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The recent proliferation of human-carried mobile devices has given rise to the crowd sensing systems. How-

ever, the sensory data provided by individual participants are usually not reliable. To better utilize such sen-

sory data, the topic of truth discovery, whose goal is to estimate user quality and infer reliable aggregated

results through quality-aware data aggregation, has drawn significant attention. Though able to improve ag-

gregation accuracy, existing truth discovery approaches fail to address the privacy concerns of individual

users. In this article, we propose a novel privacy-preserving truth discovery (PPTD) framework, which can

protect not only users’ sensory data but also their reliability scores derived by the truth discovery approaches.

The key idea of the proposed framework is to perform weighted aggregation on users’ encrypted data using a

homomorphic cryptosystem, which can guarantee both high accuracy and strong privacy protection. In order

to deal with large-scale data, we also propose to parallelize PPTD with MapReduce framework. Additionally,

we design an incremental PPTD scheme for the scenarios where the sensory data are collected in a stream-

ing manner. Extensive experiments based on two real-world crowd sensing systems demonstrate that the

proposed framework can generate accurate aggregated results while protecting users’ private information.

CCS Concepts: • Information systems → Information systems applications; • Security and privacy

→ Privacy protections;

Additional Key Words and Phrases: Crowd sensing, truth discovery, privacy-preserving

This work was sponsored in part by US National Science Foundation under grant IIS-1319973, IIS-1553411, CNS-1262277,

CNS-1566374, CNS-1652503, and CNS-1742845.

A preliminary work has been presented in ACM SenSys 2015 [41].

Authors’ addresses: C. Miao, W. Jiang, L. Su, S. Guo, J. Gao, and K. Ren, Department of Computer Science and Engineer-

ing, State University of New York at Buffalo, Buffalo, NY 14260; emails: {cmiao, wenjunji, lusu}@buffalo.edu, suxinguo@

gmail.com, {jing, kuiren}@buffalo.edu; Y. Li, Tencent Medical AI Lab, Palo Alto, CA 94301; email: yaliangli@tencent.com;

Z. Qin, Department of Electrical and Computer Engineering, The University of Texas at San Antonio, San Antonio, TX

78249; email: zhan.qin@utsa.edu; H. Xiao, J. Mack Robinson College of Business, Georgia State University, Atlanta, GA

30303; email: hxiao@gsu.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2019 Association for Computing Machinery.

1550-4859/2019/01-ART9 $15.00

https://doi.org/10.1145/3277505

ACM Transactions on Sensor Networks, Vol. 15, No. 1, Article 9. Publication date: January 2019.

mailto:permissions@acm.org
https://doi.org/10.1145/3277505


9:2 C. Miao et al.

ACM Reference format:

Chenglin Miao, Wenjun Jiang, Lu Su, Yaliang Li, Suxin Guo, Zhan Qin, Houping Xiao, Jing Gao, and Kui Ren.

2019. Privacy-Preserving Truth Discovery in Crowd Sensing Systems. ACM Trans. Sen. Netw. 15, 1, Article 9

(January 2019), 32 pages.

https://doi.org/10.1145/3277505

1 INTRODUCTION

The recent proliferation of increasingly capable and affordable mobile devices (e.g., smartphones,
smartwatches, smartglasses) packed with a plethora of on-board sensors (e.g., GPS, accelerome-
ter, compass, camera) has given rise to crowd sensing, a newly emerged sensing paradigm where
the collection of sensory data is outsourced to a crowd of users participating in the sensing task.
Recently, a large variety of crowd sensing systems [3–6, 12, 19–22, 31, 46–48, 52] have been de-
veloped, serving a wide spectrum of applications that have significant impact on our daily lives,
including urban sensing, smart transportation, environment monitoring, localization, healthcare,
public opinion analysis, and many others.

However, in crowd sensing applications, the sensory data provided by individual participants are
usually not reliable, due to various reasons such as poor sensor quality, lack of sensor calibration,
background noise, incomplete views of observations, and even the intent to deceive. Therefore,
the power of crowd sensing can be unleashed only by properly aggregating unreliable informa-
tion from different participating users who inevitably submit noisy, conflicting, and heterogeneous
data. When aggregating crowd sensing data, it is essential to capture the difference in the quality
of information among different participating users. Some users constantly provide truthful and
meaningful data while others may generate biased or even fake data. In this case, traditional ag-
gregation methods (e.g., averaging and voting) that regard all the users equally would not be able
to derive accurate aggregated results.

Therefore, an ideal approach should be able to involve the probability of a user providing ac-
curate data in the form of user weight when aggregating sensory data, and make the aggregated
results close to the information provided by reliable users. The challenge here, however, is that the
user reliability is usually unknown a priori and should be inferred from collected data. To address
this challenge, the problem of truth discovery [25, 32–37, 39, 40, 51, 56–59], i.e., to discover truthful
facts from unreliable user information, has recently been widely studied. The common principle
shared in truth discovery approaches is that a particular user will have higher weight if the data
provided by him is closer to the aggregated results, and a particular user’s data will be counted
more in the aggregation procedure if this user has a higher weight. A variety of truth discovery
approaches have been proposed to calculate user weight and aggregated results in a joint manner
based on this principle.

The truth discovery approaches, though having brought significant improvement to the aggre-
gation accuracy, fail to take into consideration an important practical issue in the design of crowd-
sensing systems, i.e., the protection of user privacy. In many crowd sensing applications, the final
aggregation results can be public and beneficial to the community or society, but the data from
each individual user may contain private personal information and, thus, should be well protected.
For example, aggregating health data, such as treatment outcomes, can lead to better evaluation of
new drugs or medical devices’ effects but may jeopardize the privacy of participating patients. The
geotagging campaigns can provide accurate and timely localization of specific objects (e.g., litter,
pothole, automated external defibrillator) by aggregating the reports of participants, however, at
the risk of leaking participants’ sensitive location information. Through crowd wisdom, even ex-
tremely difficult questions can be solved via aggregating the answers of a large crowd. However,
personal information of individual users can be inferred from their answers.
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Sometimes, user reliability is another sensitive information that should also be protected. On
one hand, from user reliability information, together with his observation values, the attacker may
be able to infer the personal information of the user, such as major, education level, age, gender,
language, and even personality. On the other hand, in practical crowd sensing applications, the
participating users usually trade their data with the system administrator for rewards, and the
leakage of user reliability may lead to malicious manipulation of data price. For these reasons, in
some crowd sensing applications (such as the aforementioned health data aggregation, geotagging,
and crowd wisdom), user reliability should be kept private.

Therefore, it is essential to design a privacy-preserving truth discovery scheme for the crowd-
sensing applications where there exists variability in user reliability degrees and the privacy of
users’ data and reliability information is susceptible to leakage. Toward this end, we propose a
novel privacy-preserving truth discovery (PPTD) framework. This framework makes use of a ho-
momorphic cryptosystem [8] and can guarantee both high accuracy and strong privacy. The pro-
posed PPTD framework works as follows. Each participating user will first send the encrypted
summation of distances between his own observation values and the estimated aggregated val-
ues to the cloud server. Then, the cloud server updates users’ weights in encrypted form without
decrypting the received distances information and sends the updated weight to each user. Next,
each user calculates the ciphertexts of weighted data using the received encrypted weight. Finally,
the final results are estimated by the cloud server based on the ciphertexts received from users.
The advantage of our proposed framework is that it can accurately calculate the final aggregated
results while protecting the privacy of user data, and at the same time, the weight information is
not disclosed to any party.

Additionally, in order to deal with massive data, we design a parallel PPTD scheme using the
MapReduce framework [10], and, thus, the PPTD procedure can be conducted in a parallel and dis-
tributed manner. As for the scenarios where the sensing data are collected in a streaming manner,
we also propose an incremental PPTD scheme that can aggregate the sensing data in real time and
introduce less computational overhead compared with the basic PPTD framework.

In summary, our contributions in this article are:

(1) We propose a novel PPTD framework for crowd sensing systems, which can accurately
aggregate sensory data while protecting both user observation and user reliability from
being disclosed.

(2) A parallel extension of PPTD is also designed so that the truth discovery procedure can
be conducted in parallel when processing large-scale crowd sensing data.

(3) In order to deal with the scenarios where the sensing data are collected in a streaming
manner, we extend PPTD and propose an incremental PPTD scheme so that the sensing
data can be aggregated more efficiently.

(4) We conduct extensive experiments on both real crowd sensing systems and a synthetic
dataset. The results validate the claim that our proposed schemes can generate accurate
aggregated results while protecting the privacy of user data and weight.

