocalizations
in CD-quality sound, and (App-II) detection of predators of bird eggs using infrared
cameras.

To test the accuracy of the diagnostic techniques, we therefore set, as a benchmark,
the goal of distinguishing among the 12 failure states shown in Figure 6. We take
these cases as a proof-of-concept portfolio of failures that we purport to distinguish.
In general, as more failures are observed during deployment and their power traces
recorded, they can be added to the portfolio.

Note that, given the two applications, there are four application subcases that need
to be distinguished. In general, if there are n applications that may fail, there are
2n possible application failure states. Therefore, diagnosis based on only passively
measured power consumption is not likely to scale to a large number of applications.
However, in a sensor network context, it is still useful for many cases of dedicated
deployments that have very specific purposes and do not run a wide range of differ-
ent applications concurrently. For example, only two applications are running in our
current deployment.

To handle the cases with multiple concurrently running applications, we propose
another scheme called power watermarking. We place a watermark generator into
each host node that actively injects unique power signatures (watermarks) into the
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Fig. 6. Possible failure states in our system that cause a node to become unresponsive. App-I is the appli-
cation responsible for sensing sound using microphone. App-II is the application responsible for recording
images.

Fig. 7. Power traces of a sensor node in three states: (a) router fails and application is sampling sound,
(b) antenna fails and application crashes, and (c) OS crash.

consumed power traces according to the current system state. At the remote diagnostic
base station, a watermark detector infers the node state by identifying the embedded
power watermarks. Since we are only interested in binary per-application states (i.e.,
running or failed), even with a large number of applications, few bits are enough to code
all the possible states of interest. In fact, a simple coding and modulation technique
is sufficient for watermark generation, which makes it easier to be implemented on
sensor nodes and ported to different systems.

Passive sampling has limitations in scalability but is truly nonintrusive to the host
system, while power watermarking is more scalable to the number of applications but
indeed needs to place a simple software module into the host system. In the following,
we will present and compare the two schemes in detail.

5. DIAGNOSTICS BASED ON PASSIVE SAMPLING

This section presents an exploration of different design parameters for diagnosing dif-
ferent node failure states from passively measured power consumption traces. The goal
is to understand the tradeoffs between algorithm complexity and diagnostic accuracy.

As demonstrated in Figure 7, we observe obvious differences in the power measure-
ments of our solar power sensor node under different execution scenarios. This suggests
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the possibility of using a pretrained classifier to identify the current system state based
purely on the measured power consumption. A classifier is an algorithm that identifies
to which of a set of classes a new observation belongs, on the basis of a training set of
data containing observations whose class membership is known. Specifically, for each
system state of interest, we collect the consumed power traces in advance and use the
collected labeled data to train a classifier.

When a failure occurs, diagnosing it within a few minutes is considered good enough.
We thus use the classifier to determine the state of the system every τ minutes, which
we call the detection period. When invoked, the classifier uses a window of size δ
samples to determine the system state. The following subsections explore the space of
possible power trace analysis algorithms from simplest to more complicated that can
be used for classification in order of increasing complexity, as well as hybrid schemes
that avoid their individual limitations.

To test the accuracy of the classification schemes, we collected 80,000 samples at the
rate of 4.5 samples per second for each of the system states shown in Figure 6. We
used the first 40,000 samples to extract the static features and the remaining 40,000
samples to test the accuracy of the model. The 40,000 testing samples are divided into
traces of length δ, each of which is fed into the classifier to infer the class label. The
diagnostic accuracy for a failure case is calculated as the ratio of the number of times
that the correct label is identified over the total number of runs.

5.1. Classification Based on Static Power Consumption Features

A simple way to characterize the power consumption pattern is to use the parameters
of the probability distribution of the sampled power time series. For the time series of
state k, we use the mean, μk, and the standard deviation, σk. In other words, rather
than modeling how exactly the values in the time series change, we lump such changes
into a feature vector (μk, σk) for each state k.

Assume the series of power consumption measurements for system state k is given
by the power samples x1, x2, x3, . . . , xn. The mean, μk, and standard deviation, σk, over
a training window of n samples in state k are calculated as follows:

μk =
(

n∑
i=1

xi

)
/n (1)

σk =
√√√√(

n∑
i=1

(xi − μk)2

)
/n. (2)

After training, each state is represented using a (μk, σk) pair and stored for later
reference. At runtime, when a node becomes unresponsive, our diagnostic system is
launched. The power trace data recorded for the unresponsive node are inspected.
The vector (μ, σ ) is computed over a sliding time window (e.g., 30 minutes) for the
observed data and matched to the nearest known failure state by finding k such that the
Euclidean distance between feature vectors is minimized: mink(

√
(μk − μ)2 + (σk − σ )2).

The observed state is thus classified as failure state k.
To investigate the effect of window size on accuracy, we use window sizes of 1, 5, 10,

15, 20, and 30 minutes, respectively. The diagnostic accuracy for different window sizes
is given in Figure 8. Our experiments show that the improvement in classification accu-
racy with increased window size diminishes after a size of approximately 10 minutes.
We show the confusion matrix for the classifier based on static features, for a window
size of 20 minutes, in Table I. A confusion matrix, also known as a contingency table or

ACM Transactions on Sensor Networks, Vol. 11, No. 2, Article 33, Publication date: December 2014.



Power-Based Diagnosis of Node Silence in Remote High-End Sensing Systems 33:13

Fig. 8. Effect of the window size on classification accuracy for static feature-based classification.

