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a b s t r a c t 

Segmentation, denoising, and partial volume correction (PVC) are three major processes in the quantifi- 

cation of uptake regions in post-reconstruction PET images. These problems are conventionally addressed 

by independent steps. In this study, we hypothesize that these three processes are dependent; there- 

fore, jointly solving them can provide optimal support for quantification of the PET images. To achieve 

this, we utilize interactions among these processes when designing solutions for each challenge. We also 

demonstrate that segmentation can help in denoising and PVC by locally constraining the smoothness 

and correction criteria. For denoising, we adapt generalized Anscombe transformation to Gaussianize the 

multiplicative noise followed by a new adaptive smoothing algorithm called regional mean denoising . For 

PVC, we propose a volume consistency-based iterative voxel-based correction algorithm in which denoised 

and delineated PET images guide the correction process during each iteration precisely. For PET image 

segmentation, we use affinity propagation (AP)-based iterative clustering method that helps the integra- 

tion of PVC and denoising algorithms into the delineation process. Qualitative and quantitative results, 

obtained from phantoms, clinical, and pre-clinical data, show that the proposed framework provides an 

improved and joint solution for segmentation, denoising, and partial volume correction. 

© 2018 Elsevier B.V. All rights reserved. 
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. Introduction 

Positron emission tomography (PET) has been extensively used

n oncology applications. It provides diagnostic and therapeutic

nterpretations by measuring tracer activity, which could be re-

ated to various physiological and pathological functionalities. It

as been used for other diseases, including neurological disor-

ers, infection, and inflammation. In radiation oncology applica-

ions, for instance, PET helps localization and staging of the tu-

ors. PET images have high contrast, but low spatial resolution

ompared to magnetic resonance imaging (MRI) and computed to-

ography (CT). While low spatial resolution leads to inevitable

artial volume effect, the reconstruction process of the PET im-

ges includes inherent multiplicative noise (i.e., image dependent)
� This research is partly supported by Center for Research in Computer Vision 

CRCV); and the intramural research program of the National Institute of Allergy 

nd Infectious Diseases (NIAID), NIH. 
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 Kirov et al., 2008; Chatziioannou and Dahlbom, 1994 ). Partial vol-

me effect (PVE) is one of the major sources of information loss

n PET images due to relatively poor spatial resolution. Therefore,

here is a strong need for correcting partial volume before quan-

ification of lesion metabolism and physiology. Similarly, noise re-

oval methods (i.e., denoising) are vital because they enhance

oth quantitative metrics and visual quality for better diagnostic

ecisions. For image-based quantitative metrics, boundary delin-

ation of the PET lesions is of utmost importance. For instance, dis-

ase severity and therapy response assessment require metabolic

umor volume (MTV) to be calculated on the delineated regions.

oreover, signal strength-based metrics such as the maximum

nd mean standardized uptake value ( SUV max and SUV mean , respec-

ively) are routinely used for cancer staging, tumor characteriza-

ion, and therapy response assessment. 

Many effective solutions have been proposed in the literature

o address these three problems. These methods mainly fall un-

er two categories depending on their input: reconstruction-based

nd post-reconstruction methods. Reconstruction methods correct 

he PET signal during image generation, usually with maximum a

https://doi.org/10.1016/j.media.2018.03.007
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posteriori estimation, and incorporation of anatomical information

from CT imaging ( Cheng-Liao and Qi, 2011; Comtat et al., 2002;

Kazantsev et al., 2011; Baete et al., 20 04b; 20 04a; Somayajula et al.,

2011; Chan et al., 2009 ). Under most circumstances, images are

more accessible than original scanner signal, therefore in this pa-

per, we focus on the post-reconstruction techniques in address-

ing these three challenges. Most post-reconstruction based meth-

ods either treat these three problems independently , or by solv-

ing two of them at simultaneously (such as PVC and denoising

( Boussion et al., 2009 )). Some works have also exploited the re-

lationship between voxel clusters and imaging markers for specific

applications such as kinetics parameters for dynamic myocardial

perfusion PET ( Mohy ud Din et al., 2015b ). However, to the best

of our knowledge, no previous post-reconstruction methods have

been applied for general purpose PET image processing to address

all these three tasks jointly by using their inter-dependent associ-

ations. We hypothesize that solving these three tasks jointly will

improve each task’s individual performance as well as final quan-

titative evaluations of the PET images. Our hypothesis stems from

the following facts: 

Fact 1: Noise degrades the performance of image segmentation

( Foster et al., 2014a ), 

Fact 2: Incorporation of object information (through delineation)

into the denoising process improves denoising performance

( Xu et al., 2014 ), 

Fact 3: Post-reconstruction PVC approaches amplifies noise

( Rousset et al., 1998 ), 

Fact 4: Incorporation of segmented lesions into PVC improves

accuracy of quantification as boundary information helps

in determining the amount of spill-over in PET images

( Zaidi et al., 2006 ), 

Fact 5: PVC in noisy images could lead to erroneous inferences

about uptake in certain regions ( Soret et al., 2007 ). 

2. Background and related work 

2.1. Noise 

Noise in PET images follows non-Gaussian distribution

( Bagci and Mollura, 2013 ). Noise reduces the sensitivity of

image-based quantitative metrics due to distortion in PET image

appearance. Hence, denoising is a necessary step for improving

quantitative evaluations of PET images. There are reconstruction

and post-reconstruction based denoising methods in the litera-

ture. In this paper, we confine ourselves into post-reconstruction

approaches only. The existing post-reconstruction methods for

denoising PET images can be categorized into three classes: filter-

based, patch-based, and statistics-based. Details of these categories

are the following. 

Most popular filter-based approaches are Gaussian smoothing,

adaptive diffusion filtering ( Tauber et al., 2011; Xia et al., 2015 ),

and filtering in image transform domain with support by anatom-

ical information ( Turkheimer et al., 2008 ). None of these methods

provide optimal denoising of PET images because Gaussian filtering

often leads to information loss due to excessive blurring. Although

adaptive diffusion filtering is considered capable of partially solv-

ing heavy blurring problem in anatomical images, it is not highly

effective for PET images since the necessary structural information

about diffusion process is limited by PET’s low resolution. Incorpo-

ration of anatomical information (through corresponding CT or MRI

tissue segmentation) can help in defining regional homogeneities

for the purpose of denoising, but it may also create artifacts. It

is because anatomical-functional correspondence does not always

hold for all voxel locations ( Bagci et al., 2013a; 2013b; Kramer-

Marek et al., 2012 ). Note that this issue is different from the voxel
orrespondence problem, which can be solved by image registra-

ion algorithms ( Bagci et al., 2013a; Bagci and Bai, 2007 ). 

Statistics-based methods, on the other hand, build a deter-

inistic relationship between noise and statistical measurements.

et, strong image structures such as ridges, edges, and textures

an have negative effects on the statistical estimations. Among

tatistics-based denoising approaches, the-state-of-the-art method

s the soft-thresholding approach ( Bagci and Mollura, 2013 ). Al-

hough noise distribution modeling in Bagci and Mollura (2013) is

ore realistic than other methods, considering PET noise as sole

oisson or Gaussian distribution is still sub-optimal, and some re-

ent reconstruction-based approaches assume more realistic as-

umption of Poisson Noise. Lastly, patch-based methods have gath-

red a lot of interests due to their effectiveness in simultaneously

stimating noise level and denoising. For instance, non-local means

ased denoising strategy ( Buades et al., 2005 ) is shown to pre-

erve structures, even for images with low signal-to-noise-ratio

SNR) by considering global similarity measurement. Some works

sed non-local means method for PET image denoising, such as

ncluding temporal neighbor patches from dynamic PET images

 Dutta et al., 2013 ), patch-based denoising on the reconstruction

rocess ( Wang and Qi, 2012 ), and making use of CT anatomical

riors ( Chan et al., 2014 ). Our method is significantly different

rom Dutta et al. (2013) because here in this study we aim to

enoise static PET images and without the need for correspond-

ng CT images as prior. Further, we modify the original non-local

eans method by considering the characteristics of PET images.

ang’s method ( Wang and Qi, 2012 ), on the other hand, belongs

o reconstruction-based denoising methods. 