In the remaining parts of this article, we first define the problem in Section 2 and give prelim-
inary in Section 3. Then, the details of the proposed PPTD framework are provided in Section 4.
In Sections 5 and 6, we present the parallel scheme and incremental scheme, respectively. We an-
alyze the privacy of our proposed framework and discuss it in Sections 7 and 8, respectively. In
Section 9, we conduct a series of experiments to demonstrate the claims given in this article. We
discuss related work in Section 10 and conclude the article in Section 11.
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2 PROBLEM DEFINITION

In this section, we describe the problem settings of our proposed PPTD framework. Our framework
contains two different types of crowd sensing parties: cloud server and users. Among them, users
are the crowd participants who perform sensing tasks with their mobile devices either voluntarily
or for financial incentives, and cloud server is a platform that collects user data and conducts data
aggregation. Additionally, we use objects to represent the entities or questions assigned by the
cloud server and use observation values to denote the sensory readings or answers provided by
crowd users. Also, the true result or answer for each task or question is represented as ground

truth in our problem.
In practical crowd sensing systems, the security threats mainly come from the parties them-

selves (i.e., cloud server and users). For the sake of curiosity or financial purpose, the cloud server
may try to deduce the observation and reliability values of each user. On the other hand, each
user may also try to infer the information of other parties. Thus, it is of paramount importance to
preserve the privacy of users’ observation values. Moreover, in order to prevent any party from
maliciously manipulating the data price in the scenarios where crowd users trade their data with
the cloud server, we propose to protect the reliability value of each user from being disclosed to
any party (including the user himself). Certainly, our proposed framework can be easily modified
to make each user’s weight known only to himself, which is discussed in detail in Section 8. In this
article, we assume that all the parties are semi-honest [38], which means all the parties strictly fol-
low the protocol we design, but each party will try to infer the private information of other parties
based on the intermediate results he obtains during the execution of the protocol. Additionally, we
assume that the parties in our framework have no collusions, which means they will not collude
with each other outside the designed protocol. These assumptions are reasonable in most crowd
sensing scenarios, since (1) the parties want to get correct results and, thus, would follow the pro-
tocol for their mutual benefits, and (2) crowd users usually do not know each other, and even if
they know each other, they are probably not willing to disclose private information to others.

We formally define the problem targeted in this article as follows:
Suppose there are K users, denoted as K = {1, 2, . . . ,K }, and a cloud server S that released M

objects represented as M = {1, 2, . . . ,M }. Let xk
m denote the observation value provided by the

k-th user for the m-th object and wk denote the weight of the k-th user. For each object, there is
a ground truth that is not known by all the parties in the framework. Our goal is to let server S
accurately calculate the estimated values {x∗m }Mm=1 of the ground truths for all the objects based on

the information collected from users. In this procedure, each observation value (i.e., xk
m ) should

not be disclosed to any party except the user who provides this value (i.e., the k-th user). Also, the
weight information {wk }Kk=1

should not be disclosed to any party in the system.
To solve this problem, we propose a PPTD framework based on homomorphic cryptosystem,

which enables the cloud server to conduct truth discovery on encrypted sensing data so that
the private information could be effectively protected while the ground truths can be accurately
estimated.

3 PRELIMINARY

Since truth discovery and homomorphic encryption technology are two important components
in our proposed framework, we introduce the concepts and general procedures of them in this
section.

3.1 Truth Discovery

Toward the goal of resolving conflicts in multiple noisy data sources, truth discovery has been
widely studied in various domains. Although there are differences in the ways to compute user
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weights and estimate ground truths, the common procedure of existing truth discovery approaches
can be summarized as follows. A truth discovery algorithm usually starts with a random guess of
ground truths, and then iteratively conducts weight update and truth update until convergence.

Weight Update: In this step, we assume the estimated ground truth of each object is fixed. The
basic idea is that a user’s weight should be assigned a high value if this user provides data that is
close to the estimated ground truths. Typically, the user weights are calculated as follows:

wk = f �
�

M∑
m=1

d
(
xk

m ,x
∗
m

)�
�
, (1)

where f is a monotonically decreasing function, and d (·) is the distance function that can measure
the difference between users’ observation values and the estimated ground truths. In this article, we
adopt the weight calculation function of CRH [33, 37] as f due to its good practical performance:

wk = log �
�

∑K
k ′=1

∑M
m=1 d (xk ′

m ,x
∗
m )∑M

m=1 d (xk
m ,x

∗
m )

�
�

(2)

The distance function d (·) will be chosen based on the application scenarios. The proposed
framework can handle various applications by plugging different functions. In this article, we
discuss two example functions for applications involving continuous or categorical data, the two
most common data types in crowd sensing applications.

For the applications (e.g., environment monitoring) where the sensory data are continuous (e.g.,
temperature and humidity), we adopt the following normalized squared distance function:

d
(
xk

m ,x
∗
m

)
=

(xk
m − x∗m )2

stdm
, (3)

where stdm is the standard deviation of all observation values for object m. For the applications
(e.g., crowd wisdom) where the data are categorical (e.g., multiple-choice answer), there are usually
multiple candidate choices, and only one of them is correct. In this case, we define an observation
vector xk

m = (0, . . . , 1
q
, . . . , 0)T to denote that user k selects the q-th choice for object m. We then

use the squared distance function to measure the difference between observation vector xk
m and

the estimated ground truth vector x∗m :

d
(
xk

m ,x
∗
m

)
=
(
xk

m − x∗m
)T (

xk
m − x∗m

)
(4)

Truth Update: In this step, we assume the weight of each user is fixed. Then, we can estimate
the ground truth for them-th object as

x∗m ←
∑K

k=1wk · xk
m∑K

k=1wk

(5)

For continuous data, x∗m represents the estimated ground truth value. But for categorical data, x∗m
is actually a probability vector in which each element represents the probability of a particular
choice being the truth. The final estimation should be the choice with the largest probability in
vector x∗m .

The general truth discovery procedure can be described by Algorithm 1. The algorithm starts
with randomly guessing ground truth for each object, then iteratively updates users’ weights and
estimated ground truths until some convergence criterion is satisfied. Usually, the convergence
criterion is set depending on the requirements of specific applications. For example, it can be a
threshold of the change in the estimated ground truths in two consecutive iterations.
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ALGORITHM 1: Truth Discovery Algorithm

Input: Observation values from K users: {xk
m }

M,K
m,k=1

Output: Estimated ground truths for M objects: {x∗m }Mm=1

1 Randomly initialize the ground truth for each object;

2 repeat

3 for each user k do

4 Update weight based on estimated ground truths (e.g., Equation (2));

5 end

6 for each objectm do

7 Update the estimated ground truth based on current weights (e.g., Equation (5));

8 end

9 until Convergence criterion is satisfied;

10 return The estimated ground truths {x∗m }Mm=1;

3.2 Cryptographic Tools

3.2.1 Homomorphic Cryptographic Scheme. In our proposed PPTD framework, an additive ho-
momorphic asymmetric cryptosystem is adopted. As it is widely known, there are two types of
keys in the asymmetric cryptosystem: public key pk and private key sk . The public key is used
to encrypt plaintext and the private key is used to decrypt the ciphertext. Considering a plaintext
m ∈ Zn , where n is a large positive integer and Zn is the set of integers modulo n, we denote the
encryption of m as Epk (m). If a cryptographic scheme is said to be additive homomorphic, there
should be two operators ⊕ and ⊗ that satisfy the following properties:

Epk (m1 +m2) = Epk (m1) ⊕ Epk (m2) (6)

Epk (a ·m1) = a ⊗ Epk (m1), (7)

wherem1,m2 are the plaintexts that need to be encrypted and a is a constant.
Based on the above properties, we can directly calculate the encrypted sum of plaintexts from

the encryptions of them by conducting operators ⊕ or ⊗.

3.2.2 Threshold Paillier Cryptosystem. Although there are several additive homomorphic cryp-
tographic schemes, we use the threshold variant of the Paillier scheme [9] in our framework, be-
cause it not only has additive homomorphic properties but also satisfies the design of a threshold
cryptosystem, both of which allow us to conduct secure summation on the data collected from
crowd users.

In this cryptosystem, a user can encrypt the plaintextm ∈ Zn with the public key pk = (д,n) as

c = Epk (m) = дmrnmod n2, (8)

where r ∈ Z∗n (Z∗n denotes the multiplicative group of invertible elements of Zn ) is selected ran-
domly and privately by this user. According to Equations (6), (7), and (8), the homomorphic prop-
erties of this cryptosystem can be described as

Epk (m1 +m2) = Epk (m1) · Epk (m2)

= дm1+m2 (r1r2)nmod n2 (9)

Epk (a ·m1) = Epk (m1)a = дam1r1
anmod n2, (10)

wherem1,m2 are the plaintexts that need to be encrypted, and r1, r2 ∈ Z∗n are the private randoms,
and a is a constant.
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Fig. 1. Privacy-preserving truth discovery framework.

In this article, the (p, t )-threshold Paillier cryptosystem is adopted, in which the private key sk
is divided (denoted as sk1, sk2, . . . , skp ) and distributed to p parties. Any single party doesn’t have
the complete private key. If one party wants to accurately decrypt ciphertext c , it has to cooperate
with at least t − 1 other parties. So in the decryption step, each party i (1 ≤ i ≤ p) needs to calculate
the partial decryption ci of c with private key ski as

ci = c
2Δski , (11)

where Δ = p!. Then, based on the combining algorithm in Ref. [9], at least t partial decryptions
can be combined together to get the plaintextm.