Table I. Confusion Matrix for Classification Based on Static Features (Window Size = 30 Minutes)

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12

f1 1
f2 .8 .2
f3 .4 .4 .2
f4 .2 .6 .2
f5 1
f6 .3 .7
f7 .7 .3
f8 .7 .3
f9 1
f10 1
f11 1
f12 1

an error matrix, visualizes the performance of a classification algorithm. The matrix
makes it easy to see if the algorithm is confusing two classes (i.e., mislabeling one
as another). Specifically, a cell (i,j) in the confusion matrix represents the probability
of system state i (the row) to be classified as system state j (the column). A perfect
classification algorithm will have a confusion matrix with all 1s on the main diago-
nal. State f3 (router failure but camera is recording) is confused with state f4 (router
failure but camera and microphone are recording) and there is a high chance that f7
(antenna failure but camera is recording) is confused with state f6 (antenna failure but
microphone is recording) or state f8 (antenna failure but camera and microphone are
recording). It is worth noting that these misclassifications do not affect the ability to
recognize which component failed. However, they err in inferring which application is
running. In addition, state f12 (system reboot) is confused with antenna failure (states
f7 and f8). In the rest of this section, we seek to remedy these inaccuracies using more
involved classifiers.

5.2. Classification by Capturing Power Consumption Dynamics

A disadvantage of static features is that they do not capture the dynamics of the
sampled power time series. Fortunately, analyzing dynamic time-series data and iden-
tifying time-varying patterns are very mature research areas in the machine-learning
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and data mining communities. Several techniques that vary in complexity, accuracy,
and efficiency can be borrowed from the literature [Lin et al. 2003; Patel et al. 2002;
Shasha and Zhu 2004; Rafiei and Mendelzon 1997]. We explore the use of Markov
models.

A Markov model is very commonly used to model a stochastic process, where the
conditional probability distribution of future states of the process depends only on the
present state; that is, given the present, the future does not depend on the past. A
Markov model consists of system states and probabilities of state transitions that best
describe a particular time series. In this case, we use a simplified version of Markov
models, where the states are predetermined. To build a Markov model for the power
trace of a given failure scenario, we process the power trace corresponding to the failure
scenario using the following three stages:

Preprocessing: As the meter is somewhat noisy, we always perform a outlier fil-
tering step. For collected data for each system state k, we first calculate the mean
(μk) and standard deviation (σk) and discard any value that is outside the range of
[μk − 5 ∗ σk, μk + 5 ∗ σk] as outlier. Next, we can perform an optional step where we may
perform smoothing or normalization to input data based on system configuration (will
be elaborated in Section 5.2.4).

Discretization: Power consumption produces continuous-valued time-series data,
which are hard to analyze as the possible values for continuous data are infinite.
To address this issue, we discretize the power measurements, reducing the numeric
values of power samples to a small finite number of symbols. For example, 0–1 watt
can be called an “a,” and 1–2 watt called a “b,” and so forth. These symbols represent
measured power consumption levels, henceforth called power states. The entire power
trace is therefore converted to a string of symbols. Besides this static discretization
method, we also examine a dynamic method based on clustering in Section 5.2.5.

Computing Transition Probability: We build a state transition diagram that
expresses which states are followed by which other states. For example, a substring
“ab” in the power trace string represents a state transition from “a” to “b.” By observing
how often “ab” occurs in the string, we can determine the probability of state transition
ab. For instance, in string “aaabbcd,” there are a total of six transitions (e.g., the first
“a” is followed by the second “a,” the second “a” is followed by the third “a,” the third
“a” is followed by the “b,” and so on). Hence, the transition probability p(aa) = 2/6
(i.e., there are two transitions from state “a” to “a”), and p(cb) = 1/6. Any trace can
be summarized by a two-dimensional probability matrix that states the probabilities
of state transitions from any power state i to any power state j in the trace. The
aforementioned state transition diagram is also known as a Markov model. For each
system state, we build a model that represents that state.

The models built earlier are subsequently used for classifying system states during
runtime diagnosis. When a node becomes unresponsive, we use the δ samples that
have just been reported by the power meter. Next, by using the transition matrix of
each system state, we calculate the probability that the observed sequence of samples is
generated under this model. Specifically, this probability is the product of the transition
probability p(xi, xi+1) for all i = 1, . . . δ − 1, where xi is the ith sample in the trace. The
system state that has the highest probability of generating the observed sequence is
returned as the classification result.

In the following, we conduct a series of experiments to answer the following questions
regarding the classifier design. For brevity, we refer to the Markov model as MM.

—What is a sufficient number of model states to use?
—What is an acceptable sampling frequency of the power trace?
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Fig. 9. Effect of number of MM states on classification accuracy (window size = 30 minutes, data prepro-
cessing used: outlier filtering).

—What is the effect of the data window size used for diagnosis?
—What are the pros and cons of different data preprocessing techniques?
—What are the pros and cons of improved data discretization techniques?

5.2.1. Effect of MM Size. To see the effect of the number of MM states on classifier
accuracy, we varied the number of states as 5, 10, 15, 20, 30, 40, 50, 60, and 70 and
tested the MM with a window size of 30 minutes. The effect of the number of states on
accuracy is given in Figure 9. For this experiment, we trained the MM on raw data (after
noise reduction). As we can see from Figure 9, the accuracy increases with number of
states and becomes stable after the number of states reaches 50. More interestingly,
the figure highlights the fact that increasing the number of MM states far beyond that
value is a “bad” idea as well, because accuracy starts to drop if the number of states
becomes “too large.” This is because with too many states, the amount of data available
in the used window might become insufficient to accurately determine all the state
transition probability. In the rest of the article, we use 50 states for MMs unless we
specify otherwise.

