

National Institutes of Health

Haute Ecole Spécialisée de Suisse occidentale

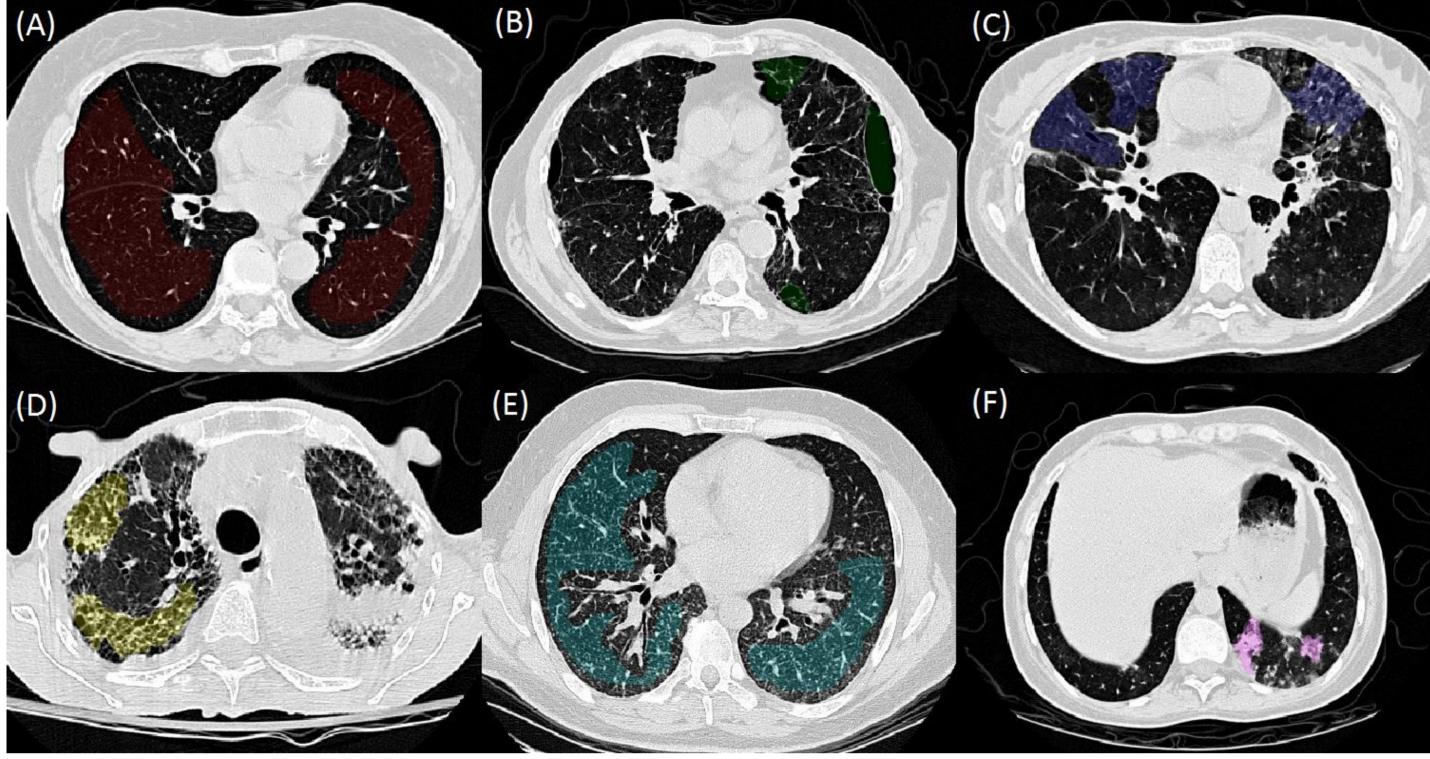
Holistic Classification of CT Attenuation Patterns for Interstitial Lung Diseases via Deep Convolutional Neural Networks

Mingchen Gao¹, Ulas Bagci², Le Lu¹, Aaron Wu¹, Mario Buty¹, Hoo-Chang Shin¹, Holger Roth¹, Georgios Z. Papadakis¹, Adrien Depeursinge³, Ronald M. Summers¹, Ziyue Xu¹, and Daniel J. Mollura¹ ¹ National Institutes of Health (NIH), Bethesda, MD 20892, US ² University of Central Florida (UCF), Orlando, FL 32816, US ³ University of Applied Sciences Western Switzerland (HES-SO), Sierre 3960, Switzerland

