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Abstract. We present a holistic brain tumor screening and classification
method for detecting and distinguishing multiple types of brain tumors on
MR images. The challenges arise from the significant variations of location,
shape, size, and contrast of these tumors. The proposed algorithms start
with feature extraction from axial slices using dense convolutional neural
networks; the obtained sequential features of multiple frames are then
fed into a recurrent neural network for classification. Different from
most other brain tumor classification algorithms, our framework is free
from manual or automatic region of interests segmentation. The results
reported on a public dataset and a population of 422 proprietary MRI
scans diagnosed as normal, gliomas, meningiomas and metastatic brain
tumors demonstrate the effectiveness and efficiency of our method.

1 Introduction

Brian tumor is one of the most fatal cancers. In the United States, an estimated
700,000 people are living with primary brain and central nervous system tu-
mors. Nearly 80,000 new cases of primary brain tumors are diagnosed yearly,
and approximately one-third are malignant [1]. Many different types of brain
tumors exist. The most prevalent brain tumor types in adults are gliomas and
meningiomas.

Medical imaging plays a central role in diagnosing brain tumors. There are
many imaging modalities that can provide information about brain tissue non-
invasively, such as Magnetic Resonance Images (MRI), Computed Tomography
(CT) and Positron Emission Tomography (PET). MRI has particularly been used
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frequently in brain tumor detection and identification, due to its high contrast
of soft tissue, high spatial resolution and free of radiation. Despite these facts,
brain tumor diagnosis still remains a challenging task. Its detection heavily relies
on the experience of radiologists, and diagnosing a large amount of data can be
quite time-consuming and sometimes non-reproducible.

Computer-Aided Diagnosis (CAD) can provide tremendous help in brain
tumor diagnosis, prognosis and surgery. A typical brain tumor CAD system
consists of three main phases, tumor region of interest (ROI) segmentation,
feature extraction, and classification (based on the extracted features) [4,6,5].
Brain tumor segmentation, either manual or automatic, is perhaps the most
important and time-consuming phase of such a system. A great deal of effort has
been devoted to this problem, e.g., releasing publicly available benchmark datasets
and organizing challenges [10]. Many algorithms have been proposed to solve the
brain tumor segmentation problem, such as Deep Neural Networks [7] and SVM
with Conditional Random Field [3]. Classifications based on SVM and/or ANN
are then followed to distinguish different types of brain tumors based on the
extracted features from ROIs. An obvious limitation of such frameworks is the
need of tracing ROIs, which can cause a few problems. Firstly, since brain tumors
can vary dramatically in their shapes, sizes, and locations, tracing ROIs could
be quite challenging and often not fully automatic. This may cause significant
errors to the segmentation, and be accumulated into the following phases, thus
leading to inaccurate classification. Secondly, the tumor-surrounding tissues are
suggested to be discriminative between different tumor categories [5]. Thirdly,
relying solely on the features of ROIs means complete ignorance of the location
information of the tumors, which can affect the classification considerably.

The aforementioned problems motivate us to propose an alternative approach
for brain tumor screening and classification, eliminating the segmentation phase
completely. Particularly, we propose to use the holistic 3D images directly without
detailed annotation at the pixel or slice levels. Our approach models the 3D
holistic images as sequences of 2D slices. It first adopts an auto-encoder, based on
a deep DenseNet, to extract features of each 2D image. This allows us to avoid
using the original noisy and high dimensional data. After features of 2D slices
extracted, it is natural to apply a Recurrent Neural Network (RNN), specifically
the Long Short Term Memory (LSTM) model to handle the sequential data
for the classification. We also apply a purely convolutional model for sequential
data, by stacking 2D slices features together to be treated as another image data.
This is inspired by a recent work of using purely convolutional auto-encoder for
sequence representation learning [12].

Our contributions in this work are three-fold:

– The proposed models only need holistic label of patients other than pixel-
wise/slice-wise labeling. Holistic labels are much easier to obtain in clinical
routine.
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Fig. 1. An MR image sequence of a glioma patient.

– We have collected a dataset of 422 MRI scans, containing normal control
images as well as three types of brain tumors (i.e., meningioma, glioma, and
metastasis tumor).