5.2.2. Effect of Sampling Frequency. Since reducing the sampling interval increases en-
ergy consumption, we evaluate the effect of accuracy of the MM classifier with various
sampling intervals. We train the MM classifier at the sampling interval of 222ms,
444ms, 888ms, 1,776ms, 3,552ms, 7,104ms, 14,208ms, 28,416ms, and 56,832ms, re-
spectively. The lower sampling intervals were obtained from the same data by down-
sampling the original time series (i.e., selecting one every N original samples for
N = 1, 2, 4, . . . , 256). We present the effect of the sampling interval on accuracy in
Figure 10. As we can see, if the sampling interval is reduced to 444ms, accuracy starts
to drop, and after that point the accuracy decreases monotonically due to the loss of
information on finer-grained dynamics.

5.2.3. Effect of Window Size. To test the effect of window size on accuracy, we trained
the MM on the original data (after outliers are removed) with 50 states and tested its
accuracy with window sizes of 1, 5, 10, 15, 20, and 30 minutes, respectively. Regardless
of window size, we considered all windows shifted by 1-minute intervals. We show the
effect of varying window size on accuracy in Figure 11. In general, increasing window
size helps increase the overall accuracy. The amount of improvement varies between
different failure states.
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Fig. 10. Effect of sampling rate on the classification accuracy of MM (window size = 30 minutes, number of
states = 50, data preprocessing used: outlier filtering).

Fig. 11. Effect of window size on the classification accuracy of MM (number of states = 50, data preprocessing
used: outlier filtering).

We also show the confusion matrix to determine the probability of misclassification
and illustrate which states are most likely to get confused. Table II gives the confusion
matrix for a window size of 30 minutes. The performance of the MM with a 30-minute
window size is significantly better than the static feature-based classification scheme.
We have 100% accuracy for all the states except f3 and f4. f3 occasionally gets misclas-
sified as f4 and vice versa. It is worth noting that these misclassifications do not affect
the ability to recognize which component failed. However, they err in inferring which
application is running.

5.2.4. Effect of Data Preprocessing. In this section, we consider techniques for data pre-
processing that have the potential to eliminate extraneous information from the sam-
pled power signal, allowing us to focus on essential features. For example, the status
of a CPU fan (“on” or “off”) can affect power consumption by adding or subtracting a
constant offset. An MM trained with the fan on may lead to misclassifications if the
fan is turned off. To address this problem, we resort to data normalization prior to dis-
cretization. We explore two alternatives for normalization, namely, (a) z-score-based
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Table II. Confusion Matrix for Classification Using MM (Window Size = 30 Minutes, Number of States = 50,
Normalization Used: Outlier Filtering)

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12

f1 1
f2 1
f3 .6 .4
f4 .36 .64
f5 1
f6 1
f7 1
f8 1
f9 1
f10 1
f11 1
f12 1

Fig. 12. Effect of window size on the classification accuracy of MM based on z-score (number of states = 50,
data preprocessing used: outlier filtering, z-score normalization).

normalization and (b) normalization based on relative difference. We describe each of
these techniques next.

Normalization based on z-score: To normalize the data using the z-score, we use
the following formula:

x′
i = (xi − μk)/σk, (3)

where xi is the raw data, μk is the mean, and σk is the standard deviation for the training
data for a particular system state k. Intuitively, the z-score represents the distance
between the raw score and the population mean in units of the standard deviation. The
z-score is negative when the raw score is below the mean and positive when it is above.
It is a very common technique for data normalization in the data mining literature. In
Figure 12, we present the impact of varying window size on accuracy of an MM trained
based on z-score data. In Table III, we present the confusion matrix. The window size
is 30 minutes. It turns out that the accuracy of MMs using z-score normalization is not
encouraging and cannot be used for diagnosis effectively.

Normalization based on difference signal: As an alternative, we normalize the
data using a simpler scheme that uses the difference signal obtained from the following
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Table III. Confusion Matrix for Classification Using MM Based on z-Score (Window Size = 30 Minutes, Number
of States = 50, Normalization Used: Outlier Filtering, z-Score)

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12

f1 1
f2 .3 .5 .1 0.1
f3 .2 .1 .4 .3
f4 .4 .3 .2 .1
f5 1
f6 .54 .12 .34
f7 .13 .67 .2
f8 .3 .7
f9 1
f10 1
f11 1
f12 1

Fig. 13. Effect of window size on the classification accuracy of MM based on signal difference (number of
states = 50, data preprocessing used: outlier filtering, difference between consecutive signal).

formula:

x′
i = xi − xi−1, (4)

where xi is the raw data. Note that this scheme is similar to obtaining the derivative
of the sampled signal. Hence, any constant bias (such as the power consumption of an
irrelevant fan) is eliminated due to differentiation. In Figure 13, we present the impact
of window size on the accuracy of the trained MM. As we can see from Figure 13, the
window size has a significant impact on MM classifier accuracy. In Table IV, we present
the confusion matrix for a window size of 30 minutes. It has a better classification accu-
racy compared to the z-score normalization technique, but as good as the MM based on
original data. The intuition behind such poor performance when normalization is used
is that it is because the absolute power consumption level does play an important role
in identifying what is running and what is not. Data normalization causes information
loss.