In the nuclear medicine imaging field, detailed noise character-

stics of PET images are still open to debate and need to be care-

ully considered when choosing/designing an appropriate denois-

ng approach. It is important to note that in the Sinogram domain

i.e. projection space), noise statistics are well-modeled by a Pois-

on distribution. With tractable optimization of Poisson likelihoods,

econstruction-based approaches have been proposed in the liter-

ture. It is also well-known that in a high count PET image, the

oise distribution can be well approximated by a Gaussian based

n the Central Limit Theorem. However, the opposite is not true for

ow count PET image. Several studies ( Boulanger et al., 2010; Zhang

t al., 2008; Salmon et al., 2014 ), including our earlier technical pa-

er in Bagci and Mollura (2013) and Mansoor et al. (2014) , propose

o use variance stabilizing transform (VST) ( Anscombe, 1948 ) to

aussianize the non-Gaussian noise (purely Poisson was assumed)

n PET images before noise minimization procedure. The motiva-

ion in such methods is to model noise with a more realistic noise

odels. In this work, we improve our earlier assumption of purely

oisson noise model by proposing a more realistic and advanced

ixed Poisson–Gaussian model. This is mainly due to the obser-

ations and the facts of the nature of PET imaging where both

oisson and enhancing additive noise by PVC have been observed.

ext, we develop a new patch-based denoising algorithm called

regional means denoising”, pertaining to the family of non-local

eans denoising methods. 

.2. Segmentation 

PET image segmentation aims at separating and delineating the

ET image into different uptake regions. Several methods have

een proposed for PET image segmentation. Among thresholding-

ased methods (fixed, adaptive, and iterative), iterative-based

hresholding approaches are most intuitive ones ( van Dalen et al.,

007 ). These methods are easy to implement but difficult to gener-

lize due to lack of information on local intensity distribution and

ub-optimal thresholding levels. Alternatively, more sophisticated

pproaches have been proposed such as machine learning tech-



Z. Xu et al. / Medical Image Analysis 46 (2018) 229–243 231 

n  

s  

K  

c  

(  

o  

c  

a  

t  

S  

r  

s  

o  

s  

n  

r  

n  

i  

a  

b  

a  

c  

d  

a  

n  

l  

i  

c  

p

2

 

o  

t  

c  

b  

p  

m  

f  

t  

i  

b  

a  

u  

i  

b  

b  

t  

i  

a  

i  

C  

g  

o  

h  

i  

e  

i  

n

 

l  

t  

a  

c  

n  

d

l  

(  

r  

c  

v  

2  

v  

o  

P  

o  

l  

s  

i  

a  

w  

o  

h  

t

 

t  

w  

C  

j  

B  

P  

s  

m  

t  

r  

o  

c  

t  

a  

e  

b  

d

 

t  

p  

o  

s  

s  

s  

n

 

 

 

 

 

 

c  

s  

o  

2  

f  

c

iques that exploit local appearance: Gaussian mixture model and

upervised/unsupervised clustering methods ( Foster et al., 2014b;

erhet et al., 2009 ) belong to this category. For defining a spe-

ific region of interest, region growing ( Li et al., 2008 ), level-set

 Hsu et al., 2008 ), and graph-cut ( Bagci et al., 2011 ) are some

f the most popular region and boundary-based methods. Lately,

o-segmentation (joint segmentation) methods that incorporate

natomical information from CT and/or MR have been introduced

o further promote region definition accuracy ( Bagci et al., 2013b;

ong et al., 2013; Xu et al., 2015 ). Readers can refer to a recent

eview paper ( Foster et al., 2014a ) for a comprehensive compari-

on of the PET image segmentation methods. Recent development

f deep learning has enabled more robust, efficient, and accurate

egmentation for many modalities, and most state-of-the-art tech-

iques in segmentation are now based on deep convolutional neu-

al networks. For example, the best performing methods for reti-

al vessel segmentation from fundus image ( Liskowski and Kraw-

ec, 2016 ), lung segmentation from CT image ( Harrison et al., 2017 ),

nd brain MR image segmentation ( Akkus et al., 2017 ) are mostly

ased on deep learning. However, PET image features unique char-

cteristics of low resolution, relatively high contrast, and limited

ontextual information. Therefore, so far, only few studies used

eep learning for PET image segmentation ( Ibragimov et al., 2016 ),

nd deep learning based approach has not been shown to be a sig-

ificantly superior choice. In the current work, we target at de-

ineating the boundaries between uptake regions across the entire

mage so that not only the high uptake regions, but other regions

an also be used as prior information for both PVC and denoising

rocesses. 

.3. Partial volume effect (PVE) 

PVE is the change in apparent activity when an object partially

ccupies the volume of the imaging instrument both in space and

ime ( Erlandsson et al., 2012 ). It is a major hurdle particularly for

linical assessment of PET images where MTV is often needed to

e derived from the images. The challenges for correcting PVE are

osed by noise and unknown uptake region definition. Typical PVC

ethods rely on one or more assumptions for the point spread

unction (PSF) of the imaging device as well as PET noise charac-

eristics ( Erlandsson et al., 2012 ). Note that the reconstructed PET

mage can be described as a convolution of the true activity distri-

ution with the PSF because the PSF corresponds to the image of

 point source and characterizes the spatial resolution. Thus, the

ltimate goal in PVC is to reverse the effects of the system PSF

n a PET image, leading to the restoration of true activity distri-

utions. This inverse operation is called deconvolution , which can

e employed either in image or frequency space. It is also impor-

ant to note that the majority of PET images are reconstructed us-

ng an iterative method based on a Poisson likelihood model such

s the frequently used OSEM algorithm. These methods produce

mages that are non-linear functions of the high-dimensional data.

onventionally, EM (expectation maximization) based iterative al-

orithms have been used to characterize the mean and covariance

f PET images. Due to non-linearity, these iterative methods do not

ave a point spread function and they map the Poisson data into

mages where noise distribution is no longer truly Poisson ( Barrett

t al., 1994; Xu and Tsui, 2009; Ding et al., 2016 ). This information,

n fact, also supports our observation and claim about the mixed

ature of the Poisson and Gaussian. 

Deconvolution-based PVC methods are vastly common in the

iterature ( Erlandsson et al., 2012; Yang et al., 1996 ). Although

hese methods depend solely on PET data and promising results

re obtained, noise amplification is inevitable, and ringing artifacts

an appear in the vicinity of sharp boundaries. In order to address

oise amplification problems, there have been many improved
econvolution-based methods presented. For instance, deconvo- 

ution methods such as Van Cittert, Richardson-Lucy, and MLEM

 Kirov et al., 2008; Tohka and Reilhac, 2008 ), iteratively solve the

estoration problem by better controlling the effects of noise. Noise

an also be controlled for some special tasks with iterative decon-

olution scheme ( Mohy-ud Din et al., 2014; Mohy ud Din et al.,

015a; Naqa et al., 2006 ). Nevertheless, post-processing smoothing

ia a proper denoising method remains a necessity in these meth-

ds due to unknown levels of PET noise. More recently, joint use of

ET image with its high resolution anatomical correspondence (CT

r MRI) is considered as an effective way for solving PVC prob-

em ( Thomas et al., 2011; Chan et al., 2013 ). The general aim in

uch methods is to infer structural information from anatomical

mages as a prior information for stabilizing the problem. These

pproaches require anatomical images to be segmented accurately,

hich is in itself a difficult and ill-posed problem to solve. More-

ver, segmented regions are often considered to be functionally

omogeneous; however, this assumption does not always hold, ei-

her. 