– Our deep neural network implements a novel architecture, treating 3D data
as sequences of 2D slices, and using RNN or CNN to learn sequence-to-
label mapping, with a DenseNet based auto-encoder for feature extraction.
Two proposed models DenseNet-LSTM and DenseNet-DenseNet are
demonstrated with two experiments tumor screening and tumor type
classification using both public and proprietary datasets.

2 Preliminaries

2.1 Brain-Tumor Image Representations

Brain tumors are usually diagnosed with MRI or CT images, where patient i is
represented by a sequence of 2-D images, denoting as Xi = {x(i)

1 , · · · ,x(i)
T } with

x
(i)
t ∈ R`1×`2 being the t-th frame image. Different from existing label-exhaustive

datasets where each 2-D image is associated with a label, in our dataset, each
sequence of images Xi is associated with a single label yi ∈ {0, 1, · · · , P}, where
P is the number of tumor types. As a result, our dataset is represented as
D , {(Xi, yi)}Ni=1 with N being the total number of image sequences (including
patients and normal people). Fig. 1 illustrates an example sequence of MRI
images from a Glioma patient in our proprietary dataset. Note that there are
only a few frames showing the existence of Glioma.

2.2 DenseNet

DenseNet [9] is a recently proposed special type of convolutional neural networks,
where the current layer is connected by all its previous layers. The structure

The anonymized proprietary dataset will be shared publicly with labels later on.
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Fig. 2. A Deep DenseNet with 3 dense blocks. In each dense block, the input for a
particular layer is the concatenation of all outputs from its previous layers; the output
is obtained by convolving the input with some kernels to be learned.

has some advantages over existing structures such as alleviating the vanishing-
gradient problem, strengthening feature propagation, encouraging feature reuse,
and reducing the number of parameters. A deep DenseNet is defined as a set
of DenseNets (called dense blocks) connected sequentially, with additional con-
volutional and pooling operations between consecutive dense blocks. By such a
construction, we can build a deep neural network flexible enough to represent
complicated transformations. An example of the deep DenseNet is illustrated in
Fig. 2.

2.3 Recurrent Neural Network (RNN)
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Fig. 3. The RNN structure.

RNN is a powerful frame-
work to model sequence-
to-sequence data. In our
brain tumor application,
the input sequence corre-
sponds to features of the
MRI images, which are ex-
tracted with a DenseNet
described above; the out-
put sequence degenerates
to a single label, indi-
cating whether the in-
put sequence is diag-
nosed as tumor or not.
Specifically, consider an
input sequence X =
{x1, · · · ,xT }, where xt is
the input data vector at
time t. The corresponding hidden state vector ht at each time t is recursively
calculated by applying a transition function ht = H(ht−1,xt) (specified below).
Finally, the output y is calculated by mapping the final state hT to the label
space. Fig. 3 illustrates the RNN structure in our setting.



5

Long Short-Term Memory (LSTM) Vanilla RNN defines H as a linear transfor-
mation followed by an activation function. This simple structure is unable to
model long-term dependency from the input, as is the case in our application.
Instead, we adopt the more powerful LSTM transition function by introducing a
memory cell that is able to preserve the state over long periods [8]. Specifically,
each LSTM unit contains a cell ct at time t, which can be viewed as a memory
unit. Reading or writing the cell is controlled through sigmoid gates: input gate
it, forget gate f t, and output gate ot. Consequently, the hidden units ht are
updated as:

it = σ(Wixt +Uiht−1 + bi) , f t = σ(Wfxt +Ufht−1 + bf ) ,

ot = σ(Woxt +Uoht−1 + bo) , c̃t = tanh(Wcxt +Ucht−1 + bc) ,

ct = f t � ct−1 + it � c̃t , ht = ot � tanh(ct)

where σ(·) denotes the logistic sigmoid function, and � represents the element-
wise matrix multiplication operator. W{i,f,o,c}, U{i,f,o,c} and bi,f,o,c are the
weights of the LSTM to be learned. Having obtained the hidden unit for the
last time step T , we map hT to y by simply using a linear transformation
followed by a softmax-layer, i.e., p(y = k|hT ) = Softmaxk(WyhT + by), where
Softmaxk(a) ,

exp(ak)∑
i exp(ai)

, and Wy and by are the parameters to be learned.

3 Labeling-free Brain-Tumor Classification

We describe our model based on the above building blocks. Different from existing
methods for tumor classification using a standard alone CNN, we propose two
models to predict image sequences directly, completely eliminating the time
consuming procedure of labeling each frame independently, thus free of labeling.