5.2.5. Discretization by Clustering. Discretization of the power signal is an important step
toward computing the MM. In all previous sections, we used a simple discretization
technique that simply cut the range of input data into uniform bins and assigned
them names. In reality, the power measured for a system in different states may
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Table IV. Confusion Matrix for Classification Based on MM Based on Signal Difference (Window Size = 30
Minutes, Number of States =50, Data Preprocessing used: Outlier Filtering, Difference between Consecutive

Signal)

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12

f1 1
f2 .2 .1 .5 .1 .1
f3 .1 .6 .05 .1 .1 .05
f4 .1 .2 .2 .3 .1 .1
f5 .5 .5
f6 .3 .2 .3 .2
f7 .1 .5 .3 .1
f8 .2 .1 .7
f9 1
f10 1
f11 .4 .6
f12 1

Table V. Confusion Matrix for MM with Clustering (Window Size = 30 Minutes, Number of Clusters = 50,
Normalization Used: Outlier Filtering)

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12

f1 1
f2 1
f3 .01 .94 .05
f4 .14 .86
f5 1
f6 1
f7 1
f8 1
f9 1
f10 1
f11 1
f12 1

not necessarily be uniformly distributed across its range. The discretization algorithm
introduced earlier does not capture nor take advantage of this knowledge. For example,
it may put different clusters of power measurements into the same bin. Conversely,
there may be bins into which no measurements fall. The first case causes information
loss, while the latter produces unnecessary states for the MM.

In this section, instead of using even ranges, we employ the hierarchical cluster-
ing technique [Johnson 1967] to identify representative power levels and use those
representative levels as anchor points to discretize the time-series input. Hierarchical
clustering is a common technique used in statistical data analysis. It uses a bottom-up
approach, where the scheme starts with each data point as a cluster and repeatedly
merges each two closest clusters to one until the desired number of clusters is left. The
distance between two clusters is given by the average distance between points belong-
ing to the different clusters. Table V shows the confusion matrix for the MM with the
clustering scheme with 50 clusters. As the results show, the MM classifiers with clus-
tering perform better than earlier schemes. This result is encouraging since with the
same number of states, the MM classifier with clustering performs better. Figure 14
shows the detailed accuracy of each failure state of the system versus the window size.
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Fig. 14. Effect of window size on the classification accuracy of MM with clustering (number of clusters =
50, data preprocessing used: outlier filtering).

5.3. A Hybrid Scheme

The previous subsections indicated no clear winner in terms of the ability to diagnose
system states, although some classifiers were better at some states. This leads to the
idea of developing a hybrid scheme. Ensemble classifier approaches, studied in machine
learning, can greatly improve performance of a classification system [Asker and Maclin
1997; Giacinto et al. 2000; Bauer and Kohavi 1999] by assembling a good classifier from
a group of weaker ones, called subclassifiers. In this work, we employ such a method
to achieve nearly perfect accuracy. There are two decisions in designing an ensemble
classifier. The first design decision is what the different subclassifiers should be. In
our case, the subclassifiers are simply the imperfect classifiers we presented earlier,
based on static features and MMs. The second choice is how to combine classification
results from these subclassifiers. We implement two hybrid schemes that differ in how
they combine subclassifier results. As we explain later, one is based on the implicit
assumption that misclassifications of different subclassifiers are fully correlated. The
other is based on the assumption that they are independent.

More specifically, our hybrid classifier uses the following schemes for subclassifiers:
(1) static feature-based classification, (2) MM-based classification without data pre-
processing, (3) MM-based classification based on z-scores, (4) MM-based classification
based on the difference signals, and (5) MM-based classification using clustering, with-
out data preprocessing (which was shown to be the best MM+clustering scheme). The
confusion matrices for these schemes were previously shown in Table I, Table II, Table
III, Table IV, and Table V. When a failure occurs, each subclassifier returns a result,
indicating its diagnosis. Say, subclassifier j returned state fi as its answer. The confi-
dence that fi is really the correct system state can be computed from the ith column in
the subclassifier’s confusion matrix by dividing the ith diagonal entry (corresponding
to a correct classification of fi) by the sum of all ith column entries (corresponding to all
the cases where the classifier returned fi, correctly or not). Let us call it the confidence
of classifier j in its answer, denoted Conf ( j).

Two flavors of the hybrid classifier are described here. The two algorithms differ in
how they combine the results based on confidence.

—Correlated classifier scheme: In our first scheme, given different answers by different
subclassifiers, the subclassifier j with the highest confidence, Conf ( j), in its answer
wins. The scheme implicitly assumes that if two or more subclassifiers returned the
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Table VI. Hybrid Classifier I: Correlated Assumption

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12

f1 1
f2 1
f3 .63 .35 .02
f4 .95 .05
f5 1
f6 1
f7 .9 .1
f8 .04 .96
f9 1
f10 1
f11 1
f12 1

Table VII. Hybrid Classifier II: Independent Assumption

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12

f1 1
f2 1
f3 .67 .33
f4 1
f5 1
f6 1
f7 .9 .1
f8 .04 .96
f9 1
f10 1
f11 1
f12 1

same result, we do not know this result with any higher confidence than if it was
returned only by the one with the highest confidence among this group. This, in turn,
assumes that classifier results are fully correlated; whatever causes one to err causes
the other to err too, hence not offering extra information when both return the same
result. The confusion matrix of this hybrid classifier, computed for 30 states and a
20-minute window, is shown in Table VI. Looking at the diagonal entries, the table
demonstrates that this scheme is somewhat better overall, in that the average of the
diagonal is higher than that for the used subclassifiers.