Regarding the mostly used PVC methods, it is worth noting

he seminal contribution of Hoffman et al. (1979) , one of the first

orks in PVC, where authors define a parameter called Recovery

oefficient to reflect the apparent activity concentration of an ob-

ect divided by its true concentration ( Gallivanone et al., 2011 ).

asically, for objects of different sizes and shapes scanned in a

ET system, different recovery coefficient parameters are recorded

imilar to most look-up table approaches. The recovery coefficient

ethod is then further improved for handling multiple regions so

hat not only spill-out, but also spill-in effects can be considered in

ecovery coefficient definition. This improved method is called Ge-

metric Transfer Matrix (GTM) ( Rousset et al., 1998 ). Main short-

omings of the recovery coefficient and GTM methods stem from

he ineffective use of local structural information, which eventu-

lly causes sub-optimal recovery of true activity distribution. Inter-

sted readers can find a review article on PVC methods, including

oth reconstruction and post-reconstruction approaches, and their

etailed comparisons in Erlandsson et al. (2012) . 

As can be inferred from relevant works, denoising, segmenta-

ion, and PVC are closely related to each other such that the im-

rovement of one could simplify and/or improve the solution of the

ther. However, to the best of our knowledge, there is no study

olving these three important problems jointly, and in the same

etting by utilizing their complementary strengths. Herein, we de-

ign an iterative approach for solving PET image segmentation, de-

oising, and PVC with the following steps: 

Step 1: Stabilize mixed Poisson–Gaussian noise by generalized

Anscombe transformation (GAT), 

Step 2: Estimate boundary of local uptake regions using affinity

propagation (AP) clustering, 

Step 3: Denoise transformed PET images using “regional means

denoising”, 

Step 4: Employ PVC by utilizing the region definition from seg-

mentation solutions, and 

Step 5: Conduct optimal inverse GAT (IGAT) to transform the

enhanced PET images into original intensity domain ( SUV ). 

Steps (2–4) are performed in an iterative manner so that they

an mutually benefit from each other. A flowchart of the proposed

teps 1–5 is shown in Fig. 1 . Preliminary idea and the initial results

f the proposed method were presented at MICCAI 2014 ( Xu et al.,

014 ). In the next sections, we present our novel joint solution

ramework with validation and evaluation on large data sets in-

luding phantom, clinical, and pre-clinical PET imaging data. 
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Fig. 1. Flowchart of the joint solution platform for denoising, segmentation, and PVC of PET images. After PET images are transformed into a Gaussian space via Generalized 

Anscombe Transformation, affinity propagation based clustering algorithm is used iteratively to delineate regions of interest. Denoising is performed through a new regional 

means denoising algorithm that helps precise definition of segmented regions and PVC itself. The algorithm stops when segmentation converges. The output of the image is 

transformed back into the original image domain through the optimal inverse transformation of Anscombe’s method. 
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2.4. Summary of our contributions 

Our proposed system is novel as a whole. To our best of knowl-

edge, our attempt is the first that jointly conducts segmentation,

denoising, and partial volume correction (PVC) in an iterative man-

ner. For each component (segmentation, denoising, and PVC) of the

unified algorithm, we also have either incremental novelties or to-

tally new approaches: for denoising, we have improved the current

state of the denoising algorithms with a new noise model, which is

more realistic and advance model consisting of Gaussian and Pois-

son. Nonlocal means based algorithm was modified and adapted

to general PET image processing framework and the proposed re-

gional means denoising method has been shown to be very ef-

fective with the cost of increased computational complexity. For

PVC, we propose a totally new algorithm inspired by RBV algo-

rithm (i.e., region based voxel-wise) which has been further im-

proved through appropriate region definitions from segmentation

and denoising steps. For segmentation component, we do not pro-

pose any new algorithm but show the necessary algorithmic back-

ground how PET image segmentation method can be integrated

into the joint solution platform seamlessly. In the current setting,

we use our recently published method of adapted affinity propa-

gation algorithm ( Foster et al., 2014b ), which allows iterative up-

date of denoising and PVC algorithms. One another purpose of

this study is to assess the extent to which these factors are af-

fecting quantification process from PET images. Surprisingly, there

has been no detailed investigation of the joint solution for PET

image post-processing in the literature. We have conducted sev-

eral different experiments consisting of phantoms, pre-clinical, and

clinical PET scans. For clinical scans, we have used both PET/CT

and PET/MRI. Our extensive evaluations prove the usefulness of

joint solution for PET post-processing both in visual evaluation and

quantification. 
n  

(  
. Methods 

Methods pertaining to the proposed framework (see Fig. 1 ) are

escribed below in details. 

.1. Step 1 and 5: generalized anscombe transformation and its 

ptimal inverse 

Additive white noise (Gaussian) is the basic hypothesis for

ost denoising methods regardless of the image modality. Gaus-

ian noise is usually suppressed by averaging operation due to the

ssumption that the noise at different spatial locations are con-

idered independent and identically distributed (i.e., Gaussian as-

umption). For non-Gaussian noise distributions, either new meth-

ds need to be developed, or non-Gaussian noise should be trans-

ormed into a more tractable Gaussian model. 

In PET images, noise is more complex with multiple sources:

hile true signal, random and scatter coincidences during photon

ounting follows Poisson distribution ( Chatziioannou and Dahlbom,

994; Bagci and Mollura, 2013; Zaidi et al., 2006 ), partial volume

orrection and other image reconstruction methods introduce ad-

itive white noise ( Zaidi et al., 2006; Turkheimer et al., 2008 ).

herefore, a mixed Poisson–Gaussian noise assumption is more re-

listic than either model alone. In practice, it will be tractable to

ransform the non-Gaussian noise into a Gaussian space in spite

f explicitly modeling the unknown distribution of mixed Poisson–

aussian noise ( Anscombe, 1948 ). For this purpose, we adopt GAT

nd it’s optimal inverse, which have been shown to be optimal

hen transforming multiplicative noise into approximately Gaus-

ian ( Makitalo and Foi, 2013 ), as also indicated in our earlier study

 Mansoor et al., 2014 ). 

GAT ( Makitalo and Foi, 2013 ) is used for balancing the noise

ariation under the non-Gaussian noise assumption as follows. Sig-

als are modeled as Poisson variables corrupted by additive white

i.e., Gaussian) noise. Assuming that p denotes a Poisson distribu-
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Fig. 2. AP uses max-product belief propagation to define representative exemplars 

through maximizing the objective function of argmax k [ a (i, k ) + r(i, k )] . The similar- 

ity ( s ( i, j )) between data point i and point j is obtained from the probability density 

function (pdf) estimate of the PET image histogram. Note that the larger the proba- 

bility difference between points i and j is, the smaller the probability of having the 

same label for data points i and j . Furthermore, d G 
i j 

is the computed geodesic dis- 

tance between point i and j along the pdf of the histogram, and d x 
i j 

is the Euclidean 

distance between point i and j along the x -axis. In summary, AP applies the data 

clustering operation on the pdf of the PET histogram, and separation of the clusters 

are provided by the optimal threshold(s) obtained from the maximization of the AP 

function. 
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ion (i.e., p ∼ P(λ) ) with underlying expected value (and variance)

, and n denotes the Gaussian noise with mean μ and standard

eviation σ (i.e., n ∼ N (μ, σ 2 ) ), then the observed PET image in-

ensities are defined as: 

 = αp + n, (1)

here α denotes the scale term accounting for the relationship be-

ween observed pixel data and the presumed Poisson model. Note

hat here we assume a continuous approximation of Poisson model

hen applying to images. For an observed intensity x , stabilization

f the noise can then be achieved by GAT as follows: 