4 PRIVACY-PRESERVING TRUTH DISCOVERY

In this section, we discuss the details of our novel PPTD framework.

4.1 PPTD Overview

Figure 1 shows the framework of PPTD in crowd sensing systems. Before the truth discovery
procedure, we assume a semantically secure (p, t )-threshold Paillier cryptosystem has been given
(e.g., established by a trusted key management center). Here, p is the number of parties including
both the cloud server and users, and t is the minimum number of parties needed to complete the
decryption. Thus, each party in this framework has known the public encryption key pk = (д,n),
while the matching private decryption key has been divided and distributed to all parties (i.e.,
party i has got his private key share ski ).

As shown in Figure 1, after the objects are assigned by the cloud server, the PPTD parties will
iteratively conduct the following two phases:

Phase 1: Secure Weight Update. In this phase, each user first calculates the distances between
his observation values and the estimated ground truths provided by the cloud server according to
the distance functions, then encrypts the distance information and submits the ciphertexts to the
cloud server. After receiving the ciphertexts from all users, the cloud server securely updates the
weight in encrypted form for each user. Then, the ciphertext of updated weight is sent to each
corresponding user.
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Phase 2: Secure Truth Estimation. Based on the encrypted weight received from the cloud
server, each user calculates the ciphertexts of weighted observation values without decrypting
the weight and then submits them to the cloud server. When the cloud server receives all the
ciphertexts of weighted observation values from crowd users, it is able to estimate the ground
truth for each object.

The above two phases start with a random initialization of the ground truth for each object,
and are then iteratively conducted until convergence. Throughout the PPTD procedure, all the
operations are conducted on encrypted data. Thus, it is ensured that the observation values of
each user are known only to himself and the user weights are not disclosed to any party in the
crowd sensing system.

4.2 PPTD Mechanism

In this part, we will elaborate on the mechanism of the proposed PPTD framework. Before we get
into the details of the aforementioned Secure Weight Update and Secure Truth Estimation phases, we
will first introduce a Secure Sum Protocol designed to calculate the summation of the data collected
from users without disclosing them to any unintended party of the system.

4.2.1 Secure Sum Protocol. According to Equations (2) and (5), the cloud server needs to calcu-
late the summation of the data collected from users in order to update user weights and estimate
ground truths. However, the plaintext of each user’s data should not be accessible to the cloud
server due to privacy concerns. To address this problem, we design a secure sum protocol based
on the threshold Paillier cryptosystem [8]. As shown in Protocol 1, the proposed secure sum pro-
tocol can calculate the summation of users’ data without disclosing any of them.

PROTOCOL 1: Secure Sum Protocol

Input: The value vk ∈ Zn from each user k ∈ K
Output: The summation

∑K
k=1

vk

1 According to Equation (8), each user k ∈ K encrypts value vk and sends the ciphertext Epk (vk ) to

the cloud server S;

2 Server S calculates C = Epk (
∑K

k=1
vk ) =

∏K
k=1

Epk (vk ) based on Equation (9);

3 Server S randomly selects t − 1 users and sends C to them;

4 Each selected user k ′ calculates the partial decryption Ck ′ of C based on Equation (11) and sends Ck ′

to the cloud server;

5 Server S calculates its partial decryption CS and then combines it with t − 1 other partial

decryptions received from users to get the summation
∑K

k=1
vk ;

As we can see, in this protocol, what the cloud server received from users are the encrypted
values and partial decryptions. Moreover, all the calculations on the cloud server are conducted
on encrypted data. What the cloud server can know at last is the summation of all the users’ data,
based on which, each user’s data can not be inferred. So the privacy of users is preserved.

4.2.2 Secure Weight Update. The first phase in our proposed framework is the secure weight
update for each user. As aforementioned, the weight information needs to be updated in encrypted
form in order not to be disclosed to any party. A challenge here is that the cryptosystem we use
is defined over an integer ring, but the values needed to be encrypted in our framework may not
be integers. To tackle this challenge, we introduce a parameter L (a magnitude of 10) to round the

fractional values. For example, the value h can be rounded by multiplying L as h̃ = 	hL
. Here, we
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Fig. 2. Secure weight update for user k .

use h̃ to denote the rounded integer of h and other values in this article will be represented in a

similar way. The approximate value of h can be recovered by dividing L (i.e., h̃/L).
Based on Equation (2), the encrypted weight can be updated as follows:

Epk (w̃k ) = Epk
�
�

⎢⎢⎢⎢⎢⎣
L · �

�
loд �

�

K∑
k ′=1

Distk ′�
�
− loд(Distk )�

�

⎥⎥⎥⎥⎥⎦
�
�
, (12)

where Distk =
∑M

m=1 d (xk
m ,x

∗
m ) is the summation of distances between the k-th user’s observation

values {xk
m }Mm=1 and the estimated ground truths {x∗m }Mm=1. As we can see, in order for the cloud

server to updateEpk (w̃k ), it needs to collect the information aboutDistk from users. This procedure
can be shown in Figure 2. For the sake of simplicity, we take the k-th user as an example in this
figure.

Since the distance functions for continuous data and categorical data are different, we need to
consider them separately when calculating distances. For categorical data, user k can easily cal-
culate distances based on Equation (4). But for continuous data, we need to know the standard
deviation stdm according to Equation (3), which is difficult to derive without knowing the obser-
vation values of other users. Next, we first introduce the common steps (W1 and W6 in Figure 2)
for all the data types to update a user’s weight, and then specifically discuss the calculation of stdm

for continuous data (W2, W3, W4, and W5 in Figure 2).
Step W1. The cloud server sends the estimated ground truths {x∗m }Mm=1 to user k . If it is the first

iteration, the estimated ground truths will be randomly initialized. If it is not, the estimated ground
truths are obtained from the previous iteration. When user k receives the estimated ground truths,
he will first calculate two values: Distk and logDistk . Before the two values are submitted, user
k needs to encrypt them for the purpose of privacy. For Distk , user k privately selects a random
rk1 ∈ Z∗n , and then encrypts it as follows based on Equation (8).

Epk (�Distk ) = д
�Distk rn

k1 mod n2 (13)

Similarly, for logDistk , user k privately selects another random rk2 ∈ Z∗n , and encrypts it as

Epk ( 
logDistk ) = д

log Distk rn

k2 mod n2 (14)

Step W6. After the encryption in the above step, user k submits both Epk (�Distk ) and

Epk ( 
logDistk ) to the cloud server S. Upon receiving the ciphertexts from all users, S calculates

sumD =
∑K

k=1
�Distk/L and log sumD based on the secure sum protocol. Then, S encrypts log sumD

according to Equation (8) as

Epk ( 
log sumD ) = д

log sumD rn

s1 mod n2, (15)
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Fig. 3. Secure truth estimation.

where rs1 ∈ Z∗n is privately and randomly selected by server S. With above ciphertexts, S can
update the encrypted weight for user k as follows based on Equations (9), (10), and (12).

Epk (w̃k ) = Epk ( 
log sumD ) · Epk (−
logDistk )

= Epk ( 
log sumD ) · Epk ( 
logDistk )−1
(16)

As for continuous data, as discussed previously, the standard deviation stdm should be first
calculated. The calculation steps are described in detail as below (these steps only need to be
performed once throughout the whole truth discovery procedure).

Step W2. According to Equation (8), user k encrypts his observation value for object m as
Epk (x̃k

m ) and sends the ciphertext to the cloud server S.

Step W3. After receiving the ciphertexts from all users, server S calculates sumx =
∑K

k=1 x̃
k
m/L

and x̄m = sumk/K based on the secure sum protocol, and then sends x̄m to users.

Step W4. User k calculatesdk
m = (xk

m − x̄m )2 and encryptsdk
m as Epk (d̃k

m ). Then k sends Epk (d̃k
m )

to server S.
Step W5. When server S receives Epk (d̃k

m ) from all users, S calculates sumd =
∑K

k=1 d̃
k
m/L and

stdm (equals to
√
sumd/K ) through the secure sum protocol. Then, S sends stdm to users.

4.2.3 Secure Truth Estimation. After updating user weights, the next thing is to estimate the
ground truth for each object. As shown in Figure 3, there are two major steps in this phase, which
are detailed as follows.

Step T1. The cloud server sends the encrypted weight Epk (w̃k ) (updated in the secure weight
update phase) to user k . Then, user k calculates the ciphertexts of weighted observation values
based on the encrypted weight. For continuous data, user k calculates the ciphertexts according
to Equation (10) using the following formula:

Epk

(
w̃k · x̃k

m

)
= Epk (w̃k )x̃ k

m (17)

For categorical data, xk
m is a vector as described in Section 3.1, so user k needs to calculate the

ciphertext for each element in this vector as follows:

Epk (w̃k · xk
m (i )) =

⎧⎪⎨⎪⎩
Epk (0) i f xk

m (i ) = 0

Epk (w̃k ) · Epk (0) i f xk
m (i ) = 1,

(18)

where xk
m (i ) denotes the i-th element in vector xk

m . Please note that Epk (0) can be dynamically
changing because, every time, the encryption procedure is conducted with a different random
rk ∈ Z∗n .
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Step T2. After the calculation in the above step, user k submits the ciphertexts of weighted data
for all the objects to the cloud server S. When receiving ciphertexts from all the users, S will first
calculate the numerator of Equation (5) as follows.

