Multi-label Deep Regression and Unordered Pooling for

Holistic Interstitial Lung Disease Pattern Detection

Mingchen Gao, Ziyue Xu, Le Lu, Adam P. Harrison, Ronald M. Summers, Daniel J. Mollura
Radiology and Imaging Sciences, National Institutes of Health, Bethesda, MD

» Holistically detecting Interstitial lung disease (ILD)
patterns from CT Images Is challenging yet clinically
Important.

* Previous solutions rely on manually provided regions of
Interest, and only predict one ILD label from each

slice/patch.

e We propose a multi label deep CNN regressign model Emphysema Ground Glass Normal Reticular Honeycomb
(MLCNN-R) and Fisher Vector CNN (FV-CNN) to detect Examples of ILD patterns. Every voxel is labeled as
multiple ILD patterns simultaneously. healthy or one of the four ILDs in the LTRC dataset [1].
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Right: AUC of FV-CNN at different convolutional layers and

MLCNN-R.
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pooled Into 32 Gaussian components,
producing 16K dimension features. Those
features were further reduced Into 512
dimensions using PCA.
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separately. FV-CNN encoding feature
representation has better performances Eroundiiss Soundilan
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Examples of successful and misclassified results.
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