AT (x ) = 

{ 

2 
α

√ 

αx + 

3 
8 
α2 + σ 2 − αμ, x > − 3 

8 
α − σ 2 

α + μ

0 , otherwise, 
(2) 

here y = GAT (x ) has approximately unit variance. These param-

ters are set a priori according to resolution and homogeneity

roperties of the candidate images. For instance, clinical and pre-

linical PET images show different resolution characteristics; there-

ore, it is recommended to learn/tune the parameters in a training

tep. Similarly, homogeneity of the images can be used to fine-tune

hese parameters. In our study, we inferred the parameter selec-

ion method by following ( Makitalo and Foi, 2013; Foi et al., 2008 )

here authors estimated the parameters from a single noisy im-

ge by fitting a global parametric model into locally estimated ex-

ectation and standard deviation pair. We have done this process

or each experiments separately: phantom, pre-clinical, and clinical

tudies. Once PET image intensities are transformed by GAT, Gaus-

ianized noise can be removed with the proposed joint solution

ramework. Final step (after employing denoising) is the inverse

AT operation in which the denoised PET images are transformed

ack into the original image space (called SUV domain). For inverse

AT (IGAT, step 5), we use the exact unbiased inverse of the GAT

 Makitalo and Foi, 2013 ) to restore intensity information in SUV

omain optimally without loss of information. Given y = GAT (x ) ,

, and α; IGAT is formulated as IGAT (y ) = E(y | λ, α) , where 

(y | λ, α) = 

∫ 
GAT (x ) p(x | λ, α) dx, (3)

nd p ( x | λ, α) is simply the probability density function for a vari-

ble x pertaining to Poisson distribution family. 

.2. Step 2: Affinity propagation for PET image segmentation 

As recently shown, the AP-based clustering algorithm can op-

imally delineate PET images without the need for prior infor-

ation such as the number of clusters and shape/size of lesions

 Foster et al., 2014b ). In this study, we integrate both newly de-

igned PVC and denoising approaches into the iterations of this

egmentation algorithm for generating a joint solution. In each it-

ration, solutions of the PVC, denoising, and delineation are up-

ated and fed into the next iteration. This process is repeated until

o more change is observed in the delineated regions. 

To make the manuscript self-contained, we briefly summarize

he AP-based PET image segmentation as follows: AP ( Frey and

ueck, 2007 ) is a general clustering method for partitioning the

ata into clusters, using a pre-defined similarity criterion between

ata points. In our previous study ( Foster et al., 2014b ), we have

dapted AP to find optimal thresholding levels that cluster PET im-

ges into multiple distinct regions in an unsupervised manner. The

dapted version of the AP is useful for PET image segmentation

ince AP is efficient, insensitive to clustering initialization, and pro-

uces clusters at a low(er) error rate than its alternatives. In Frey

nd Dueck’s paper ( Frey and Dueck, 2007 ), clustering of the data

amples is conducted through a message passing algorithm con-

isting of two messages between every data point (i.e., voxels in
ur case) using a similarity criterion: responsibility and availability .

nitially, all voxels are considered as exemplars, and responsibil-

ty and availability messages are refined iteratively to choose fewer

xemplars for the best representation of the clusters. Both respon-

ibility and availability utilize similarity between data points as a

riving force for the message passing algorithm. 

The similarity function, responsibility & availability messages,

nd their iterative optimization are summarized in Fig. 2 . Note that

e use AP clustering to find optimal boundary information with

espect to the similarity function, which is a novel and considering

ntensity level as well as their spatial arrangements together. Fur-

her details of the AP-based PET image segmentation method can

e found in ( Foster et al., 2014b ). 

.3. Step 3: regional means (RM) denoising 

We present a new denoising method called “regional means de-

oising”, which can be considered as a non-local means based de-

oising with a new restricted search strategy different from con-

entional local search. Ultimately, the enhanced image can help AP

enerate improved delineation that in turn is beneficial to the de-

oising in the next iteration. 

Theoretically, non-local means denoising is performed as fol-

ows: For a selected voxel in an image ( Buades et al., 2005 ), the

eighted average of all voxels in the image is computed rather
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Fig. 3. PET denoising results: without (left) and with (right) neighboring regions I and II. 
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than using solely its neighbors. The non-local means algorithm

uses the information of structural patterns within the image by

considering the similarity between local patches with a size of

N × N × N . However, this process is computational expensive and

contains information redundancy due to the fact that the major-

ity of patches can be irrelevant. Therefore in practice, the search of

similar patches is generally restricted in a larger “search window”

of M × M × M ( M > N ). This significantly reduced the actual compu-

tation, but in the mean time restricted the information utilization.

To avoid this restriction, we have applied AP-based clustering al-

gorithm to use object information gauging local patch similarity,

thereby waiving the search restriction as follows. 

Let J = GAT (I) be GAT transformed correspondence of 3-D PET

image I . An observed intensity of a voxel u ∈ Z 3 in image J is de-

fined as J ( u ), and let L denotes the label (i.e., 0,1,2, . . . ) of a voxel u

obtained as an outcome of AP-based segmentation. For efficiency

and simplicity in algorithmic implementation, class labels are or-

dered consecutively, such that L ( u ) > L ( v ) if J ( u ) > J ( v ). Assume also

that G denotes a size operation; hence, G ( L ( u )) simply indicates the

number of voxels having the same label as that of voxel u . In the

proposed pre-screening approach, regions � are searched as fol-

lows: 

i Locally search the image with a window size of M × M × M in

3D, 

ii Randomly sample min { M 

3 , G ( L ( u ))} voxels in the regions with

class label L ( u ) (candidate region), 

iii Randomly sample min { M 

3 , G (L (u ) − 1) } voxels in the regions

with class label L (u ) − 1 (neighboring region I) if L ( u ) > 1, 

iv Randomly sample min { M 

3 , G (L (u ) + 1) } voxels in the re-

gions with class label L (u ) + 1 (neighboring region II) if

L ( u ) < max u L ( u ). 

Here, we introduce additional samples from neighboring re-

gions I and II to avoid potential “artificial boundaries” generated by

confined smoothing. For example in Fig. 3 , a theoretically homoge-

neous region could be classified into two groups due to imperfect

thresholding under significant noise. Without adding more search

regions, these two groups will be denoised separately, which even-

tually creates an artificial boundary between the two during it-

erations, leading to false segmentation. By introducing neighbor-

ing regions, this “self-reinforcement” effect can be eliminated. This

may further be true for even more separations (homogeneous re-

gion gets classified into 3 or 4 intensity groups) under severe

noise/artifacts, but according to our experiments and from a re-

alistic perspective, we chose the two immediate neighbors. 

The resulting search region � is not restricted to local regions

because we use only samples from segmentation. Then, we apply

regional means ( RM ) averaging for recovering the actual value of
he voxel u as: 

M(u ) = 

∑ 

v ∈ �
w (u, v ) J(v ) . (4)

y convention, the weights w ( u, v ) can be defined based on the

imilarity between two patches, A u and A v , centered at voxels u

nd v such that 

 (u, v ) = 

1 

Z(u ) 
e −||A u −A v || 2 2 / F 2 , (5)

here ||A u − A v || 2 represents the l 2 distance between two inten-

ity vectors from the two patches, and Z(u ) is a normalizing con-

tant Z(u ) = 

∑ 

v e 
−||A u −A v || 2 / F 2 . The weighting parameters satisfy

he conditions: 0 ≤ w ( u, v ) ≤ 1 and 

∑ 

v w (u, v ) = 1 , and parameter

determines the degree of filtering. With the information inferred

rom AP-based segmentation, our technique is capable of covering

 sufficient number of voxels that can contribute to the denois-

ng at voxel u . Indeed, as compared with conventional local-search

LM, the proposed method can increase the patch number up to

our times. In return, the limited search space is significantly ex-

ended, leading to better performance. Histogram smoothing from

P is performed by utilizing a diffusion-based kernel-density esti-

ation that uses the image local information effectively. Perform-

ng regional means denoising prior to delineation operation pro-

uces more reliable segmentation because smoothly estimated his-

ogram of PET images can lead to better threshold levels maximiz-

ng the distance between clusters. More details and rationale are

iscussed in our previous work ( Xu et al., 2014 ). 