—Independent classifier scheme: In our second scheme, if a set Si of subclassifiers agree
on the same answer, fi, a combined confidence is computed in fi using the formula
CombinedConf ( fi) = 1 − � j∈Si (1 − Conf ( j)). In other words, when answers coin-
cide, the scheme combines them as if they are independent and hence the previous
formula computes a higher confidence in the result. The result fi with the high-
est CombinedConf ( fi) is then chosen. The confusion matrix of this hybrid classifier,
computed for 30 states and a 20-minute window, is shown in Table VII. The figure
demonstrates that this scheme is nearly perfect.

The rationale for testing both of abovethese hybrid classifiers is to see how indepen-
dent the set of features used by their subclassifiers is. Recall that these subclassifiers
differed in the use of static features versus MM, use of different preprocessing tech-
niques, and use of simple discretization versus clustering. It appears, based on the
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winning hybrid classifier, that these features were closer to being independent than
correlated.

6. DIAGNOSTICS BASED ON POWER WATERMARKING

As shown in the results of Section 5, the classifier based on passive sampling has a
problem in distinguishing some application states (e.g., f3, f7, and f8 in Table VII).
As the number of applications increases, the number of possible system states grows
exponentially, making them even more difficult to classify. Although one can expect that
the number of applications on dedicated sensing systems is small, to improve scalability,
we propose another scheme called power watermarking, which offers a solution by
artificially shaping the power trace by adding predefined power watermarking. In the
following subsections, we present how watermarks are generated on the host node
and how they are detected from the noisy power traces that also contain the power
variations attributed to all sorts of operations on the host, and evaluate this scheme
on our SolarStore testbed.

6.1. Watermark Generator

The mission of the watermark generator is to inject power watermarks into consumed
power traces to carry system state information. Its coupling with the host node calls for
a close look at the original power consumption trace of the host. Figure 7(a) shows power
measurements of one node, on which App-I is running. App-I continuously samples a
microphone and buffers the acoustic samples in the memory. When a predefined size
of data has been collected, it processes the raw data into a standard format and then
stores it in the local disk. A closer study discloses that those prominent power peaks
take place during the raw data processing, which brings the CPU from almost idle to
busy.3

Based on this observation, a natural way for generating power watermarks is to
alter the CPU state between busy and idle artificially. This approach has the following
advantages. First, as shown in Figure 7(a), the node power consumption rate jumps
from 10.5 watts, when the CPU is idle, to 13.5 watts, when the CPU is busy. This differ-
ence is substantial enough for most low-end power meters to detect. Second, the CPU
is a key resource that is needed by all applications. Failure of altering the CPU state
indicates only one possible system state—the system crash. This ensures that failure of
the watermark generation due to failure of this piece of hardware can still be correctly
interpreted as an indication of application failures, since the applications would then
fail as well. Third, a CPU is generally available on any sensing system, and this makes
the watermark generator portable to other systems. Additionally, we observe that other
operations (e.g., memory or I/Os) of the applications on the node have nondetectable
power changes to the power meter. This is because those operations happen too fast
(e.g., within 1ms) to be detected by low-end power meters, whose sampling rates are
usually less than 10Hz. For other sensing systems where the CPU states are indistin-
guishable to low-end power meters (e.g., in low-end computing devices), the proposed
diagnostic tool is not suitable and not recommended.

In addition to eliminating spurious hardware dependencies of the watermark gen-
erator, one should also reduce spurious dependencies on software, preventing software
failures of the watermark generator from being falsely interpreted as application fail-
ures. Therefore, we propose a decentralized scheme that works as an add-on library
to each application, periodically generating heartbeats with a period unique to this
application. Since it shares the same address space with its application, it will fail to

3Note that a CPU generally switches between only two states: busy and idle. The CPU utilization as a
percentage is actually an average over a time interval.
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Fig. 15. The CPU usage of the sleep function, an application, and their aggregation.

produce heartbeats if the application crashes. Thus, the absence of particular heart-
beats indicates the failure of corresponding applications.

Specifically, most applications (not only the applications in this article but also ap-
plications like environment monitoring, infrastructure monitoring, and surveillance)
in remote deployment sensing systems work in a duty-cycled manner, as shown in
Algorithm 1. Then within each cycle we have the application call an API provided by
the watermark generator, and thus we can create heartbeats periodically to indicate
whether the application is still running. This is the goal of our diagnostic system, re-
trieving the coarse-grained application states, particularly whether the applications
are still running, so that the system operators can evaluate the urgency of repair in
case of node silence. It is desired that the generation of heartbeats does not interfere
with the normal operation of the application that it belongs to. Obviously, a good occa-
sion for generating heartbeats is the time when the application is sleeping. Therefore,
our watermark generator provides a new sleep function, which can be called by each
application to perform normal sleeping action and has one side capability of generating
heartbeats.

ALGORITHM 1: A typical sensing application
while True do

take samples from sensors of interest;
process samples;
sleep(s);

end while

We devise the sleep function to generate heartbeats at one designated period chosen
by each application. Of course, this designated period can only be kept approximately as
the heartbeat generation also depends on how the sleep function is called. Specifically,
let P be the designated heartbeat period of an application, and let the sleep function
attempt to produce a heartbeat of width H at the beginning of each period. When the
function is called, it checks the current time t and then decides when to run the dummy
code on the CPU to generate heartbeats, when to sleep, and for how long. If the function
is called with the sleeping time s > P, as shown in Figure 15 , at t = 0, it generates
heartbeats at the beginning of each period within s and sleeps for the rest of the time.
However, if it is called with a short sleeping time at the time when (t mod P) ≥ H,
it misses the occasion of generating the heartbeat for the current cycle (e.g., the cycle
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between 2P and 3P in Figure 15), and hence simply goes to sleep for a duration of s. It
may also happen that the function is called at time t when (t mod P) < H, and it then
only produces a partial heartbeat with a length of H − (t mod P).