Introduction

Framework

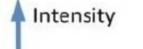
- Images are rescaled to three channels.
- Image augmentation: Resampled to generate variant

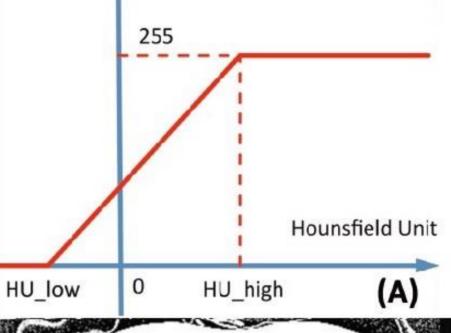


(A) Normal (B) Emphysema (C) Ground Glass Opacity(D) Fibrosis (E) Micronodules (F) Consolidation

- We present a new representation and approach for interstitial lung disease (ILD) classification.
- Our method with holistic images (i.e., CT slice) as input, is significantly different from previous image patch based algorithms [1]. It addresses a more practical and realistic

- samples, improves the performance ~5% in image classification accuracy
- Feed into deep CNN. The CNN architecture is the same as the one proposed in [2], other than the last final softmax classification layer, which is changed to 6 classes.



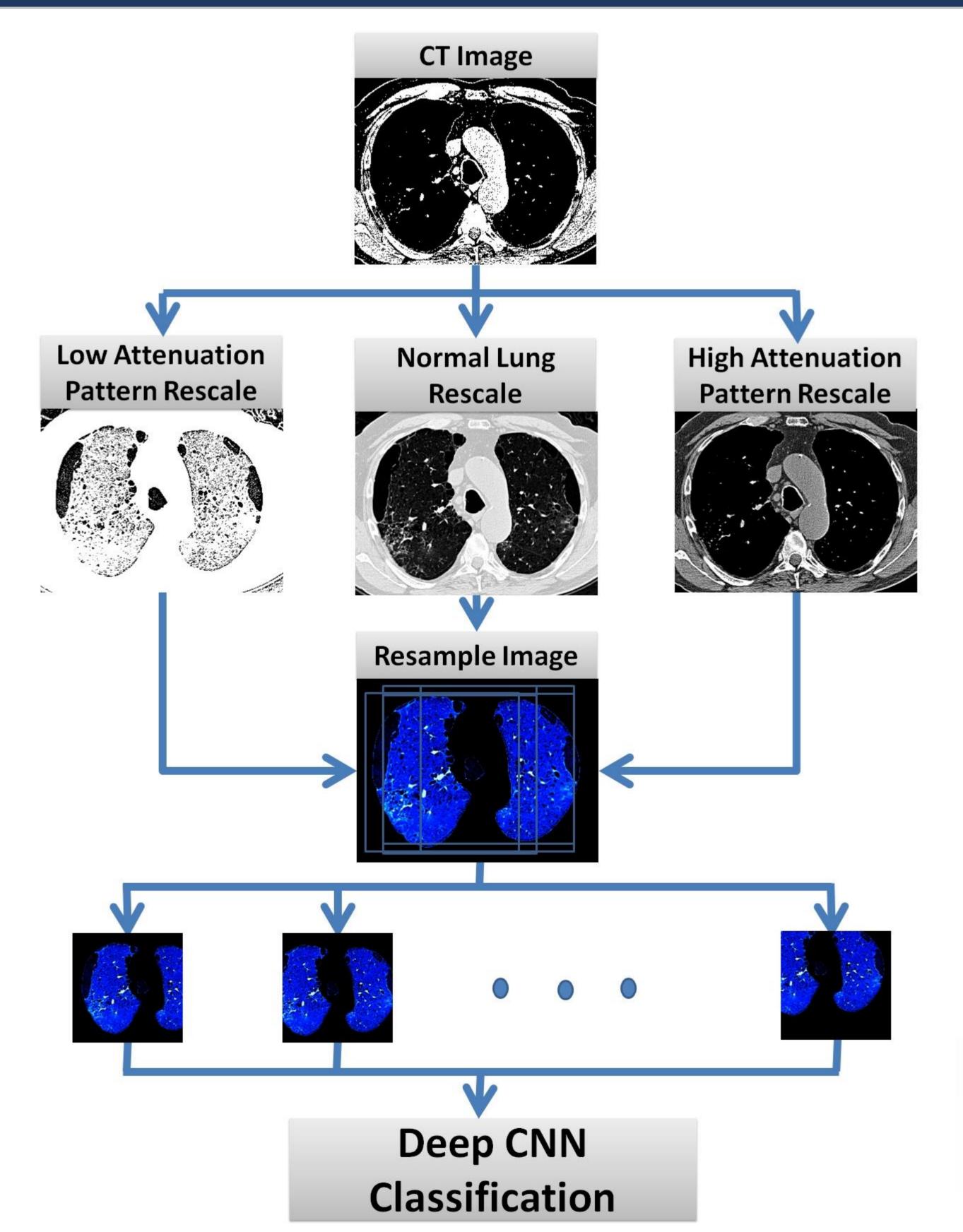


(A) CT attenuation range rescale
(B) Low attenuation range (-1400, -950)
(C) Normal lung range (-1400, 200)
(D) High attenuation range (-160, 240)

Experiments

clinical problem.

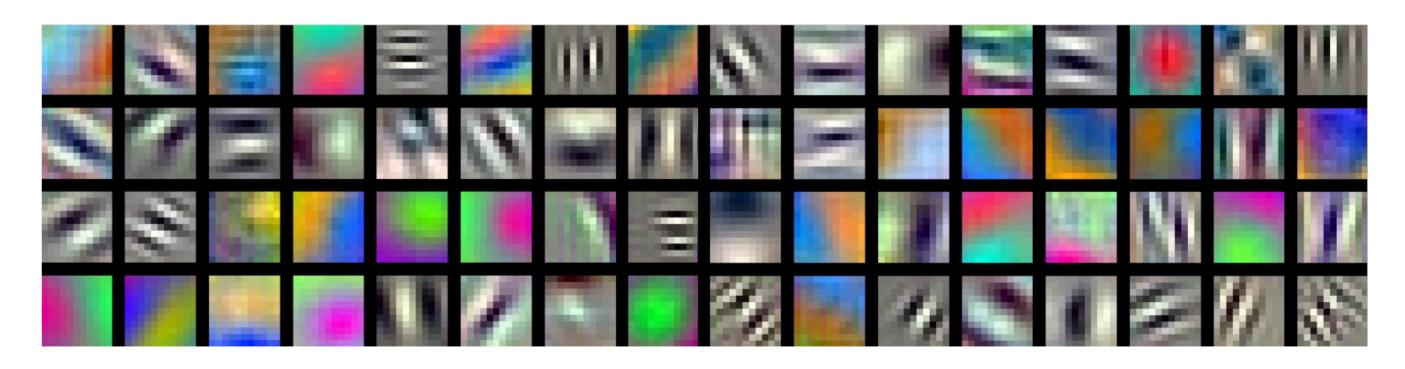
Methodology



- The proposed algorithm is validated on a publicly available ILD database [3]. The database contains 120 HRCT scans with 512×512 pixels per axial slice, where 17 types of lung tissues are annotated with ROIs.
- For fair comparisons with previous work, we conduct two different settings:
 - Patch based classification, exact the same environmental settings as in previous state-of-the-art work.
 - Slice based classification, our preliminary experimental results have demonstrated the promising feasibility and advantages of the proposed approach.

Table 1. F-score of ILD classifications.

	EM	FB	GG	NM	MN	CD
[14]	0.753	0.841	0.782	0.840	0.857	1221
[13]	0.768	0.872	0.795	0.877	0.888	-
[8]	0.5449	0.7624	0.7150	0.8395	0.9096	870
Ours	1.0000	0.8000	0.7500	0.4000	0.5600	0.5000
Ours Patch Setting	0.8940	0.8509	0.8159	0.8844	0.8950	-



References:

- [1] Y. Song, W. Cai, Y. Zhou, and D. D. Feng. Feature-based image patch approximation for lung tissue classification. TMI, 2013.
- [2] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, 2012.
- [3] A. Depeursinge, A. Vargas, A. Platon, A. Geissbuhler, P.-A. Poletti, and H. Muller. Building a reference multimedia database for interstitial lung diseases. CMIG, 2012.

ΜΙCCΛΙ

The 18th International Conference on Medical Image Computing and Computer Assisted Intervention