.4. Step 4: partial volume correction (PVC) 

A simplified model for true uptake value t and observed image

 can be represented by f = t ∗ h + n, where h is PSF of an imaging

ystem, ∗ denotes convolution operation, and n is Gaussian noise,

hich will be handled with regional means denoising algorithm in

tep 3. Here for partial volume correction, we followed the method

f RBV (region-based voxel-wise) ( Thomas et al., 2011 ) by incor-

orating reliable object information from AP-based segmentation.

he incorporation of object information into the PVC helps recover

rue uptake distribution with low error and high efficiency. Specif-

cally, to benefit from object information in step 2, a region defi-

ition from AP-based delineation is used to estimate the spill-over

ollowed by the GTM method ( Rousset et al., 1998 ). GTM is used to

btain estimates of the true mean values within all regions. Since

P-based delineation algorithm is known to be optimal in multi-

egion segmentation in PET images, inclusion of an effective ob-

ect definition in PVC is guaranteed. At the end of this process,

n intermediate image is created as s (p) = g , ∀ p ∈ b where g is
i i i 
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he GTM corrected value of voxels within i th region of the seg-

ented image b , obtained from the delineation step. Note that it

s assumed that b includes non-overlapping regions z > 1 (i.e., seg-

ented clusters) such that b = 

⋃ 

i =1: z b i , and g i is a single scalar

alue determined from the region i through GTM correction. Then

ollowing RBV ( Thomas et al., 2011 ) method, the final voxel-wise

orrection is perform by multiplying with by a correction term cal-

ulated from the GTM corrected image and the point-spread func-

ion ( Thomas et al., 2011 ). 

We incorporate object information into the PVC with a parame-

er called the volume consistency weighting parameter, which is cal-

ulated based on Dice Similarity Coefficient (DSC) between current

nd previous iteration of the segmentation process resulted from

tep 2: c i = DSC (b i , b i +1 ) . Note that DSC indicates the accuracy of

olume overlap between two segmentations (b i , b i +1 ) . By setting

 0 = f, PVC for a given voxel p is then performed as 

 i +1 (p) = t i (p) + c i · f (p) ·
(

s i (p) 

s i (p) ∗ h 

− 1 

)
. (6)

t is worth mentioning that a global control factor is applied to

revent PVC for a given pixel to be larger than 1 (i.e., boundary

ondition). At each step, a maximum fraction of the correction is

llowed, which is further factored by DSC. The accumulative cor-

ection is monitored and stopped at 1 or before. If segmentation

onvergence has not been reached at 1, further steps will no longer

ave PVC, and a message will be generated suggesting users to ad-

ust the parameter (although it is rare, this may happen with quick

onvergence only). If early stop happens, then additional PVC will

e applied at the end. The proposed algorithm has been designed

o reflect all these scenarios in a practical manner. In this way,

igher degree of PVC is applied to later iterations when segmenta-

ion becomes stable (i.e., higher c i value), implying a more precise

stimation of the uptake region. 

. Experiments and results 

.1. Data 

To evaluate denoising, PVC, and segmentation performances, we

sed three data sets: (i) phantom, (ii) clinical, and (iii) pre-clinical

ET scans. Phantom images were used for precise evaluations of

he proposed framework since ground truths were available. We

ave also included clinical PET scans in our experiments to test

ur system’s performance in routine practice. Furthermore, due to

 wide range of applications of PET imaging in pre-clinical stud-

es, we extended our experiments to include small animal PET/CT

cans and showed robustness and generalizability of our system. 

.1.1. Phantom data 

In our experiments consisted of 20 PET-CT images obtained

rom two different NEMA phantoms with different reconstruction

arameters. The first phantom is from the RIDER PET-CT phan-

om collection ( Clark et al., 2013 ), containing six spheres with

iameters of 10, 13, 17, 22, 28, and 37 mm; background activ-

ty concentration was 0.44 uCi/ml, and hot sphere concentration

s 1.75 uCi/ml. Images were reconstructed using 3D-OSEM algo-

ithm. The spatial resolution was 128 × 128 × 47 with a voxel spac-

ng of 2.73 × 2.73 × 3.27 mm, and the image intensities were in

nits of Bq/ml. The second phantom had five spheres with di-

meters of 4, 5, 6, 8, and 10 mm. The true activities were 32.2

Ci/ml in the spheres and 6.2 mCi/ml in the background. The

patial resolution was 256 × 256 × 95 with a voxel spacing of

.95 × 0.95 × 1.90 mm, and the image intensities were in units of

Ci/ml. These ground truth activity concentrations and CT corre-

pondence allowed us to evaluate our proposed method’s perfor-

ances reliably. 
.1.2. Clinical data 

20 human PET/CT and 20 PET/MR images pertaining to patients

iagnosed with different cancer types (i.e., lung, colon, and hered-

tary leiomyomatosis renal cell cancer) were collected after the

RB approval. For PET/MR, dixon sequence for attenuation correc-

ion and T2-weighted sequences for anatomic allocation were used

or reconstruction (mMR, Siemens). The spatial resolution of the

ET images was 172 × 172 in-plane with varying number of slices

i.e., 189 to 211), and had a voxel spacing of 4.17 × 4.17 × 2.00 mm.

here was no need to re-register images as they were already in

egistration, due to the nature of hybrid imaging modalities. A sub-

et of PET/CT and PET/MRI were obtained from the same patients

ho underwent both scanning in one week interval. Patients were

njected with 8.82-10.79 mCi of 18 F-FDG radiotracer and imaged

8–150 min(s) post-injection. A fully 3D ordered subset expecta-

ion maximization (3D-OSEM) algorithm was used for PET image

econstruction. 

.1.3. Pre-clinical data 

20 PET scans obtained from 5 rabbits (4 longitudinal scans

rom each animal) were tested. The rabbits were aerosol infected

ith Mycobacterium Tuberculosis ( Kbler et al., 2015 ). Such pul-

onary infection cases feature distributed metabolic activities with

iffuse or multi-focal radiotracer uptake, leading to more chal-

enging problems of partial volume, noise, and segmentation to

e handled. The rabbits were injected via the marginal ear vein,

ith 1–2 mCi of 18F-FDG radiotracer and imaged 45-min post-

njection with 30 min static PET acquisition. The spatial resolution

as 128 × 128 × 120 with a voxel spacing of 1 × 1 × 1 mm. PET

mages were reconstructed using 3D OSEM (nanoScan, Mediso). 

.2. Evaluation on method convergence 

The stopping criteria of the overall system is based on the

SC greater than a pre-defined threshold between two iterations.

e defined the value of threshold to be 95%. The AP algorithm

 Foster et al., 2014b ) accepts 200 maximum iterations for conver-

ence, and it takes less than a second to segment one slice. Overall,

mplemented in pseudo-3D manner (slice-by-slice), the proposed

lgorithm mostly stops before 10th iteration for all experimental

ata, and the average processing time is 5 s per slice. 