However, one should note that the heartbeats observed by the power meter are
actually the aggregate CPU usage of both the sleep function and the application. As
shown in Figure 15, when the sleep function has no chance to produce the heartbeat
(e.g., in [2P, 3P]), it entails that the application is busy using the CPU and thus makes
up the wanted heartbeat. The same thing happens when only a partial heartbeat is
produced by the sleep function. This observation inspires our design for the watermark
detector, which will be presented in the next subsection.

In order to reduce overlap among heartbeats of different applications, we only use
prime numbers as heartbeat periods. Note that the library interposition technique can
be used to intercept the original sleep function calls from applications, so that there is
no need to modify the source code of applications to have them call the redefined sleep
function.

To ensure that the heartbeat generation will not interfere with other applications,
we devise the sleep function such that it switches the scheduling priority of the calling
process to the lowest level when it is called and switches back to the original level
when it returns. On Linux, we implement this by using the scheduling system calls
sched_getscheduler and sched_setscheduler. The Linux process scheduler considers two
classes of priority when scheduling processes onto the CPU. One is static priority, and
the other is dynamic priority. The scheduler will start running processes of dynamic
priority only when there is no process of static priority in the TASK_RUNNING state.
Therefore, by switching to dynamic priority, the sleep function will always yield the
CPU to other applications that are running with static priority.

6.2. Watermark Detection

On the diagnostic base station, we continuously collect the samples from the meter
attached to each monitored node and identify the embedded watermarks based on the
dynamics of sampled power time series.

Given a power trace, it is first preprocessed to classify what samples represent the
CPU busy state and what samples represent the idle state. A naive way is to measure
in advance the power consumption rates for both the CPU states. Instead, we use a
clustering-based method that is more resilient to system changes. Since the two power
levels for the two CPU states occur very frequently, we observe two masses of samples
in the traces, which correspond to the two CPU states. Therefore, we adopt the k-means
(i.e., k = 2) clustering method to classify each sample into one of the two classes, B
(CPU busy) and I (CPU idle). k-means [MacQueen 1967] is a method of clustering that
aims to partition the observations into k clusters in which each observation belongs to
the cluster with the nearest mean.

After preprocessing, a power trace X of length W is converted into a series of Bs and
Is. We determine if a particular pattern exists in X based on its similarity score that
is calculated as follows. We denote a candidate heartbeat watermark by Y and denote
the length of Y by |Y| (i.e., the period of the heartbeats). Since the candidate Y may
not be synchronized with the trace X , we denote their offset by θ where 1 ≤ θ ≤ |Y|.
The similarity between X and Y is calculated as the maximum of the aggregated
sample-wise similarity under all possible θs. Formally, we have

sim(X ,Y) = max
1≤θ≤|Y|

W∑
i=1

X [i] � Y[(i + θ ) mod |Y|], (5)

where the sample-wise operator � measures the similarity of two samples.
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Similar schemes have long been adopted in pattern matching problems, where the
operator � is usually defined as the exclusive NOR that returns 1 if the two operands
are the same, or 0 otherwise. However, we define our own �-based characteristics of
our power watermark detection problem. Besides watermarks generated artificially, a
power trace also contains noise from applications, back-end system processes, and the
measurement process. The first two types of noise originate from the CPU usage, so
they can only corrupt Is into Bs, but not Bs into Is. The noise from the measurement
has no bias, and hence it could turn Is into Bs or Bs into Is.

Based on these features of noise, we define the operator � as

x � y =
{1 if x = y

0 if x = B and y = I
−1 if x = I and y = B

. (6)

By this definition, a sample in the power trace contributes 1 to the similarity score if
it matches the pattern. When a B is wanted by the pattern but an I is observed in the
trace, a penalty −1 is given to the similarity measure, because Bs have immunity to
the noise and hence are not supposed to turn into Is. On the other hand, as an I is
pruned to be corrupted into a B, there is neither reward nor penalty when x = B and
y = I.

Let S be the set of all possible patterns that could occur in X . Each pattern in S

is the heartbeat pattern with the designated period for each application installed on
the host node. If the similarity score of a heartbeat pattern is high enough, we claim
that it exists in the trace and hence the corresponding application is still running.
Because heartbeats with a shorter period (i.e., a higher rate) occur more often within
a time window, their absolute similarity score will be higher than that of heartbeats
with a longer period. Thus, for a fair comparison, we normalize similarity scores with
respect to heartbeat rates. Ideally, a symbol B should always be produced by either
the sleep function or applications at the designated time. It could be corrupted into
an I only by measurement noise. Thus, the zero score gives a very conservative lower
bound for declaring existence, which tolerates a measurement error rate of 50%. On
the other hand, Is are pruned to be turned into Bs by applications, and hence form
some patterns that could be mistaken as heartbeats, resulting in false positives. Thus,
in order to obtain a right threshold on the similarity score, we utilize another set of
heartbeat patterns, which are not used by any application on the host node and hence
are supposed not to exist in the trace. Let μ and σ be the mean and standard deviation
of the similarity scores of these nonexisting patterns. We use max{0, μ + σ } as the
threshold. With a score above this threshold, a heartbeat pattern is claimed to exist.

6.3. Evaluation

In this section, we study and compare how accurately the power watermarking can
diagnose failures, how it performs when the number of sensing applications increases,
and how efficient it is in terms of energy consumption. Since hardware failures can be
accurately identified by the classifiers with passive sampling, in this section, we will
focus on identifying applications states. As shown in Figure 6, the application states
become unknown only in case of router failure and antenna failure. We define these
two types of hardware failures as F1 and F2, respectively.

