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Abstract. Holistically detecting interstitial lung disease (ILD) patterns from CT
images is challenging yet clinically important. Unfortunately, most existing solu-
tions rely on manually provided regions of interest, limiting their clinical useful-
ness. In addition, no work has yet focused on predicting more than one ILD from the
same CT slice, despite the frequency of such occurrences. To address these limita-
tions, we propose two variations of multi-label deep convolutional neural networks
(CNNs). The first uses a deep CNN to detect the presence of multiple ILDs using
a regression-based loss function. Our second variant further improves performance,
using spatially invariant Fisher Vector encoding of the CNN feature activations.
We test our algorithms on a dataset of 533 patients using five-fold cross-validation,
achieving high area-under-curve (AUC) scores of 0.982, 0.972, 0.893 and 0.993
for Ground Glass, Reticular, Honeycomb and Emphysema, respectively. As such,
our work represents an important step forward in providing clinically effective ILD
detection.
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1 Introduction

Interstitial lung disease (ILD) refers to a group of more than 150 chronic lung diseases
that causes progressive scarring of lung tissues and eventually impairs breathing. The
gold standard imaging modality for diagnosing ILD patterns is high resolution computed
tomography (HRCT) [1, 2]. Fig. 1 depicts examples of the most typical ILD patterns.

Automatically detecting ILD patterns from HRCT images would help the diagnosis
and treatment of this morbidity. The majority of previous work on ILD detection is lim-
ited to patch-level classification, which classifies small patches from manually generated
regions of interest (ROIs), into one of the ILDs. Approaches include restricted Boltzmann
machines [3], convolutional neural networks (CNNs) [4], local binary patterns [5, 6] and
multiple instance learning [7]. An exception to the patch-based approach is the recen-
t work of Gao et al. [8], which investigated a clinically more realistic scenario for ILD
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classification, assigning a single ILD label to any holistic two-dimensional axial CT slice
without any pre-processing or segmentation. Although holistic detection is more clinical-
ly desirable, the underlying problem is much harder without knowing the ILD locations
and regions a priori. The difficulties lie on several aspects, which include the tremen-
dous amount of variation in disease appearance, location, and configuration and also the
expense required to obtain delicate pixel-level ILD annotations of large datasets for train-
ing.

Despite of its importance, this challenge of detecting multiple ILDs simultaneously
without the locations has not been addressed by previous studies [3, 4, 8, 9], including
that of Gao et al. [8], which all treat ILD detection as a single-label classification prob-
lem. When analyzing the Lung Tissue Research Consortium (LTRC) dataset [2], the most
comprehensive lung disease image database with detailed annotated segmentation masks,
we found that there are significant amounts of CT slices associated with two or more ILD
labels. For this reason, and partially inspired by the recent natural image classification
work [10], we model the problem as multi-label regression and solve it using a CNN. We
note that multi-label regression has also been used outside of ILD contexts for heart cham-
ber volume estimation [11, 12]. However, this prior work used hand-crafted features and
random-forest based regression, whereas we employ learned CNN-based features, which
have enjoyed dramatic success in recent years over hand-crafted variants [13]. Thus, un-
like prior ILD detection work [3–6, 8], our goal is to detect multiple ILDs on holistic CT
slices simultaneously, providing a more clinically useful tool.

While CNNs are a powerful tool, their feature learning strategy is not invariant to the
spatial locations of objects or textures within a scene. This order-sensitive feature encod-
ing, reflecting the spatial layout of the local image descriptors, is effective in object and
scene recognition. However, it may not be beneficial or even be counter-productive for
texture classification [14]. The spatial encoding of order-sensitive image descriptors can
be discarded via unordered feature encoders such as Bag of Visual Words (BoVW), Fish-
er Vectors (FV) [15], or aggregated by order-sensitive spatial pyramid matching (SPM).
Given the above considerations, we enhance our CNN-regression approach using spatial-
invariant encodings of feature activations for multi-label multi-class ILD detection.

Thus, in this work, we propose two variations of multi-label deep convolutional neu-
ral network regression (MLCNN-R) models to address the aforementioned challenges.
First, an end-to-end CNN network is trained for multi-label image regression. The loss
functions are minimized to estimate the actual pixel numbers occupied per ILD class or
the binary [0,1] occurring status. Second, the convolutional activation feature maps at dif-
ferent network depths are spatially aggregated and encoded through the FV [15] method.
This encoding removes the spatial configurations of the convolutional activations and
turns them into location-invariant representations. This type of CNN is also referred as
FV-CNN [14]. The unordered features are then trained using a mutlivariate linear regres-
sor (Mvregress function in Matlab) to regress the numbers of ILD pixels or binary labels.
Our proposed algorithm is demonstrated using the LTRC ILD dataset [2], composed of
533 patients. Our experiments use five-fold cross-validation (CV) to detect the most com-
mon ILD classes of Ground Glass, Reticular, Honeycomb and Emphysema. Experimental
results demonstrate the success of our approach in tackling the challenging problem of
multi-label multi-class ILD classification.