.3. Evaluation of denoising 

We compared the proposed denoising strategy’s perfor-

ance with commonly used PET image denoising methods in-

luding Gaussian filtering, anisotropic diffusion, and more ad-

anced approaches such as non-local means and block matching

 Dabov et al., 2007 ). All methods were performed after GAT sta-

ilization for a fair comparison because as we showed in our

arlier publication ( Mansoor et al., 2014 ) that denoising without

AT is inferior to results with GAT in all instances. We also re-

oved the PVC block from the proposed method for showing

he effect of denoising method itself without the contribution of

VC (i.e., PVC enhances the noise). In addition, note that although

on-local means has been adopted for dynamic PET image de-

oising ( Dutta et al., 2013 ) and denoising with anatomical prior

 Chan et al., 2014 ), a proper way to apply it for static PET image

ithout external anatomical information has not been well inves-

igated. In this work, we included non-local means with anatomi-

al prior ( Chan et al., 2014 ) for comparison. Several parameters had

een experimented for each of the methods in comparison, and a

et of parameters resulting in a similar quantitative gradient value

t ROI boundaries and visually-comparable structural preserving

esults have been selected. 
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Fig. 4. Qualitative evaluations for denoising: (A) PET images, (B) the corresponding anatomical images (CT and MR), (C) Gaussian filtering, (D) anisotropic diffusion, (E) 

non-local means, (F) block matching, (G) non-local means with anatomical prior, and (H) the proposed method. Colorbar corresponds to raw data numbers (counts). 
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Quantitative parameters for noise reduction, including SNR and

max/mean uptake value, were computed for all uptake regions

from several regions of interests (ROIs). The ROIs were identical

for both original and filtered images. ROIs were drawn by ex-

perts, mainly over anatomical structures with uniformity assump-

tion. For phantom analysis, all spheres and nearby background re-

gions were selected for the evaluation. For human images, to en-

sure structure definition, a subset of human data with all three

PET/CT/MRI modalities has been used. For qualitative evaluations,

results at sample slices from both phantom and human images

are shown in Fig. 4 . As shown, the proposed method achieves

greater noise reduction while preserving fine details from over-

smoothing/blurring. Also note that non-local means with anatom-

ical prior relies heavily on the quality of anatomical guidance. It

performs similar to conventional non-local means with relatively

weak anatomical prior (top two rows), while generating crisper

edges with stronger anatomical information (bottom two rows).

However, it can also lead to artificial discontinuities due to the

anatomical boundaries (last row). 

Furthermore, relative contrast (RC) was calculated from measur-

ing object-to-background contrast, which is not revealed by SNR.

SNR and RC are conventionally defined as: 

SNR = μL /σL , 

RC = | μH 

− μL | / √ 

σH 

σL , (7)

where μH 

, μL , σH 

, and σL denote the mean and standard devi-

ation of high/low uptake regions. For denoising methods to be ef-

fective, two most commonly used imaging markers for PET images,

SUV max and SUV mean , are expected to be not degraded after denois-

ing. 

Table 1 presents the quantitative results with the following pa-

rameters: SNR, RC, max/mean intensity value reduction rate (RR)

and the ratio of uptake values in comparison with ground truths

(phantom). In RR, we used both for object ratio (OR) and back-

ground ratio (BR) for relative comparison. Since the ground truth

uptake value is known for the phantom image, these two evalua-

tions provide us the information regarding how much suppression

is resulted from denoising. In experimental results, the proposed

method outperformed other methods in all quantitative metrics.
ote that for clinical data (i.e. human subjects (H)), OR and BR

ere not available because the true local uptake value was un-

nown unlike in the phantom case (i.e., P). 

.4. Evaluation of PET image segmentation 

Segmentation analysis was applied only to phantom data with

round truth, since it does not require multiple annotators to eval-

ate surrogate of the truth as in real cases. DSC and Hausdorff

istance (HD) were calculated for quantitative evaluation of seg-

entation results. High DSC and low HD values were obtained as

ollows: 92.75% for DSC and 3.14 mm for HD (pixel size of 2.73

2.73 mm), indicating highly satisfying delineation performance.

ithout denoising and PVC steps, the resulting average DSC and

D values were found to be 74.7% and 6.59 mm, respectively. The

ain reason for improving segmentation results with denoising is

he improvement in the similarity function definition, where re-

oving noise increases the similarity of the voxel intensities. Simi-

arly, the PVC method improves true values of the voxel intensities;

ence, similarity function of the AP. 

.5. Evaluation of PVC method 

To quantitatively evaluate the performance of the proposed

ethod, we used PET/CT images of the NEMA phantom. With

hantom images, the ground truth regarding the precise bound-

ries of multiple spheres (representing the lesions with different

izes), as well as the true uptake values , which the partial vol-

me correction attempted to recover, were known. Fig. 5 shows

he intensity profiles along three example lines (marked as 1, 2,

 in Fig. 5 before ( Fig. 5 (A), red) and after ( Fig. 5 (B), blue) ap-

lying the proposed PVC algorithm. Final segmentation is shown

n Fig. 5 (C). Finally, Fig. 5 (D1–D3) depicts the results obtained

rom the proposed volume-consistency based PVC. In comparison,

ig. 5 (E1–E3) denotes the result with evenly distributed weights

nstead of volume-consistency weights, and Fig. 5 (F1–F3) shows

he result obtained from the conventional deconvolution approach

 Gallivanone et al., 2011 ). As can be seen, the proposed algorithm

uccessfully corrects PVE for different-sized objects successfully
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Fig. 5. Intensity profile along three (1, 2, 3) sample lines in PET image (A) before and (B) after PVC with (C) showing the grouped final AP segmentation result with object 

(blue) and background (red) ROI definition: (D1–D3) the proposed method with volume consistency weights. (E1–E3) the proposed iterative method with evenly distributed 

weights, and (F1–F3) deconvolution method. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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Table 1 

Quantitative evaluations for the proposed denoising strategy in comparison with other methods are presented. P: phan- 

tom; H: human. Higher SNR, RC, OR, BR, and lower max RR, mean RR indicate better performance. We have chosen only 

a subset of PET images from PET/CT and PET/MRI because half of the imaging data were obtained from the same patients 

who have underwent both scanning in one-week interval. 

SNR RC Max RR Mean RR OR BR 

P H P H P H P H P P 

Original 11.73 7.08 11.32 34.14 0% 0% 0% 0% 59.28% 85.02% 

Gaussian 15.62 7.01 12.88 27.76 11.08% 9.27% 9.55% 5.51% 53.99% 85.21% 

Diffusion 21.05 7.25 16.38 33.98 13.20% 7.20% 7.37% 3.37% 55.99% 85.72% 

Non-local means 21.88 7.69 13.70 37.67 13.27% 7.04% 11.03% 3.61% 54.41% 85.89% 

Block matching 20.36 9.92 14.02 39.97 7.32% 6.96% 6.87% 3.59% 56.27% 85.41% 

Anatomical prior 21.73 8.41 14.62 40.33 9.68% 6.92% 6.31% 2.14% 56.73% 85.85% 

Proposed method 35.55 11.82 19.15 52.40 2.97% 3.55% 2.61% 1.29% 58.24% 86.26% 

Fig. 6. Quantitative evaluations for the PVC: max uptake value ratio within ROIs as compared with phantom truth and two state of the art methods (RBV ( Thomas et al., 

2011 ) and Iterative-Yang ( Erlandsson et al., 2012 ).) 
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while minimizing the noise and segmenting the image. Note that

for the evenly distributed weights (E1 and E2), the signal was pre-

served, but not well-recovered to its theoretical value (almost un-

changed). It could be due to false correction at earlier stages (re-

gion boundaries falsely identified), leading to ineffective recovery,

which is further suppressed by denoising. 

Fig. 6 presents the quantitative results of the proposed PVC,

compared with true object and background regions for the phan-

tom images (i.e., ground truth). Phantoms were used as baselines

for PVC, and the ratio was calculated to test the performance of the

PVC methods; the perfect correction was indicated by a ratio of 1.

As illustrated in Fig. 6 , the proposed method promoted the signal

strength while keeping it around 1. Gibbs effect and overshooting

were observed in deconvolution-based method (as much as 40%).

We compared our method with two widely used PVC methods

from the literature (RBV ( Thomas et al., 2011 ) and Iterative-Yang

( Erlandsson et al., 2012 ). We used publicly available implementa-

tion from Thomas et al. (2016) . As can be depicted from Fig. 6 ,

the proposed iterative method with evenly distributed weights

has almost the same PVC performance with the state-of-the-art

methods. While RBV method utilized the GTM approach voxel-by-

voxel, GTM provided the regional values for the segmented regions.