In order to test scalability, besides the two applications used earlier, we install three
other new applications: (App-III) an application that logs the output current and volt-
age of the solar panel, (App-IV) an application that monitors the internal temperature
of the node, and (App-V) an application that collects readings from environmental sen-
sors (i.e., temperature, humidity, and light sensors). Furthermore, by running multiple
instances of each application, we are able to test scalability to a larger state space. For
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Fig. 16. Similarity scores and detection thresholds for three cases.

comparison, we also report the overall diagnostic performance of the passive-sampling-
based classifier under each of F1 and F2 when more than two applications are running.

Let S be the set of prime numbers in the range of [5, 79]. We choose S1 =
{5, 11, 17, 23, 31} and S2 = {41, 47, 59, 67, 73} as the two sets of prime numbers, which
are used by the five applications as the heartbeat periods (in seconds) for F1 and F2,
respectively. We use the remaining 10 prime numbers in S to calculate the detection
thresholds. For purposes of obtaining an accurate threshold, we choose the two groups
of numbers (i.e., S1 ∪ S2 and S − (S1 ∪ S2)) to be interleaving. The heartbeat duration
H is 1 second, the default sampling rate R is 10Hz, and the default window size W is
900 seconds.

First, we study how heartbeats with designated periods can be identified by using
their similarity scores. Figure 16 shows the normalized similarity scores of all the
periods in S for two power traces collected under two different cases, respectively. Note
that the periods in S − (S1 ∪ S2), denoted by the yellow bars in Figure 16, are never
used by any application in case of F1 and F2. The mean and standard deviation of the
similarity scores of these periods are used to obtain the detection thresholds, which are
the red horizontal lines in the figure.

In case (1), the router fails (F1) but all applications are running. This is one of the
most complicated cases because we are supposed to identify all the periods in S1. As
shown in Figure 16(a), the detection threshold is 0.67. The scores of all the candidate
periods in S1 are above this threshold. Although the score of the period 67 in S2 is also
above the threshold, all other candidates in S2 are below the threshold. The majority
existence of candidates in S1 indicates that there is a router failure, and all applications
are running. In case (2), the antenna is broken (F2) but all applications are running.
As shown in Figure 16(b), the detection threshold is 0.06. The scores of all the periods
in S2 are above this threshold. Even though some periods, such as 37, 61, and 71, are
also above this threshold, we know that these periods are never used. Therefore, we
also identify this case correctly.

To investigate the effect of window size on accuracy, we run the detection module with
a window size ranging from 100 seconds to 1,000 seconds. Figure 17 shows the average
diagnostic accuracy for F1 and F2 with various window sizes. Overall, increasing the
window size helps increase the accuracy, but this also implies a longer response time.
As we are not aiming at instantaneous failure detection, we choose a reasonably large
window size W = 900 seconds in the following experiments. Moreover, one may observe
that F1 has a higher performance than F2. The only difference between these two
failures, with respect to power watermarking, is that applications in F1 have smaller
heartbeat periods than those in F2. This indicates that accuracy decreases with the
increase of period P.
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Fig. 17. Effect of window size on accuracy.

Fig. 18. Effect of sampling rate on accuracy.

As collecting samples can be expensive in terms of consumed power, we present the
effect of sampling rate R on accuracy in Figure 18. As we can see, if the sampling rate
is decreased, accuracy starts to drop, due to the reduction in the number of samples
per window, as well as the loss of information on finer-grained dynamics. However, the
achieved accuracy is still above 85% at 5Hz, which implies that a low-end power meter,
efficient in both energy and cost, is sufficient for power watermark detection.

When a new application is installed, we need to assign two new prime numbers
to it as its heartbeat periods under F1 and F2, respectively. In addition, we add two
more neighboring prime numbers into S to help determine the detection threshold. For
example, as shown previously, we use 10 prime numbers in [3, 79] as the two sets of
heartbeat periods for the five applications and use the other 10 prime numbers left
in [3, 79] to calculate detection thresholds. Moreover, for the purpose of obtaining an
accurate threshold, we choose two group of numbers that are interleaved. Accordingly,
with 10 applications, a period as large as 179 is needed. CPU load, which is about
20% with five applications running, also increases monotonically with the number of
applications. Therefore, the scalability of this scheme to the number of applications
can be evaluated by studying the effect of period length and CPU load.

To study the scalability while isolating the impact of changes in CPU load, we in-
crease the number of applications by running multiple instances of App-III, App-IV,
and App-V that are not CPU intensive. Figure 20 shows that the accuracy of F1 and
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Fig. 19. Effect of heartbeat period on accuracy.

Fig. 20. Effect of number of applications on accuracy.

F2 goes down with the increase of the number of applications. The performance de-
generation is mainly caused by the errors in detecting heartbeats with large periods.
In Figure 19, we show the accuracy for heartbeats with different periods for 10 appli-
cations. Accuracy drops from 88% for heartbeats of period 5 to 52% for heartbeats of
period 167. This is because heartbeats with larger periods appear less within a time
window and thus their similarity scores are more vulnerable to noise. Thus, overall
accuracy is inversely related to the period. Also, this raises a fairness issue that appli-
cations with shorter periods are more favored in diagnosis. One may therefore assign
short periods to applications with higher priority in diagnosis. On the other hand, we
can see that the diagnostic accuracy of the passive sampling scheme drops dramatically
as the number of applications increases. This is because App-III, App-IV, and App-V
are not CPU intensive, and thus do not generate obvious power signatures that could
be captured by the low-end power meter. Hence, the passive sampling scheme has a
problem in distinguishing their states.