For continuous data, server S calculates the summation of weighted data (i.e.,
∑K

k=1 (w̃k · x̃k
m ))

with the help of the secure sum protocol, and then derives the approximation of
∑K

k=1 (wk · xk
m )

(i.e., the numerator) via dividing the summation by L2.
For categorical data, we need to consider each element in the vector separately. Specifically, for

the i-th element, serverS calculates the summation of the weighted data (i.e.,
∑K

k=1 (w̃k · xk
m (i )) via

the secure sum protocol, and then gets the approximation of
∑K

k=1 (wk · xk
m (i )) (i.e., the numerator).

The summations of other elements are calculated in the same way.
As the denominator of Equation (5), the summation of weights is also needed to estimate the

ground truths. This can be easily calculated through the secure sum protocol becauseS has already
stored encrypted weights in the weight update phase. Then, the ground truth for each objectm ∈
M can be estimated by the cloud server based on Equation (5).

Please note that the ground truths estimated in this step for categorical data are probability
values that are used for updating user weights in the next iteration. The final estimation for object
m should be the choice with the largest probability in vector x∗m obtained in the final iteration.

Combining the secure weight update and secure truth estimation phases, we summarize the
proposed PPTD procedure in Protocol 2. This protocol repeats the aforementioned two phases
iteratively until some convergence criterion is satisfied. Then, the cloud server can output the
final estimated ground truth for each object.

PROTOCOL 2: Privacy-Preserving Truth Discovery Protocol

Input: K users, M objects, observation values {xk
m }

M,K
m,k=1

and rounding parameter L

Output: Estimated ground truths {x∗m }Mm=1

1 The cloud server S randomly initializes the ground truth for each object;

2 The cloud server S sends the estimated ground truths (i.e., {x∗m }Mm=1) and the rounding parameter L
to users;

3 Each user k ∈ K calculates Distk =
∑M

m=1 d (xk
m ,x

∗
m ) and gets the rounded values (i.e., �Distk and


logDistk ) with parameter L. Then, user k encrypts them as Epk ( �Distk ), Epk ( 
logDistk ) and sends the

ciphertexts to the cloud server;

4 After receiving ciphertexts from all the users, the server S calculates sumD =
∑K

k=1
�Distk/L based on

the secure sum protocol, then updates the encrypted weight of each user according to Equations (15)

and (16). Also, the updated ciphertext of weight is sent to each corresponding user;

5 When user k ∈ K receives encrypted weight from the cloud server, the user calculates ciphertexts of

weighted data for continuous data and categorical data, respectively, according to Equations (17) and

(18). Then, these ciphertexts are sent to the cloud server;

6 After receiving ciphertexts from all the users, the cloud server S estimates the ground truths

{x∗m }Mm=1 based on step T2;

7 Repeat steps 2∼6 until the convergence criterion is satisfied, and then output {x∗m }Mm=1;

5 PARALLEL PPTD

With the proliferation of human-carried sensing devices, an explosive increase of crowd sensing
data is expected in the near future. In order to deal with such massive data, we extend our proposed
scheme in a parallel way using the MapReduce framework, which contains two major functions:
the Map function that processes input values to generate a set of intermediate key/value pairs, and
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the Reduce function that merges all intermediate values associated with the same intermediate
key. Here, we just borrow the existing MapReduce framework, in which we do not make research
contribution.

We only adapt the truth estimation phase to MapReduce framework, and there is no change
in the weight update procedure. In the Map function for estimating ground truths, the input is
a list of records: (m,Epk (w̃k · x̃k

m ),k ), where m ∈ M, k ∈ K , and Epk (w̃k · x̃k
m ) is the encrypted

weighted data. As shown in Algorithm 2, during the mapping process, all the input records are
reorganized into key/value pairs, where the key is the ID of each object (i.e., m), and the value is
the rest of the information. Before these key/value pairs are fed to Reducers, they will be sorted
by Hadoop so that the pairs that have the same key (i.e., the same object IDm) will go to the same
Reducer. In the Reducers, as seen in Algorithm 3, the truth value for each object is estimated based
on step T2 described in Section 4.2.3. Since users’ weight information is also needed, we use an
external file to store the encrypted weights, and all the Reducer nodes can read it. Finally, for each
object, a key/value pair is outputted, where the key is object ID m and the value is the estimated
ground truth. The two procedures (i.e., distributed weight update and parallel truth estimation)
are iteratively conducted until the whole procedure converges.

ALGORITHM 2: Map function for estimating truths

Input: A list of records: (m,Epk (w̃k · x̃k
m ),k ),m ∈ M,k ∈ K

Output: A list with each element in format of [m, [Epk (w̃k · x̃k
m ),k]],m ∈ M,k ∈ K

1 output_list ← [ ];

2 for each record from input do

3 Parse the record;

4 Append output_list with the new record [m, [Epk (w̃k · x̃k
m ),k]];

5 end

6 return output_list ;

ALGORITHM 3: Reduce function for estimating truths

Input: A list of records (sorted by object ID m): [m, [Epk (w̃k · x̃k
m ),k]],m ∈ M,k ∈ K

Output: A list with each element in the format of [m,x∗m]

1 output_list ← [ ];

2 Read encrypted weights of crowd users from file;

3 Calculate the summation of weights based on the secure sum protocol;

4 for all the records with the same objectIDm do

5 Calculate the summation of weighted data through the secure sum protocol;

6 Estimate ground truth x∗m based on step T2;

7 Append output_list with the new record [m,x∗m];

8 end

9 return output_list ;

6 INCREMENTAL PPTD

In many real-world crowd sensing applications, the sensing tasks may last several days or months
and the observation values of different objects are usually collected from users in a “streaming”
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Fig. 4. Incremental PPTD.

manner. In such scenarios, it is inefficient to infer the ground truth for each object until all the
objects are observed. For example, in transportation monitoring applications [54], the traffic in-
formation is reported by multiple users in real time; it is inefficient to evaluate the route conditions
until all the traffic information at different time periods is observed by the users. In healthcare ap-
plications [18], patients’ health data are usually collected day by day; it is inefficient to analyze
these data after several weeks or several months. In order to address this challenge, a possible way
is to conduct the PPTD scheme once again on the whole dataset whenever some new objects are
observed. However, tremendous unnecessary calculations would be involved to iteratively update
the estimated truths of the previous observed objects. To tackle this problem, we design an in-
cremental PPTD scheme that can timely estimate the ground truth of the newly observed object
without disclosing the private information of each user and revisiting the old data.

Different from PPTD, we design the incremental PPTD by first conducting the truth estimation
and then updating each user’s weight when a new object is observed. For each user k , we use

Dk =
∑l−1

m=1 d (xk
m ,x

∗
m ) to denote his “old information” with respect to the previously observed l − 1

objects. Here, Dk represents the summation of the distances between user k’s observations and the
estimated truths for the l − 1 objects observed in the past. When the l-th object is observed, the
secure truth estimation phase and secure weight update phase are conducted as Figure 4.

Secure Truth Estimation. In this phase, the ground truth of the newly observed object is
estimated based on user weights, which are calculated based on the historical data. This phase
contains two steps, i.e., IT1 and IT2 in Figure 4.

Step IT1. Server S sends user k the rounding parameter L and the encrypted weight Epk (w̃k ),
which is calculated by server S in the secure weight update phase for the (l − 1)-th object. Then,
each user k calculates the ciphertext of the weighted data (i.e., Epk (w̃k · x̃k

l
) or Epk (w̃k · xk

l
(i ))) for

the l-th object according to Equations (17) or (18). Here, we use xk
l

to denote the observation value

of user k for the l-th object, and x̃k
l

denotes its approximate value. For continuous data, user k also

needs to encrypt his observation value as Epk (x̃k
l

) in order to calculate the standard deviation stdl .
Step IT2. User k submits the ciphertext of weighted data to server S. Similar to Step T2 in

Section 4.2.3, serverS calculates the estimated truth (i.e., x∗
l
) for the l-th object based on the secure

sum protocol and Equation (5). For continuous data, user k also needs to upload the encrypted data
Epk (x̃k

l
), and then the average observation value x̄l is calculated based on the secure sum protocol.

Secure Weight Update. After the truth for the l-th object is estimated, each user’s weight
is securely updated in this phase. Similar to the PPTD scheme, here, we also need to consider
continuous data and categorical data separately when calculating distances. We first introduce the
common steps (IW1 and IW4 in Figure 4) for the two types of data and then discuss the specific
steps (IW2 and IW3 in Figure 4) to calculate the standard deviation stdl for continuous data.
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Step IW1. Server S sends the estimated truth x∗
l

to each user. For continuous data, the
average value x̄l is also sent to users. After receiving the value x∗

l
, user k first updates Dk

as Dk = Dk + d (xk
l
,x∗

l
), then calculates the ciphertexts Epk (D̃k ) and Epk (�logDk ) according to

Equations (19) and (20):

Epk (D̃k ) = дD̃k r ′nk1 mod n2 (19)

Epk (�logDk ) = д
�log Dk r ′nk2 mod n2, (20)

where r ′
k1
, r ′

k2
∈ Z∗n are privately selected by user k .