On the other hand, Iterative-Yang algorithm estimated the region

mean values within the 5 iteration loop and very similar to RBV

algorithm. Note that these state-of-the-art methods rely heavily on

the pre-defined segmentation map, which is often obtained from

CT or MRI. For PET-only cases, it is very important that the mask

is as accurate as possible, and a carefully selected manual thresh-

old plays a critical role in generating the mask as an input to PVC

algorithm. Last, but not least, overall uptake ratio may be good in

those methods, but for small lesions, an artificial appearance (dis-

u  
ontinuity in local uptake distribution) is inevitable. In our case,

he proposed method did not impose any of these limitations. 

.6. Evaluation on human PET/CT and MRI/PET scans 

We used human PET/CT and PET/MRI scans, for which there

as no “ground truth” available. Hence, we measured relative SNR

nd RC values for all ROIs defined by expert interpreters. Also,

he percentage change in SUV max and SUV mean were computed for

hich, a small change is desirable for the precise denoising ap-

roach. Figs. 7 and 8 illustrate the results for the proposed joint

olution for PET/CT and PET/MR images, respectively. Blue and red

ircles show the regions used to compute RC (high and low con-

rast regions) percentage change in SUV max and SUV mean . We also

ncluded a measure of kurtosis for evaluation of denoising algo-

ithms, since noise variation is linked to kurtosis of the local re-

ions and studied extensively in the literature for estimating un-

nown noise level ( Zoran and Weiss, 2009 ). With kurtosis-based

valuation, lower kurtosis value (obtained from a local region) in-

icates a lower standard deviation of the noise pertaining to that

egion. Therefore, instead of measuring noise variation, which is

ather difficult or impossible to measure, without prior assump-

ions, kurtosis can be used to estimate the underlying noise level

f the images. 

Kurtosis ( κ) can be defined as κ(X ) = C 4 (X ) /C 2 
2 
(X ) where C k (.)

s the k th cumulant function. Table 2 presents the quantitative

etrics of SNR, RC, kurtosis, rate of change in SUV max & SUV mean ,

nd R max and R mean of the ROIs. Since PVC promotes the signal,

oth SUV max and SUV mean were greater than the corresponding val-

es in unprocessed images. RC were higher in denoised images due
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Fig. 7. PET/CT scans: (A) original image; (B) after PVC and denoising; (C) final segmentation result; (D) corresponding CT image. Colorbar corresponds to raw data numbers 

(counts). 

Fig. 8. PET/MRI scans: (A) original image; (B) after PVC and denoising; (C) final segmentation result; (D) corresponding MR image. Colorbar corresponds to raw data numbers 

(counts). 

Table 2 

Denoising performance of the proposed method on clinical and 

pre-clinical images. High SNR, RC; low kurtosis and low uptake 

change rate indicate superior performance. 

PET/CT MRI/PET Preclinical 

SNR Original 8.67 16.02 3.37 

Proposed 23.79 39.70 7.54 

RC Original 26.17 8.38 29.26 

Proposed 49.70 14.13 41.08 

Kurtosis Original 2.51 3.80 4.48 

Proposed 2.21 2.72 2.33 

Uptake SUV mean 1.8% 5.11% 3.14% 

Change rate SUV max 3.47% 6.28% 3.09% 

t  

d

4

 

i  

s  

c  

T  

u  

a  

j  
o improved contrast. Similarly, kurtosis was found to be lower in

enoised images owing to less variation in noise level. 

.7. Evaluation on small animal PET scans 

Fig. 9 shows original, denoised and corrected, and segmented

mages pertaining to small animal PET images. These images

erved as small animal models for infectious disease: unlike can-

er cases, uptake patterns often appear as multi-focal and diffuse.

herefore, it is quite challenging to correct partial volume for high

ptake regions. AP is well suited to delineate such uptake regions

s shown previously in our study ( Foster et al., 2014b ). Then, ob-

ect information can be used to simplify PVC strategy. Table 2 (last
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Fig. 9. Pre-clinical PET scans: (A) original image; (B) after PVC and denoising; (C) final segmentation result. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3 

Qualitative evaluation result for different methods. 

Expert 1 Score Expert 2 Score 

Mean Stdev Mean Stdev 

Original images 5 0 4.76 0.66 

Anisotropic diffusion 2.34 0.66 3.08 1.07 

Non-local means 3.86 0.35 3.52 0.65 

Block matching 2.8 0.49 2.5 0.93 

Proposed method 1 0 1.14 0.35 
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column) presents the quantitative results of SNR, RC, SUV max and

SUV mean change rate of the ROIs pertaining to the pre-clinical PET

scans. 

4.8. Quantitative evaluations with respect to image quality 

SNR, RC, and kurtosis can be considered as the image quality

factors in PET imaging. While we use SNR to reflect the quality

factor of noise, we use RC (relative contrast) to obtain contrast

and sharpness information from the images, and kurtosis to es-

timate the standard deviation of the noise locally. In our experi-

ments, we noticed that our algorithm works best when both SNR

and RC are high, and kurtosis is low. Furthermore, we did not ob-

serve any cases where the algorithm fails to improve image qual-

ity (SNR, RC, kurtosis). Relatively less improvements were obtained

when image SNR or RC was too low. While the average of lowest

SNRs in all experiments was 3.37 (from preclinical studies), more

than 100% improvements were obtained. This was the same for RC

and kurtosis-based evaluations. It is also noteworthy to mention

for images even with low SNR, RC, and kurtosis (indicating lower

image quality, high noise, and artifacts) were improved with the

presented framework. 

4.9. Visual assessment by expert interpreters 

For qualitative assessment of denoised and partial volume cor-

rected PET images, two expert interpreters (double-boarded by ra-

diology and nuclear medicine, and having more than 15 and 10

years of experiences, respectively) ranked the output of five differ-

ent methods based on the overall quality for diagnostic purposes

on all clinical PET/CT and PET/MR images: Gaussian, anisotropic

diffusion, non-local means, block matching, and the proposed.

Sample images were labeled as “Method 1” to “Method 5” without

revealing the specific algorithm, and the experts rated the sam-

ple images from 1 to 5, 1 being the best and 5 being the worst

in terms of visual/diagnostic quality. Note that this evaluation ac-

counts for human perception, rather than for computerized analy-

sis, and the visual judgment from experts can be quite subjective

based on one’s individual preferences. 

In total 50 samples were included in this study. Images for

a single subject were randomized and presented simultaneously

to viewers. Viewers were asked to evaluate the overall quality of

each image based on the clarity of large and small regions, noise

level, strength of the edges by assessing continuity of the borders,

smoothness level, and visible (expected) texture. Table 3 listed the

summary of this qualitative evaluation. As shown from the result,

all filtered images were significantly better than the original im-

ages, and the proposed method consistently performed better than

all other methods. For the methods of anisotropic diffusion, non-

local means, and block matching, the two human experts have
ifferent opinions on the performance of anisotropic diffusion vs.

lock matching, and non-local means denoising was rated slightly

igher than those two (i.e., lower the rate, better the method).

e have also compared these five methods’s results with paired

 -test. The results were found to be statistically significantly differ-

nt from each other ( P < 0.05). 

. Discussion 

We proposed a generalized framework for jointly solving three

ajor problems pertaining to PET image interpretation and anal-

sis: PVC, segmentation, and denoising. Individual effects of these

ajor problems on diagnostic decisions have been largely studied

n the literature ( Foster et al., 2014a; Bagci and Mollura, 2013; Er-

andsson et al., 2012 ). In this study, we confine ourselves to image

uality assessment and correctness of the image quantification pa-

ameters from a system point of view; therefore, detailed explo-

ation of each effect in purely clinical cases is kept outside the

cope of this paper. 