To study the effect of CPU load without changing the heartbeat patterns, we still use
the five applications and their designated periods. A dummy process is used to bring
extra load to the CPU. As shown in Figure 21, the diagnostic accuracy for F1 and F2
drops with the increase of CPU load, due to the increasing false positives introduced
by the dummy application. In fact, CPU load of sensor nodes is not expected to be high
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Fig. 21. Effect of CPU load on accuracy.

Fig. 22. Energy efficiency of heartbeat generation.

as typical sensing applications are not CPU intensive. This means that our scheme can
achieve a reasonably high diagnostic accuracy in most sensor deployments.

Last, we evaluate the energy cost of power watermarking. In Figure 22, we show the
energy consumption of heartbeat generation with different numbers of applications.
It shows the worst case that all applications are alive and generating heartbeats. The
y-axis is the ratio of the extra energy consumption brought up by power watermarking
over the normal energy consumption of the host node when no power watermarking
is used. When the number of applications increases, heartbeats with more different
periods are generated. Consequently, as shown in the figure, more energy is consumed.
The energy consumption shown here is normalized by the energy consumption of the
host system with no heartbeat, and it becomes relatively small when CPU load in-
creases. In general, the extra energy consumed in this worst case is less than 5% of
the original system. This percentage is acceptable for high-end sensing systems that
our powertracer targets. Recall that we activate heartbeat generation only in case of
failure, and this further conserves energy.

As confirmed by the experiment results, power watermarking is a good supplemen-
tal to the passive sampling scheme to identify application states when the number
of applications is large. The passive sampling scheme only has about 12% accuracy in
distinguishing application states with the five applications, while power watermarking
achieves more than 95% accuracy. This is acceptable, as far as scalability goes, consid-
ering that the number of applications that run on sensing systems is usually not large.
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This performance can be further improved if we increase the window size or sampling
rate.

7. LIMITATIONS AND FUTURE WORK

In principle, the approach used in this article to troubleshoot unresponsive sensor
nodes remotely based on power consumption characteristics can be applied to a wide
range of systems. However, it is crucial to understand the assumptions made in our
current work before it can be extended to other contexts.

We developed the tool presented in this article specifically for high-end sensing
systems such as SolarStore [Yang et al. 2009] that justify the cost of using an additional
power meter. For low-end systems that use low-power devices, such as Tmote and MicaZ
motes, we may need to develop power meters that can run at a lower voltage (our current
meter needs a minimum of 6.2 volts to operate reliably). For such low-power devices,
noise may become a problem. Exploring efficient algorithms for identifying patterns in
the presence of a low signal-to-noise ratio will be an important challenge to investigate.

The current system does not consider resource efficiency of upload of meter readings.
We simply note that the upload requirements are low due to the low sampling frequency
of the meter. Efficient and optimized mechanisms for uploading meter readings could
present another avenue of future improvement. Different optimizations may depend
on the availability of infrastructure, such as connectivity to wired backbone networks
or wireless networks including 3G technologies and WiMax.

From an algorithmic perspective, one limitation of our current diagnostic analysis is
that it has no notion of “unknown” state. Currently, it classifies any state as either a
“normal” state or a “failed” state depending on its distance measure from the trained
states. To fix this, one can use a threshold-based scheme, such that if the distance
measure from all the known states is larger than a predefined value, it is classified as
an “unknown” state. Exploring classification algorithms that admit explicit unknown
states is a worthwhile avenue for future work.

In the current article, the authors artificially restricted the system to 1 meter. Obvi-
ously, measuring the power used by different components of the system separately can
significantly enrich the set of identifiable energy features, hence making classification
more accurate and effective. If the price of meters is small enough to allow using more
than one device, this can be an important direction for improving the current scheme.

In summary, the diagnostic powertracer presents an initial proof of concept that
demonstrates how energy measurements can be indicative of the nature of failures. We
hope that this initial investigation will set the stage for many future extensions and
improvements that address the limitations outlined earlier. We should stress that the
previous extensions mostly increase the scope of applicability of the approach. In our
own outdoors deployment, the approach has already proven adequate and valuable in
identifying sources of failures in our system. The powertracer, as it currently stands,
is good at diagnosing failures in static, high-end sensing systems.

8. CONCLUSIONS

This article presented a case and a proof of concept for the use of power as a side
channel for remote diagnostics, where damage assessment is performed on unrespon-
sive, remotely deployed nodes. An independent power-metering subsystem was used
to collect power consumption traces of high-end sensor nodes. A number of algorithms
were compared in their ability to determine possible causes of failure and infer appli-
cation states by analyzing the power traces. It is shown that accurate diagnostics are
possible by using a pretrained classifier when the number of states to be classified is
not large. This is acceptable for many sensor network deployments where the number
of concurrent applications is small. To improve the scalability, we also propose a power
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watermarking scheme, which achieves 95% accuracy with five applications and more
than 70% accuracy with 10 applications. Power watermarking is a good supplemental
to the passive sampling scheme to identify application states, while it indeed requires
one to run the watermark generator inside the host node, which is less nonintrusive
than the passive sampling scheme. The cost of such a system is likely to decrease given
the modern trends in metering hardware. The powertracer is currently deployed in
conjunction with an outdoor solar-powered high-end sensor system for acoustic and
video monitoring. Future work will focus on algorithm robustness as described in the
previous section, as well as on experiences with the deployed system.
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