Step IW4. User k submits both Epk (D̃k ) and Epk (�logDk ) to server S. After receiving the cipher-
texts from all users, S updates the encrypted weight Epk (w̃k ) for user k based on Step W6 in
Section 4.2.2.

For continuous data, the standard deviation stdl is calculated as follows.
Step IW2. After receiving the average value x̄l , user k calculates dk

l
= (xk

l
− x̄l )2. Then, the ci-

phertext Epk (d̃k
l

) is sent to server S.

Step IW3. When server S receives Epk (d̃k
l

) from all users, S calculates stdl based on the secure
sum protocol. Then, the standard deviation stdl is sent to each user.

The incremental privacy-preserving protocol is summarized as Protocol 3.

PROTOCOL 3: Incremental Privacy-Preserving Truth Discovery Protocol

Input: K users, each user’s encrypted weight (i.e., {Epk (w̃k )}K
k=1

) after the (l − 1)-th object is observed,

each user’s observation value {xk
l
}K
k=1

for the l-th object, each user’s “old information” Dk , and

the rounding parameter L.

Output: Estimated ground truth x∗
l

of the l-th object.

1 The cloud server S sends the encrypted weight Epk (w̃k ) and the rounding parameter L to user k ;

2 Each user k ∈ K calculates the ciphertexts of the weighted data according to Equations (17) and (18).

For continuous data, user k also needs to calculate the encrypted data Epk (x̃k
l

). Then, the ciphertexts

of the weighted data and the encrypted data are submitted to server S.

3 After receiving the ciphertexts from all users, server S estimates the ground truth x∗
l

based on Step

IT2 and sends it to each user. For continuous data, the average value x̄l should also be calculated and

sent to users.

4 Each user k ∈ K updates Dk with Dk + d (xk
l
,x∗

l
), then calculates the ciphertexts Epk (D̃k ) and

Epk (�logDk ) according to Equations (19) and (20). Here, the standard deviation stdl for continuous

data is calculated based on Step IW2 and Step IW3.

5 User k submits both Epk (D̃k ) and Epk (�logDk ) to server S. Then, S updates the encrypted weight

Epk (w̃k ) for user k based on Step W6 in Section 4.2.2.

From Protocol 3, we can see when a new object is observed; the ground truth of this object can
be estimated in real time without disclosing each user’s private information. Since the “old infor-
mation” of user k has been integrated in the value Dk , there is no need to revisit the observation
values of the past objects when estimating the ground truth of the new observed object. Although
the iterative procedure is not involved in this scheme, and the two phases (i.e., secure truth estima-
tion and secure weight update) are conducted only once, the weight of each user will converge to
stabilization when the number of objects increases. Additionally, this incremental scheme can be
easily modified to fit the scenario where the objects are grouped into sequential chunks, of which,
each may contain multiple objects. In such scenario, we repeat the two phases for each chunk and
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update Dk of user k as Dk = Dk +
∑Cϵ

m=1 d (xk
m ,x

∗
m ), where Cϵ is the number of objects in the ϵ-th

chunk.

7 PRIVACY ANALYSIS

As previously discussed, the security threats mainly come from the parties themselves in practical
crowd sensing systems. Thus, the goal of PPTD is to protect the observation values of each user
from being disclosed to other parties, and at the same time, the weight of each user should not
be known by any party. Since our framework is built upon the proposed secure sum protocol, we
start with the privacy analysis of this protocol.

In the secure sum protocol, the data are exchanged only between cloud server and users, and
all the exchanged data are ciphertexts. Although some users obtain the ciphertext of summation
Epk (
∑K

k=1vk ), they cannot decrypt it because of the (p, t )-threshold Paillier cryptosystem we used,
and there is no collusion among users. Thus, the users will learn nothing after the execution of the
protocol. Similarly, the ciphertext Epk (vk ) cannot be decrypted by the cloud server, and what the

server can know at last is just the summation
∑K

k=1vk , based on which it cannot infer the input
value vk of each user. In this way, the privacy of each user’s input value is guaranteed by this
protocol.

Then, we can summarize the privacy-preserving goal of our framework as Theorem 7.1, followed
by the proof.

Theorem 7.1. Suppose K ≥ 3, and for each object m ∈ M, there are at least two users k1,k2 ∈ K
giving different observation values (i.e., xk1

m � xk2
m ). Also, assume the parties are semi-honest, and there

is no collusion among them. Then, after the execution of the PPTD protocol, the observation values

of each user will not be disclosed to others and the weight of each user will not be known by any

party.

Proof. First, we prove the observation values of each user will not be disclosed to others in our
framework. We can achieve the goal by proving that there is not an attack algorithm, based on
which one party can infer the private observation values of the users.

For the cloud server, we assume there exists an attack algorithm based on which the server can
infer the observation values of user k1 ∈ K . The input of the algorithm should be the plaintexts
the server knows during the PPTD procedure. These plaintexts are

∑K
k=1 x

k
m , x̄m ,

∑K
k=1 d

k
m , stdm ,∑K

k=1 Distk ,
∑K

k=1wk ,
∑K

k=1 (wk · xk
m ), and the estimated ground truth x∗m for each m ∈ M. Also,

the cloud server knows the values K and M . According to our assumption, the server can infer the

observation value xk1
m (m ∈ M) of user k1 based on these input values. We also assume another

user k2 ∈ K has the observation value xk2
m (� xk1

m ) for the object m. Now, we exchange the obser-

vation values of k1 and k2, which means user k1 has the observation value xk2
m and user k2 has the

observation value xk1
m for the object m after the exchange. Then, we restart the PPTD procedure.

However, the plaintexts known by the server will not be changed based on our framework. That
is to say, the input values of the attack algorithm will not be changed. So, based on this algorithm,

the cloud server would still infer the value xk1
m for user k1. However, now the observation value

of user k1 has been changed to xk2
m . Obviously, there is a contradiction. Therefore, such an attack

algorithm does not exist and the cloud server cannot infer the observation values of users in our
framework.

For each user, he can know the public values x̄m , stdm , x∗m for each m ∈ M besides his private
observation values based on our framework. Using the same method above, we can also prove that
this user cannot infer the observation values of others.
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Next, we prove the weight of each user (i.e.,wk , k ∈ K ) will not be disclosed to any party in our
framework.

Based on the PPTD protocol, the cloud server updates the ciphertexts of the weights (i.e.,
Epk (wk ), k ∈ K ) instead of the plaintexts of them in each iteration. Also, the users calculate the
weighted data based on the ciphertexts of weights. Based on the semi-honest and non-collusion
assumptions, all the parties cannot decrypt each encrypted weight. The only plaintexts about the
weights are the summations

∑K
k=1wk and

∑K
k=1wk · xk

m , which are known by the cloud server.

Since xk
m is only known by the user, the server cannot infer wk based on the above summations.

So the weight information will not be disclosed to any party in this framework. �

As for the incremental PPTD scheme, the private information of each user can also be well
protected from being disclosed to others. When the l-th object is observed, the plaintexts known by
the cloud server are

∑K
k=1 x

k
l

, x̄l ,
∑K

k=1 d
k
l

, stdl ,
∑K

k=1 Dk ,
∑K

k=1wk ,
∑K

k=1 (wk · xk
l

), and x∗
l
. However,

the cloud server can not infer each user’s private information from these plaintexts according to
the proof described above. Additionally, each user in this scheme knows the public values x̄l ,
stdl , x

∗
l
, and his own observation value. However, based on these plaintexts, he can not infer the

observation values of others and the weight information.

8 DISCUSSIONS

Since the cryptosystem adopted here is defined over an integer ring, we use parameter L to round
the fractional values to integers. During the rounding process, numerical errors are inevitably
introduced. However, the accuracy of the final estimated ground truth will not be greatly affected
if we select the appropriate L, which is shown in Section 9.

Another issue we are concerned with is missing values, which means not all the objects are
observed by all the crowd users. This can be easily handled in our framework. When different
users observe different subsets of the objects, we can normalize the aggregate deviations of each
user by the number of his observations.

Also, to tackle the issue that some users could not respond timely after the sensing tasks are
released, we can set a waiting-time threshold on the cloud server. Based on the (p, t )-threshold
Paillier cryptosystem adopted in this article, as long as at least t − 1 users could upload their data
in time, the PPTD procedure can be completed.