As it was mentioned in the beginning, the detailed characteris-

ics of the PET image noise is not entirely known. Positron emis-

ion itself is well characterized by a Poisson distribution, but Gaus-

ian noise assumption is often being considered in the literature

ue to other noise characteristics coming from scanner’s detection

ystem as well as other electronic components in the scanner. Re-

ulting noise is further altered during image reconstruction and

orrection steps. However, noise realizations are shown to be con-

icting with this assumptions as shown in different studies ( Vardi

t al., 1985; Rzeszotarski, 1999 ). In Teymurazyan et al. (2013) , au-

hors have evaluated statistical properties of the PET data and

ompared five noise models (Poisson, normal, negative binomial,

nd Gamma). Authors have showed that different reconstruction

echniques could affect the type of noise. For instance, RAMLA-

econstructed PET images are well characterized by Gamma dis-

ribution while filtered back projection based reconstructed PET

mages produce comparable conformity with both normal and

amma statistics. It was also indicated in the study that the noise

as neither Gaussian nor Poisson. Although this study showed evi-

ence of noise statistics as a combination of Gaussian and Poisson,
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Fig. 10. Replacing RBV correction component with deconvolution (left) and replacing regional means denoising with anisotropic diffusion (right). 
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uthors have chosen to model the combined model as a Gamma

istribution instead of mixed Poisson–Gaussian. In our current ef-

ort, instead of relying on a single Gamma distribution, we model

he noise without restricting its distribution either into Gamma

oise either, because Gamma model is not as flexible as a mixture

odel of Poisson–Gaussian. Note that the Gamma distribution is

eeply intertwined with more Poisson distribution than Gaussian.

t is because converging Gamma into Gaussian requires a large

hape parameterization, which may not be desirable for a flexible

oise distribution modeling ( Kotlarski, 1967 ). 

GAT has a significant role in the proposed framework but it is

lso desirable to identify when GAT has the most and least roles.

e observed the following facts, which are overlapping with the

ndings from the literature: (1) when noise variation across dif-

erent patches is small, GAT has a minimal role. This is expected

ecause the underlying noise distribution in the image is almost

aussian. (2) Conversely, GAT is the most effective when varia-

ion of noise is large, implying that the underlying noise distribu-

ion is almost Poisson. It is worth noting that mixture of Gaussian

nd Poisson with an analytic formulation depicted in Eq. (1) allows

s to switch the noise model either into fully Gaussian nature or

he opposite (i.e., fully Poisson). With a proper parameter tuning,

eight of each model can be arranged accordingly. Since GAT will

ot distort images that are already with Gaussian noise, it will be

ore effective when the noise is mixed. In order to ensure that

AT behaves properly, we used a non-classical SVT (i.e., general-

zed Anscombe’ transform: GAT) where GAT encompasses the suf-

ers that Anscombe’ original formulation may have when there are

oo high variation in the PET images. 

It should be noted that PVC is comparatively more challeng-

ng in pre-clinical imaging where sizes of structures are very small

elative to the achievable resolution on pre-clinical PET scanners.

VC studies in this aspect are limited, and available methods are

ften tuned for clinical studies. In our work, the proposed joint

olution is general enough that both clinical and pre-clinical im-

ges were partial volume corrected, denoised, and segmented suc-

essfully. One of the limitations of our work is that the correc-

ion of motion effects is not considered within the scope of this

aper. Motion, due to cardiac, respiratory, or patient movement,

s another factor that can introduce additional distortions. Herein,

e confine ourselves to PVC without specifically characterizing the

ource of PVE. 

There are numerous parameters in our proposed framework

ue to the integration of three major frameworks. One may won-

er if those parameters are set during the iterations of the sys-

em or a priori. In our current implementation, most parameters

ere learned from representative image samples prior to the ex-
eriments, and they were kept the same during iterations of the

roposed system. One also may wonder if there is a substantial

heoretical proof about the mixed noise model where two impor-

ant parameters are being used to weight Poisson and Gaussian

ortion. To our best of knowledge, there is no theoretical proof

et confirming the theoretical optimality of the inversion and noise

inimization except the work in Mansoor et al. (2014) where we

xperimentally showed how GAT de-correlate non-Gaussian noise.

ince GAT is known to perform well when noise is Poisson, this in-

ormation partially proves the mix nature of the Poisson and Gaus-

ian. 

Although this study is focused on a post-reconstruction algo-

ithm for PVC and noise removal, it should be noted that there

re strong aspects of reconstruction driven PVC and noise reduc-

ion methods that make them attractive ( Barrett et al., 1994; Xu

nd Tsui, 2009; Ding et al., 2016 ). Since post-reconstruction based

VC algorithms can increase both respiratory-gated and non-gated

alues significantly, a significant source of error may appear when

uantifying lesions particularly at lung regions. Instead, reconstruc-

ion driven PVC methods with distance dependent PSF and motion

ncorporation can easily alleviate this problem. However, both mo-

ion and variable PSF integration into the reconstruction algorithm

s not straightforward and requires experimental validations. 

Our proposed joint solution requires a delineation method to be

ccurate, and provides feedback on multiple tissue types (with re-

pect to the level of uptake). Therefore, any segmentation method

roviding this information can be replaced by AP-based segmenta-

ion algorithm. In this sense, our joint solution platform is flexible,

nd open to further improvements. Depending on the application,

he strength and weakness of the proposed framework can both

ay on the integrated system. On one hand, the three tasks can be

utually beneficial to each other and improve the performance;

n the other, the proposed method makes it difficult to decouple

ne from each other, and thus the computational cost is naturally

igher if only one function is needed. We have further qualitatively

xperimented some variations of the proposed method by replac-

ng certain components. Specifically, we have done the following

hree: replacing RBV correction with conventional deconvolution;

eplacing regional means denoising with anisotropic diffusion; and

eplacing affinity propagation segmentation with k-means cluster-

ng. The results are shown in Fig. 10 , as shown, with regular de-

onvolution, there will be a smoothed ringing artifact, while with

nisotropic diffusion, there will be residual noise. As for k-means

lustering, we find that the result are almost identical with reason-

ble choice of clusters, indicating that for PVC and denoising, our

ethod is not sensitive to clustering method. 
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There are studies in the literature showing joint segmentation

of PET/CT and PET/MRI ( Bagci et al., 2013b; Song et al., 2013; Xu

et al., 2015 ), and even denoising approach utilizing both PET and

MRI was proposed based on wavelet coefficient exchange between

structural and functional images ( Turkheimer et al., 2008 ). In the

present research, we did not explore joint denoising, PVC, and seg-

mentation of anatomical structures (from CT or MRI). These studies

summarize the benefit of using effective anatomical information in

PET image analysis tasks. As an extension to the current study, a

similar system can be built for CT/MR images where both anatom-

ical and functional images can be utilized. It should also be noted

that for MR images, there will be additional steps such as inten-

sity inhomogeneity correction and standardization prior to denois-

ing ( Bagci et al., 2012; 2010 ). 

In radiology and nuclear imaging sciences, visual assessment is

often accepted as ground truth evaluation or complementary qual-

ification. However, human visual judgment can be quite subjective,

especially for tasks without definite answer. Even experts can have

significant variations. During qualitative evaluation, some experts

may give preference to low noise level and clearly-defined struc-

ture boundaries for its clarity in diagnosis; while others may view

similar patterns as “artificial” and consider moderate amount of

noise as more “realistic”. Despite potential biases, qualitative judg-

ment is still desirable to be used in real clinical settings, and it

is more powerful when combined with quantitative results. In our

experiments, potential uncertainties due to these variations are ex-

plained. 

6. Conclusion 

We presented an effective framework for generating a joint so-

lution for PET image denoising, partial volume correction, and seg-

mentation. We incorporated uptake region delineations into the

novel regional means denoising technique to enhance the SNR,

which in turn helps improve the segmentation and PVC accura-

cies. We utilized generalized Anscombe transformation, and its op-

timal inverse before and after the denoising-segmentation proce-

dure, which essentially Gaussianize the noise in PET images un-

der the mixed Poisson–Gaussian model. For PVC, we used a new

volume-consistent voxel-wise correction method where effective

use of the object information was inferred from the segmentation

iterations. Experimental results demonstrated that the proposed

joint solution framework successfully removes the noise, corrects

the partial volume effect, and delineates uptake regions with high

efficacy. 
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