Fig. 1. Examples of ILD patterns. Every voxel in the lung region is labeled as healthy or one of
the four ILDs: Ground Glass, Reticular, Honeycomb or Emphysema. The first row is the lung CT
images. The second row is their corresponding labelings.

2 Methods

Our algorithm contains two major components: 1) we present a squared L2 loss func-
tion based multi-label deep CNN regression method to estimate either the observable ILD
areas (in the numbers of pixels), or the binary [0,1] status of “non-appearing” or “ap-
pearing”. This regression-based approach allows our algorithm to naturally preserve the
co-occurrence property of ILDs in CT imaging. 2) CNN activation vectors are extracted
from convolutional layers at different depths of the network and integrated using a Fisher
Vector feature encoding scheme in a spatially unordered manner, allowing us to achieve
a location-invariant deep texture description. ILD classes are then discriminated using
multivariate linear regression.

2.1 CNN Architecture for Multi-label ILD Regression

Deep CNN regression is used to calculate the presence or the area of spatial occupancy
for IDL in the image, where multiple pathology patterns can co-exist. The squared L2
loss function is adopted for regression [10] instead of the more widely used softmax or
logistic-regression loss for CNN-based classification [4, 8, 13]. There are multiple ways
to model the regression labels for each image. One straightforward scheme is to count the
total number of pixels annotated per disease to represent its severity, e.g., Fig. 2 left. We
can also use a step function to represent the presence or absence of the disease, as shown
in Fig. 2 middle, where the stage threshold T may be defined using clinical knowledge.
For any ILD in an image, if its pixel number is larger than T , the label is set to be 1;
otherwise as 0. A more sophisticated model would have a piecewise linear transform
function, mapping the pixel numbers towards the range of [0,1] (Fig.2 right). We test all
approaches in our experiments.

Suppose that there are N images and c types of ILD patterns to be detected or clas-
sified, the label vector of the ith image is represented as a c-length multivariate vector
yi = [yi1, yi2, ..., yic]. An all-zero labeling vector indicates that the slice is healthy or has



no targeted ILD found based on the ground truth annotation. The L2 cost function to be
minimized is defined as

L(yi, ŷi) =

c∑
k=1

(yik − ŷik)
2, (1)

There are several successful CNN structures from previous work, such as AlexNet [13]
and VGGNet [16] . We employ a variation of AlexNet, called CNN-F [17], for a trade-off
between efficiency and performance based on the amount of available annotated image
data. CNN-F contains five convolutional layers, followed by two fully-connected (FC)
layers. We set the last layer to the squared L2 loss function. Four classes of ILDs are
investigated in our experiments: Ground Glass, Recticular, Honeycomb and Emphysema
(other classes have too few examples in the LTRC database [2]). The length of yi is c = 4
to represent these four ILD classes. Based on our experience, random initialization of
the CNN parameters worked better than ImageNet pre-trained models. Model parameters
were optimized using stochastic gradient descent.

Fig. 2. Three functions for mapping the number of pixels to the regression label.

2.2 Unordered Pooling Regression via Fisher Vector Encoding

In addition to CNN-based regression, we also test a spatially invariant encoding of CNN
feature activations. We treat the output of each k-th convolutional layer as a 3D descriptor
field Xk ∈ RWk×Hk×Dk , where Wk and Hk are the width and height of the field and
Dk is the number of feature channels. Therefore, the whole deep feature activation map
is represented by Wk ×Hk feature vectors and each feature vector is of dimension Dk .

We then invoke FV encoding [15] to remove the spatial configurations of total Wk ×
Hk vectors per activation map. Following [15], each descriptor xi ∈Xk is soft-quantized
using a Gaussian Mixture Model. The first- and second-order differences (uT

i,m, vTi,m)
between any descriptor xi and each of the Gaussian cluster mean vectors {µm},m =
1, 2, ...,M are accumulated in a 2MDk-dimensional image representation:

fFV
i = [uT

i,1, v
T
i,1, ..., u

T
i,M , vTi,M ]T . (2)

The resulting FV feature encoding results in very high 2MDk (e.g., M = 32 and
Dk = 256) dimensionality for deep features of Xk. For computational and memory ef-
ficiency, we adopt principal component analysis (PCA) to reduce the fFV

i features to a



lower-dimensional parameter space. Based on the ground-truth label vectors yi, multi-
variate linear regression is used to predict the presence or non-presence of ILDs using the
low-dimensional image features PCA(fFV

i ).

3 Experiments and Discussion

There are two main publicly available datasets for CT imaging based ILD classification
[1, 2]. Out of these, only the LTRC [2] enjoys complete ILD labeling at the CT slice
level [18]. As a result, we use the LTRC dataset for method validation and performance
evaluation. Every pixel in the CT lung region is labeled as healthy or one of the four
tissue types: Ground Glass, Reticular, Honey-comb or Emphysema. Only 2D axial slices
are investigated here, without taking successive slices into consideration. Many CT scans
for ILD study have large inter-slice distances (for example 10mm in [1]) between axial
slices, making direct 3D volumetric analysis implausible. The original resolution of the
2D axial slices are 512×512 pixels. All images are resized to the uniform size of 214×214
pixels.