Additionally, our proposed framework can be easily modified to the situation where the user
weight is known only to the user himself. In this case, the weight values are updated by users
themselves. In particular, during the weight update procedure, user k ∈ K just needs to submit the

encrypted summation of the distances Epk (�Distk ). Then, the cloud server calculates
∑K

k=1
�Distk/L

through the secure sum protocol. Based on this summation, each user can privately update his
weight according to Equation (2). In the truth estimation procedure, user k ∈ K submits the ci-

phertexts of weighted data {Epk (
wk · xk
m )}Mm=1 and the encrypted weight Epk (w̃k ). Then, the cloud

server can estimate ground truth for each object via the same method used in PPTD (Step T2).
Next, we discuss some limitations of PPTD. In this article, we assume that all the parties are

semi-honest, and there is no collusion among them. If these assumptions cannot be guaranteed,
the observation values and the weight information of individual users may be disclosed. For exam-
ple, if the parties are not semi-honest, the cloud server can send the ciphertexts of users’ private
information (e.g., Epk (x̃k

m ) or Epk (w̃k )) instead of the encrypted summations to t − 1 users and
then get this private information according to Protocol 1. Additionally, if the cloud server colludes
with t − 1 users, the private information of other users can also be disclosed. Thus, an interesting
direction of future work is how to improve PPTD and enable it to resist collusions or dishonest
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behaviors of the parties. Another limitation of this work is the computational and communication
overhead introduced by the adopted cryptosystem. Compared with the truth discovery approaches
(e.g., CRH) that do not take actions to protect user privacy, PPTD requires each user to conduct
ciphertext-based calculations and communication with the cloud server, and this inevitably intro-
duces more overhead to individual users. So, another problem worthy of studying in future work
is how to make the proposed framework lightweight and reduce the overhead introduced to the
parties.

9 PERFORMANCE EVALUATION

In this section, we evaluate the proposed PPTD framework on both real-world crowd sensing
systems and synthetic datasets.

9.1 Experiment Setup

In this article, we consider two different types of data: continuous data and categorical data. To
evaluate the estimation accuracy of PPTD, we use following measures for the two data types:

—MAE: For continuous data, we use the mean of absolute error (MAE), i.e., 1
M

∑M
m=1 |x∗m − x̂∗m |,

to measure the mean of absolute distance between the estimated results and ground truths.
Here, x̂∗m denotes the ground truth of objectm.

—RMSE: For continuous data, we also use the root of mean squared error (RMSE), i.e.,√
1
M

∑M
m=1 (x∗m − x̂∗m )2, to measure the accuracy. Compared with MAE, RMSE can penalize

more on the large distance and less on the small distance.
—ErrorRate: For categorical data, we calculate the percentage of mismatched values between

estimated results and ground truths as ErrorRate .

The baseline approach we use in this experiment is the state-of-the-art truth discovery scheme,
i.e., CRH [33, 37], which does not take any actions to protect user privacy during the whole
procedure.

A (p, 	 p

2 
)-threshold Paillier cryptosystem is used in our experiment, and, here, we fix the key
size as 512 (can also be set as other values according to the practical demand). Our framework was
implemented in Java 1.7.0 using the Paillier Threshold Encryption Toolbox.1 The sensing devices
we use are Nexus 4 Android phones. The “cloud” is emulated by a cluster of three Intel(R) Core(TM)
3.40GHz PCs running Ubuntu 14.04, with 8GB RAM. When implementing parallel PPTD frame-
work, we use a 15-node Dell Hadoop cluster with Intel Xeon E5-2403 processor (4 × 1.80 GHz,
48GB RAM) as the “cloud.”

9.2 Experiment on Crowdsourced Indoor Floorplan Construction System

In this part, we show the experiment results on continuous data collected from a real-world crowd
sensing system to demonstrate the advantages of PPTD. The application is crowdsourced indoor
floorplan construction [1, 2, 15], which has recently drawn much attention since many location-
based services can be facilitated by it. The goal of such crowd sensing system is to automatically
construct an indoor floorplan from sensory data (e.g., the readings of compass, accelerometer,
gyroscope) collected from smartphone users. Clearly, these sensor readings encode the private
personal activities of the phone user, and thus, the user may not be willing to share such data
without the promise of privacy protection. For the sake of illustration, here, we focus on just
one task of indoor floorplan construction, namely, to estimate the distance between two particular

1http://cs.utdallas.edu/dspl/cgi-bin/pailliertoolbox/.
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Fig. 5. Ground truth estimation errors under different values of the parameter L.

location points in the hallway. We develop an Android App that can estimate the walking distances
of a smartphone user through multiplying the user’s step size by step count inferred using the in-
phone accelerometer.

In our experiment, 10 volunteers are employed as smartphone users and we select 27 hallway
segments in a building as the objects. Each party (including the cloud server and smartphone users)
in this experiment holds the public key and the corresponding private key share, which are pro-
duced by the cryptosystem. The ground truths of these hallway segments are obtained by mea-
suring them manually.

Accuracy. We first compare the accuracy of the final estimated ground truths between PPTD
and the baseline approach (i.e., CRH). Since the estimation errors of PPTD are introduced by the
rounding parameter L, we vary L from 100 to 106 and measure the corresponding accuracy. In
the experiment, we randomly initialize the estimated ground truths and use a threshold of the
change in the estimated ground truths in two consecutive iterations as the convergence criterion.
The experiment is repeated for 20 times, and we report the averaged results.

Figure 5 shows the ground truth estimation errors of our proposed framework and CRH under
different values of the parameter L. The estimation error is measured in terms of MAE and RMSE,
respectively. As seen in the figure, the estimation error of PPTD is almost the same as that of
CRH unless the rounding parameter L is too small (i.e., 100 or 101). This is because during the
rounding procedure, the fractional part (i.e., decimal digits) of the original value (e.g., L · logDistk )
is dropped. In this sense, the smaller the parameter L, the more decimal digits of the original value
will be lost. To measure the information loss degree, we calculate the relative estimation errors
of PPTD and CRH in both object truth and user weight. Here, we manually decrypt user weights
for the analysis purpose. In particular, we define the relative error of user weight as | | log wc −
log wp | |/| | log wc | |, where wc and wp are the weight vectors of all the users obtained from CRH
and PPTD, respectively. Similarly, we define the relative error of the estimated ground truths as
| | log x

∗
c − log x

∗
p | |/| | log x

∗
c | |, where x

∗
c and x

∗
p are obtained from CRH and PPTD respectively. The

results are shown in Figure 6.
As shown in Figure 6(a) and (b), the relative errors in both truth and weight drop as the pa-

rameter L increases. That is to say, we do not need to worry about the estimation errors produced
during the rounding procedure as long as we select a large enough parameter L.

Additionally, we evaluate the performance of PPTD under varying the number of users. The
number of objects is still 27, while the number of users varies from 3 to 10. We also fix the parameter
L as 1010 and use the same convergence criterion as before. Then, the experiment is repeated 20
times, and the averaged results are reported.
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Fig. 6. Relative errors under different values of L.

Fig. 7. Ground truth estimation errors under different numbers of users.

Figure 7(a) and (b) show that PPTD almost has the same estimation errors as CRH, while the
number of users is varying, which means that our proposed framework is robust against the change
of user numbers. Also, we can see that the estimation errors decrease with the increase of the
number of users. This makes sense because it is hard to improve upon the users’ individual poor
observation values when the number of users that observe the same objects is small. When the
number of users increases, each object is observed by more and more diversified crowd users; thus,
it is more and more likely to cancel out individual users’ biases and errors so as to reach higher
accuracy.

Convergence. Next, we show the convergence of the PPTD procedure. In this experiment,
the rounding parameter L is still set as 1010. We first set the number of users as 10 and calcu-
late the objective value of the truth discovery problem, which is defined as the weighted sum-
mation of the distances between individual observations and the estimated ground truths (i.e.,∑K

k=1wk
∑M

m=1 d (xk
m ,x

∗
m )). We repeat the experiment five times with different random initializa-

tion values and report the evolution of the objective values in Figure 8(a). As we can see, all the
objective values, although under different initializations, converge quickly within just a few itera-
tions. Then, we evaluate the convergence of the PPTD procedure when the number of users varies.
Here, we consider four cases where the number of users is set as 3, 5, 7, and 9, respectively, and
for each case, the initialization values are randomly selected. The evolution of the objective values
for the four cases are shown in Figure 8(b), from which we can see all the objective values can
converge within just a few iterations.
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Fig. 8. Convergence w.r.t. iterations.

Fig. 9. Running time w.r.t. the number of objects for continuous data on smartphones.

Computational Cost. In this part, we take a look at PPTD’s computational cost, which is com-
posed of the cost on the smartphone of each user and the cost on the cloud server. Here, we also
fix the rounding parameter as 1010, which actually has little effect on the computational time com-
pared with user numbers and object numbers.

On the smartphone of each user, there are two major processing procedures: (1) calculating
the encrypted summation of distances and (2) calculating the ciphertexts of weighted observation
values. In this experiment, we evaluate the running time of each procedure as well as the total
running time under different object numbers ranging from 3 to 27. Figure 9(a) shows the running
time per iteration for the two procedures, respectively. We can see that the second procedure (i.e.,
calculating the ciphertexts of weighted observation values) varies more when the object number
increases. Figure 9(b) gives the total time of the two procedures in each iteration. When the object
number reaches 27, the total running time is only 0.039s, which is sustainable for the phone users.
All the results in Figure 9 are averaged values derived from 10 smartphones.