3.1 DenseNet-LSTM model

There are mainly two challenges in our task: i) Directly using CNN to tackle
image sequences is inappropriate as CNN is originally designed for static data.
Fortunately, LSTM provides us a natural way to deal with sequence data. As
a result, we adopt LSTM for image-sequence classification. ii) Directly feeding
original image sequences to an RNN works poorly because the original images
are usually noisy and high-dimensional.

To alleviate this problem, we propose an auto-encoder structure based on
the deep DenseNet to extract features of the original images. The features from
the auto-encoder are then fed to an RNN for classification. Specifically, in an
auto-encoder, one trains an encoder and a deconder together, to reconstruct
the output the same as input. To train the auto-encoder given brain-tumor
images (x

(i)
t )i,t, the objective is to minimize the reconstruction error: F =∑

i

∑
t

∥∥∥x(i)
t −DEC

(
ENC(x(i)

t )
)∥∥∥2, where ‖ · ‖ is the standard Frobenius norm;
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ENC(·) and DEC(·) denote the encoder and decoder implemented by two deep
DenseNets, respectively. After training the auto-encoder, the extracted features
for all the images are then used as the input data to train an RNN classifier
for holistic brain-tumor classification. We adopt the standard cross-entropy loss
function to train the RNN. The whole framework is illustrated in Fig. 4. We
denote this model as DenseNet-LSTM.

3.2 DenseNet-DenseNet model
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Fig. 4. The proposed DenseNet-LSTM model for labeling-
free brain tumor classification.

An alternative way to
RNN for sequence clas-
sification discovered re-
cently is to replace the
RNN with a CNN [12].
We stack the features of a
tumor-sequence returned
from the auto-encoder as
a 2-D tensor, and treat it
as input data to a second
deep DenseNet for classi-
fication. In this way, the
inter-frame correlations is
translated into column-
wise correlations in a sin-
gle 2-D tensor, which
can be effectively mod-
eled by the convolutional
operator in a DensetNet.
We denote this model as
DenseNet-DenseNet.

4 Experiments

We test our proposed
framework on two datasets, one public dataset and one proprietary dataset
(collected by our collaborators in their hospital). We have two experiments to
evaluate the proposed models: Tumor screening and tumor type classification.
Tumor screening is for testing the accuracy of our approach on deciding (or screen-
ing) whether a 2D sequence image contains a tumor. Tumor type classification is
to classify tumors into multiple types.

Our implementation is based on TensorFlow. To alleviate overfitting, we adopt
the weight-decay regularization and dropout in the training. The auto-encoder
part needs to be trained only once. It takes around 5 hours for 10,000 slices from
500 MRI sequences. The second part takes about half an hour for LSTM or one
hour for DenseNet. The models were trained on a Nvidia Titan Xp GPU. For all
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the experiments, we randomly partition the dataset into a training dataset (72%),
a test dataset (14%) and a validation dataset (14%). We repeat this process for
six times and report the mean and variance of the accuracies. Fig. 7 shows some
examples of learning curves. More detailed experiment settings are given in the
supplementary material.

Glioma

Meningiomas

Metastatic

Fig. 5. Examples of the
three types of brain tumors.

Public Dataset The public dataset [5] includes
3064 (2D) slices of brain MRI from 233 patients,
containing 708 meningiomas, 1426 gliomas, and 930
pituitary tumors. The tumors were manually de-
lineated by experienced radiologists. Since our ap-
proach does not rely on segmentation, we utilize only
the holistic label of each slice to indicate the tumor
type. Since this dataset does not have the sequence
images needed by our model, we convert each 2D
image (slice) into a sequence of 20 slices by either
duplicating it 19 times (for DenseNet-DenseNet) or
adding 19 zero matrices (for DenseNet-LSTM). Our
purpose of using this dataset is for both validat-
ing the robustness of the proposed framework and
achieving the state-of-the-art performance, though
our model is not designed for handling such 2D
datasets.

Proprietary Dataset We have collected a
dataset of 422 MRI scans diagnosed as normal (75),
glioma (150), meningiomas (67) and metastatic brain
tumors (130). For each patient, T1,T2 and Flair MR
images are available. Examples of the three tumor
types are depicted in Fig. 5, which shows high vari-
ations of tumors in terms of locations, shapes and
sizes.