To conduct holistic slice based ILD classification [8], we first convert the pixelwise
labeling into slice-level labels. There are 18883 slices in total for training and testing.
Without loss of generality, if we set T = 6000 pixels as the threshold to differentiate the
presence or absence of ILDs, there are 3368, 1606, 1247 and 2639 positive slices for each
disease, respectively. In total there are 11677 healthy CT images, 5675 images with one
disease, 1410 images with two diseases, 119 images with three diseases, and 2 images
with four diseases. We treat the continuous values after regression (in two types of pixel
numbers or binary status) as “classification confidence scores”. We evaluate our method
by comparing against ground truth ILD labels obtained from our chosen threshold.

Each ILD pattern is evaluated separately by thresholding the “classification confi-
dence scores” from our regression models to make the binary presence or absence deci-
sions. Classification receiver operating characteristic (ROC) curves can be generated in
this manner. We experimented with Fig. 2’s three labeling converting functions. Regres-
sion using the ILD occupied pixel numbers or the binary status labels produced similar
quantitative ILD classification results. However, the piecewise linear transformation did
not perform well.

When constructing the FV-encoded features, fFV
i , the local convolutional image de-

scriptors are pooled into 32 Gaussian components, producing dimensionalities as high as
16K dimensions [15]. We further reduce the FV features to 512 dimensions using PCA.
Performance was empirically found to be insensitive to the number of Gaussian kernels
and the dimensions after PCA.

All quantitative experiments are performed under five-fold cross-validation. The train-
ing folds and testing fold are split at the patient level to prevent overfitting (i.e., no CT
slices from the same patient are used for both training and validation). CNN training was
performed in Matlab using MatConvNet [19] and was run on a PC with an Nvidia Tesla
K40 GPU. The training for one fold takes hours. The testing could be accomplished in
seconds per image.

We show the ROC results directly regressed to the numbers of ILD pixels in Fig. 3.
The area-under-the-curve (AUC) values are marked in the plots. In Fig. 3(d), AUC s-
cores are compared among configurations using FV encoding on deep image features
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Fig. 3. ILD detection results shown in ROC curves. Both CNN and FV-CNN regression are used to
regress to the numbers of pixels. (a) Detection results of CNN regression. (b)(c) Detection results
of FV-CNN via the unordered feature pooling using conv5 and conv1 layer, respectively. (d) AUC
versus FV pooling at different convolutional layers.

pooled from different CNN convolutional layers. Using activations based on the first fully-
connected layer (fc6) are also evaluated. Corresponding quantitative results are shown in
Table 1. Both deep regression models achieve high AUC values for all four major ILD
patterns. FV unordered pooling operating on the first CNN convolutional layer conv1
produces the overall best quantitative results, especially for Honeycomb. Despite resid-
ing in the first layer, the filters and activations on conv1 are still part of a deep network
since they are learned through back-propagation. Based on these results, this finding in-
dicates that using FV encoding with deeply-learned conv1 filter activations is an effective
approach to ILD classification.

Fig. 4 presents some examples of successful and misclassified results. In (a), our al-
gorithm successfully detects all three types of ILD patterns appearing on that slice. In (b),



although it is marked as misclassified (compared to the ground truth binary labels with
T = 6000 pixels), our method finds and classifies emphysema and ground glass correctly
that do occupy some image regions. (c) and (d) are misclassified examples. These qual-
itative results visually confirm the high performance demonstrated by our quantitative
experiments.

Area Under Curve (AUC)
Disease conv1 conv2 conv3 conv4 conv5 fc6 CNN

Ground Glass 0.984 0.955 0.953 0.948 0.948 0.930 0.943
Reticular 0.976 0.958 0.954 0.951 0.950 0.939 0.917

Honeycomb 0.898 0.826 0.828 0.823 0.806 0.773 0.698
Emphysema 0.988 0.975 0.967 0.966 0.967 0.985 0.988

Table 1. Quantitative results comparing the AUC between different layers. Both CNN and multi-
variant linear regression regress to pixel numbers.

4 Conclusion

In this work, we present a new ILD pattern detection algorithm using multi-label CNN
regression combined with unordered pooling of the resulting features. In contrast to pre-
vious methods, our method can perform multi-label multi-class ILD detection. Moreover,
this is performed without the manual ROI inputs needed by much of the state-of-the-
art [3–5]. We validate on a publicly available dataset of 533 patients using five-fold CV,
achieving high AUC scores of 0.982, 0.972, 0.893 and 0.993 for GroundGlass, Reticu-
lar, Honeycomb and Emphysema, respectively. Future work includes performing cross-
dataset learning and incorporating weakly supervised approaches to obtain more labeled
training data. Nonetheless, as the first demonstration of effective multi-class ILD classi-
fication, this work represents an important contribution toward clinically effective CAD
solutions.
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