On the cloud server, there are also two major processing procedures in each iteration: (1) updat-
ing weights and (2) estimating ground truths. Here, we evaluate the running time of each proce-
dure, and the total running time under different object numbers as well as user numbers, respec-
tively. From Figures 10(a) and 11(a), we can see that most of the time is spent in updating truths
for each object. That is also the reason why we need to parallelize the truth updating procedure
with MapReduce framework when dealing with massive data. On the other hand, Figures 10(b)
and 11(b) demonstrate that the total running time is approximately linear with respect to both
object number and the user number.
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Fig. 10. Running time w.r.t. the number of objects for continuous data on the cloud server.

Fig. 11. Running time w.r.t. number of users for continuous data on the cloud server.

As for the baseline approach CRH, each user just needs to upload his sensory data to the cloud
server and then the server conducts truth discovery operations on these data. So, there is no com-
putational cost on the user side. Additionally, since all the calculations of CRH are based on plain-
texts and the operations of PPTD are conducted on encrypted data, the computational cost of CRH
is less than that of PPTD on the cloud server. However, CRH fails to protect users’ private data
and reliability information, which will raise the privacy concerns of users.

Communication and Energy Overhead. Compared with the baseline approach CRH, in
which each user only needs to communicate with the cloud server once for uploading his sensory
data, PPTD introduces more communication overhead due to the incorporated privacy-preserving
scheme. To evaluate the communication overhead of PPTD, we measure the number of packets ex-
changed between the cloud server and all the crowd users. In this experiment, we use the change
of the aforementioned objective value in two consecutive iterations as the convergence criterion
and the threshold is set as 0.001. Figure 12 shows the numbers of exchanged packets over all users
during the whole PPTD procedure, under different user numbers (i.e., K ) from 3 to 10. As seen,
the overall communication overhead is roughlyO (K ). Actually, for each user, the average number
of messages needed to be exchanged with the cloud server can be roughly calculated by 6(i + 1),
where i is the number of iterations during the PPTD procedure. Considering that here we set a
very conservative threshold, which leads to an average of six iterations (much larger than the usual
two or three iterations as shown in Figure 8(a)), the communication overhead is well within the
realm of practicality.
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Fig. 12. Communication overhead of

PPTD.

Fig. 13. Energy consumption percent-

age on smartphones.

The energy overhead on the smartphone of each user is mainly caused by the cipher related
operations and data transmissions. For the purpose of evaluating the energy overhead, we measure
the average energy consumption percentage (i.e., the energy consumed by PPTD divided by the
total energy of the smartphone while it is fully charged) under different object numbers. Figure 13
shows the average energy consumption percentage in one iteration for each user. When the object
number reaches 27, the energy consumption percentage is only 0.000198% for each smartphone,
which is acceptable for the phone users. The results in Figure 13 are averaged values derived from
10 smartphones in a WiFi network environment.

9.3 Experiment on Crowd Wisdom System

In this part, we evaluate the performance of PPTD on categorical data provided by humans as
the sensors. The experiment is conducted on a crowd wisdom system that can integrate the crowd
answers and opinions toward a set of questions. We design and implement an Android App through
which we can send questions and corresponding candidate answers to the crowd users. Each user
who receives the questions can upload his answers to the cloud server. However, the uploaded
answers for each question may be conflicted due to various reasons. For example, some users may
not have the background knowledge for some specific questions, and different users may have
different understandings for the same question. In order to infer the true answer for each question,
the cloud server needs to aggregate the answers from different users. To address the concern of
some users that their private personal information could be inferred from their answers, we employ
PPTD upon this crowd wisdom system, encrypting user answers before they are uploaded to the
cloud server. Totally, 113 volunteers are employed as smartphone users and 54 questions are sent
to them with candidate answers. For each question, there are four candidate answers and each user
who receives this question needs to select one of the candidate answers as the correct answer. We
use Error Rate as the evaluation metric, and for the sake of evaluation, we have the ground truth
answer for each question.

Accuracy and Convergence. Since, in this experiment, each object (i.e., question) is not ob-
served (i.e., answered) by all the users, we use the average number of users observing each object
(i.e., the ratio between the number of total answers over the number of total questions) as the
tuning variable when evaluating the accuracy of PPTD. The error rates of PPTD and CRH are
shown in Figure 14(a), from which we can see that PPTD produces the same error rates as CRH
at all times. Moreover, we did not show the error rates with respect to the rounding parameter L,
since we find that the final aggregated results are not affected by L. This is because, in this case,
the negligible numerical errors introduced by L to the intermediate values are simply not large
enough to change the final answers, which are categorical numbers. To evaluate the estimation
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Fig. 14. Accuracy of PPTD for categorical data.

Fig. 15. Running time w.r.t. the number of objects for categorical data on smartphones.

error of user weights, we manually decrypt each user’s weight derived by PPTD. Here, we still
use the relative error defined in Section 9.2 to measure the errors introduced by L. The results
are reported in Figure 14(b), which show that the estimation errors can be ignored if parameter
L is large enough. Additionally, we also use the threshold of the change in the estimated ground
truths in two consecutive iterations as the convergence criterion, and we find both PPTD and CRH
converge within two iterations.

Computational Cost. Next, we evaluate PPTD’s computational cost for categorical data. Sim-
ilar to the experiment on continuous data, the rounding parameter L is also fixed as 1010 in this
case. Here, we also evaluate the computational cost on user smartphone and the cloud server,
respectively.

In particular, we evaluate the two major procedures on a user’s smartphone and then give the
total running time. In this experiment, the number of the objects observed by each user varies
from 2 to 14. The results are shown in Figure 15, from which we can see the second procedure
(i.e., calculating weighted data) costs more time than the first procedure (Figure 15(a)). This is
because most of the operations in the second procedure are conducted on ciphertexts, while
the first procedure is mainly composed of plaintext-based operations. Additionally, Figure 15(b)
shows that the largest total running time of the two procedures on a user’s smartphone is no
more than 0.45s in each iteration, which verifies the practicality of our proposed framework.

To evaluate the computational cost on the cloud server, we vary the number of users from 13
to 113 (the corresponding number of objects varies from 20 to 54 because each question is only
answered by part of the users). Figure 16 reports the running time of each procedure and the
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Fig. 16. Running time w.r.t. the number of users for categorical data on the cloud server.

total running time in each iteration. From Figure 16(a), we can see that the computational time
of updating truths is far greater than the time of updating weights for all the scenarios, which
is similar to that in the experiment for continuous data. The evaluation of total running time in
each iteration can be seen in Figure 16(b). We can see the total running time is 25.74s when the
number of users is 113. This total time is reasonable, considering the number of crowd users in
this experiment is 10 times larger than that in the experiment for continuous data.

9.4 Experiment of Parallel PPTD

From above experimental results, we can see most of the computational time on the cloud server
is consumed in updating the ground truths, so we improve PPTD by adapting this procedure to
MapReduce framework. In this part, the efficiency of parallel PPTD is verified. Here, we use a
Hadoop cluster as the cloud server. The crowd sensing system is simulated with 1,000 users and
1,000 objects, and the observation values are generated through adding Gaussian noise of different
intensities to the ground truths. For comparison purpose, we also deploy the basic PPTD frame-
work on the same server.

When evaluating running time under different user numbers and object numbers, we adopt
10 Reducer nodes for parallel PPTD. First, we fix the user number as 500 and change the object
number from 100 to 1,000. The running time of parallel PPTD and the basic PPTD in each iteration
are shown in Figure 17. From this figure, we can see the parallel PPTD is increasingly more efficient
than the basic PPTD as the number of objects goes up. When the object number reaches 1,000, it
takes parallel PPTD only 176.48s to complete the two procedures while the basic PPTD would
have to spend 709.25s to finish the same computations. Then, we fix the object number as 500
and change the user number from 100 to 1,000. Figure 18 reports the results in this case. Similar
patterns can be seen. When the user number reaches 1,000, the parallel PPTD only spends 170.78s
to finish the job, much less than the 655.38s consumed by PPTD. All the above results confirm the
efficiency of parallel PPTD.

Moreover, it is important to study the effect of the node number in the Hadoop system on the
performance of the proposed mechanism. In this experiment, we fix both user number and ob-
ject number as 500. Figure 19 shows the running time under different numbers of Reducer nodes
(results will be similar for the Mapper nodes). As we can see, with the increase of Reducer num-
bers, the running time decreases rapidly at first and gets flattened very soon. This is because
including more Reducer nodes, though improving the parallelism, will introduce more overhead
(e.g., communication). Therefore, it is not true that more Reducer nodes would always lead to
better performance.
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Fig. 17. Running time w.r.t. the number

of objects for parallel PPTD.

Fig. 18. Running time w.r.t. the number

of users for parallel PPTD.

Fig. 19. Running time w.r.t. the number of reducers.

9.5 Experiment of Incremental PPTD

In this section, we evaluate the performance of incremental PPTD scheme on both continuous data
and categorical data, which are collected from the crowdsourced indoor floorplan construction
system and the crowd wisdom system, respectively. Here, we assume that the objects (i.e., segments
in the hallway or questions) are observed in a “streaming” manner, and only one object is observed
at each timestamp. The baseline method we adopted is PPTD, i.e., we conduct the PPTD scheme
once again on the whole dataset whenever a new object is observed. The rounding parameter L is
still set as 1010 and we use I-PPTD to denote the proposed incremental PPTD scheme.