Experimental Setup In the DenseNet-based auto-encoder, for the encoder,
it is a deep DenseNet with 4 dense blocks. In each block, there are 5 convolutional
layers with kernel sizes of 3× 3 and 1× 1. We adopt the same configurations for
the decoder. For other parameters of the DenseNet, we adopt the default setting
as in [9]. The dimension of the latent space for RNN is set to 128.

Minibatch size is set to 32. We use a validation set to select the learning rates
from {1e-1, 1e-2, 1e-3, 1e-4, 1e-5}; the dropout rates for the input-hidden layer
and each convolutional layer in the DenseNet from {0, 0.05, 0.1, 0.15, 0.2}, and
the weight-decay rates from {1e-2, 1e-3, 1e-4, 1e-5}.

Tumor Screening The public dataset is not suitable for this task since
it only contains images with tumors. We evaluated three models for tumor
screening on the proprietary dataset: DenseNet-RNN (with vanilla RNN as a
sequence classifier), DenseNet-LSTM and DenseNet-DenseNet. Their accuracies
are 87.15% ± 3.79%, 91.09% ± 3.62%, 92.66% ± 2.73% respectively. DenseNet-
DenseNet presents the best performance for the proprietary dataset.
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Fig. 6. Learning curves on public dataset. Left: tumor type classication with DenseNet-
DenseNet. Right: tumor type classification with DenseNet-LSTM.
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Fig. 7. Learning curves on proprietary dataset. Left: tumor screening with DenseNet-
DenseNet. Right: tumor type classification with DenseNet-LSTM.

Tumor Type Classification For the public dataset, DenseNet-LSTM out-
performs all the previous work on this dataset. The baseline methods [5] reports
an accuracy of 91.28% for its best model based on a complicated feature engineer-
ing and extra data information (from pixel-wise labeling). A recent model based
on capsule networks [2] achieves 86.56% accuracy. Furthermore, our models are
much more robust and practically useful because they are designed to handle 3D
sequence images and is labeling free.

Our proprietary data is significantly more difficult to learn than the public one.
Our DenseNet-LSTM is the best among different variations. DenseNet-LSTM is
also tested on one versus one tumor type classification, resulting in three groups
of experiments. Table 1 summarized the results. Fig. 7 and Fig. 6 shows the
learning curves of our models on proprietary and public dataset, respectivelly.

Patient embeddings with DenseNet and LSTM features: To illustrate
how our proposed framework achieves high discrimination ability, we embed the
features from the DenseNet auto-encoder and the LSTM classifier onto a 2-D
space, respectively. Note that the features from the auto-encoder do not consider
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Table 1. Summary of experimental results on tumor type classification.

Tumor type classification accuracies (three types)
Models DenseNet-RNN DenseNet-LSTM DenseNet-DenseNet [5] [2]
Public 84.61%± 1.87% 92.13%± 1.59% 86.68%± 1.54% 91.28% 86.56%
Proprietary 60.00%± 5.70% 71.10%± 3.82% 64.95%± 5.16% - -

Tumor type classification accuracies (two types) with DenseNet-LSTM
Glioma vs Meningiomas Glioma vs Metastatic Meningiomas vs Metastatic

Proprietary 80.83%± 6.65% 80.00%± 8.44% 82.50%± 4.18%

LSTM
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Fig. 8. Patient embeddings with DenseNet output (left) and LSTM output (right).
Frame-wise patient embeddings (only shows a small number of patients for ease of
visibility) in the feature extraction stage (left) are not well-separable; whereas they are
almost well-separable after learning with LSTM.

the label information; thus the patients are not expected to be separable from the
normal people. Fig. 8 illustrates the corresponding feature embeddings using tSNE
[11]. We can see that while patients are not separable in the auto-encoder-feature
space, they are highly separable in the feature space learned by LSTM.

5 Conclusion

In this paper, we presented an alternative approach for screening and classifying
the brain tumors using holistic 3D MR images. Our approach is capable of
utilizing 3D sequence images and does not need the pixel-wise or slice-wise
labeling. Experiments on public and proprietary datasets indicate that our
approach is effective and highly efficient. As future work, we plan to 1) expand
our proprietary dataset for more types of brain tumors, and 2) provide model
interpretability based on weakly-supervised pathology localization.
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