9.5.1 Performance on Crowdsourced Indoor Floorplan Construction System. We first compare
the accuracy and computational cost of the incremental PPTD scheme with that of the baseline
method (i.e., PPTD). In order to measure the estimation error of the proposed scheme, we fix the
number of users as 10 and calculate MAE and RMSE for the estimated truths of the 27 objects, and
the results are shown in Table 1. Although the estimation error of I-PPTD is a little higher than
that of PPTD, the computational cost of I-PPTD is much less than that of the baseline method,
which can be seen from Figures 20 and 21.

Figure 20 shows the average running time for each object on the cloud server when the number
of users varies from 3 to 10. Here, we conduct PPTD with 10 iterations in order to guarantee
the convergence. From this figure, we can see the average running time of I-PPTD is much less
than that of PPTD on the cloud server, especially when the number of users becomes large. This
is mainly because PPTD needs to revisit the old data and be conducted on all observed objects
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Table 1. Accuracy of I-PPTD vs.

PPTD for Continuous Data

MAE RMSE
I-PPTD 0.7354 0.8342
PPTD 0.7170 0.8218

Fig. 20. Running time of I-PPTD and

PPTD w.r.t. the number of users for con-

tinuous data on the cloud server.

Fig. 21. Running time of I-PPTD and

PPTD w.r.t. the number of objects for

continuous data on smartphone.

whenever a new object is observed, while I-PPTD only needs to estimate the truth of the new
observed object. Additionally, at each timestamp, PPTD is iteratively conducted until convergence
while I-PPTD only needs to be conducted once. Figure 21 reports the average running time for
each object on a smartphone while the number of objects is varying from 3 to 27. Here, we also
conduct PPTD with 10 iterations. This figure shows that the average running time of I-PPTD on
smartphones is much less that of PPTD. The reason is similar with the above. Additionally, the
averaging running time of I-PPTD is almost the same while that of PPTD is increasing when the
number of objects varies from 3 to 27. The reason is that PPTD needs to estimate the truths of all
the observed objects while I-PPTD only needs to estimate the truth for the newly observed object
at each timestamp.

In this experiment, we also evaluate the convergence of the I-PPTD scheme. Here, we manually
decrypt user weights and report the results at different timestamps. Figure 22 shows the weights of
five randomly selected users when the timestamp is varying from 1 to 27. From this figure, we can
see users’ weights gradually become stable as the number of timestamps increases, which means
the proposed I-PPTD scheme can guarantee convergence when sufficient objects are observed.
To further illustrate this point, we also compare the weights of all users calculated by I-PPTD
with those calculated by PPTD. The results are shown as Figure 23. Here, we report user weights
calculated by I-PPTD at timestamp 5, 15, and 25. We also report the weight values calculated by
the PPTD scheme after all the objects are observed. From the result, we can see that although user
weights calculated by I-PPTD deviate from the baseline values at the first few timestamps, they
gradually converge to the values calculated by PPTD as time goes on. That is to say, I-PPTD can
achieve similar accuracy with PPTD when sufficient objects are observed.

9.5.2 Performance on Crowd Wisdom System. In this part, we evaluate the performance of I-
PPTD on categorical data. We first evaluate the accuracy of I-PPTD by calculating the error rate of
the estimated truths. The number of users is fixed as 113. After observing the 54 questions, we find
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Fig. 22. Convergence of I-PPTD on continuous data.

Fig. 23. User weights calculated by I-PPTD and PPTD.

both the error rates of I-PPTD and PPTD are 0.074, which verifies that I-PPTD could guarantee
high accuracy while protecting users’ privacy on streaming categorical data.

Similar to the experiment on continuous data, we also evaluate the computational cost of I-PPTD
on categorical data and compare it with PPTD. In order to guarantee the convergence, we conduct
PPTD with two iterations whenever a new object is observed in this experiment. We first evaluate
the computational cost of I-PPTD on the cloud server. We vary the number of users from 13 to
113 and calculate the average running time for each newly observed object. The results are shown
as Figure 24, from which we can see the computational cost of I-PPTD is much less than that of
PPTD as the number of users increases. The reason is similar to that for continuous data. Then,
we evaluate the computational cost of I-PPTD on the user side. We vary the number of objects
observed by each user from 2 to 14 and calculate the average running time for each newly observed
object on a smartphone. Figure 25 reports the results, from which we can see the computational
cost of I-PPTD on the user side is also much less than that of PPTD. The experimental results
on categorical data further verify that the I-PPTD scheme is much more efficient than the PPTD
scheme when the data is collected in a streaming manner.

In order to evaluate the convergence of I-PPTD on categorical data, we randomly select five
users and manually decrypt their weights at different timestamps. The result is shown as Figure 26,
from which we can see the weight of each user is gradually converging to stable as the number
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Fig. 24. Running time of I-PPTD and

PPTD w.r.t. the number of users for cat-

egorical data on the cloud server.

Fig. 25. Running time of I-PPTD and

PPTD w.r.t. the number of objects for

categorical data on smartphones.

Fig. 26. Convergence of I-PPTD on categorical data.

of observed questions increases. This confirms that the proposed I-PPTD scheme can guarantee
convergence when sufficient objects are observed.

10 RELATED WORK

As an effective technique to extract reliable information from crowd sensing systems, truth dis-
covery has drawn more and more attention [25, 32–37, 39, 40, 51, 56–59] in recent years. Repre-
sentative truth discovery schemes include AccuSim [34], CRH [33], TruthFinder [59], and the like.
Compared with the naive averaging or voting approaches, these schemes can provide more reliable
aggregated results by estimating and incorporating user reliability into the aggregation process.
However, none of these schemes take actions to protect user privacy, which is a key concern in
many crowd sensing systems [14].

The importance of privacy protection has long been recognized in many fields [7, 23, 42]. The
representative strategies to tackle various privacy concerns include (1) anonymization [7, 44, 53],
which removes identification information from all the interactions between the participant and
other entities; (2) data perturbation [28, 29], which achieves privacy protection by adding artificial
noise to the data before sharing them with others; and, (3) the approaches based on cryptography
or secure multi-party computation [17, 26], in which the sensitive data are encrypted and, in many
cases, the parties need to cooperate with each other to decrypt the final results.
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Recently, the privacy-preserving problem is also studied with respect to crowd sensing ap-
plications. For example, Refs. [24, 30, 49, 50] present anonymization-based schemes to protect
user’s private information from being disclosed. Although these schemes can guarantee the users’
privacy in some cases, they are not suitable for truth discovery scenarios, where, instead of the
anonymity of each user, what we need to preserve is the confidentiality of his observation values
from which sensitive personal information (including user identity) may be inferred. Moreover,
some perturbation-based methods are also proposed [13, 43, 45, 55, 60]. However, it is difficult
to integrate these schemes with truth discovery approaches because the artificial noise added to
each user’s data would make it difficult to accurately estimate his reliability. Thus, cryptography
based schemes are good choices, as they can guarantee the confidentiality of the observation values
without introducing additional noise. Since some computations need to be conducted on encrypted
data in a truth discovery procedure, such schemes should have homomorphic properties [11]. Re-
cently, the fully homomorphic encryption scheme [16] has drawn much attention due to the ability
of taking arbitrary computations on encrypted data, but the prohibitively high computation cost
makes it impractical to be used in crowd sensing applications. Although our proposed scheme
is based on the traditional Paillier cryptosystem, which cannot conduct arbitrary computations
over encrypted data, we use it in a novel manner that well captures the specific algebra opera-
tions in truth discovery procedures without significant overhead. Additionally, Ref. [27] proposes
a homomorphic encryption-based approach to protect user privacy in crowdsourcing applications.
However, it addresses a different scenario in which users can know their own reliability informa-
tion. Also, Ref. [27] mainly focuses on categorical data. In contrast, our scheme can deal with not
only categorical data but also other data types.

11 CONCLUSIONS

In this article, we design a novel PPTD framework to tackle the issue of privacy protection in crowd
sensing systems. The key idea of PPTD is to perform weighted aggregation on the encrypted data
of users using a homomorphic cryptosystem and iteratively conducting two phases (i.e., secure
weight update and secure truth estimation) until convergence. During this procedure, both user’s
observation values and his reliability score are protected. In order to process large-scale data ef-
ficiently, a parallelized extension of PPTD is also proposed based on the MapReduce framework.
Additionally, we design an incremental PPTD scheme to deal with the scenarios where the sens-
ing data of different objects are collected in a streaming manner. Theoretical analysis demonstrates
that the observation values of each user will not be disclosed to others and the weight of each user
will not be known by any party based on the proposed framework. Through extensive experiments
on both real-world crowd sensing systems and synthetic data, we demonstrate that the proposed
framework can not only generate accurate aggregated results but also guarantee the introduced
computational and communication overhead are within the realm of practicality.
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