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ABSTRACT

We propose a novel medical image segmentation algorithm
by transductively inferring the labels. In this approach, super-
pixels are first generated to incorporate the local spatial infor-
mation and also to speed up the segmentation. The segmenta-
tion task can be deemed as an unbalanced superpixels label-
ing problem due to the fact that the region of interest is only
a small fraction compared to the whole image. We present a
new transductive learning-based algorithm called Class Aver-
aging Graph-based Transduction (CAGT) to avoid the biased
labeling caused by the imbalance. The proposed algorithm
was applied to the automatic cervigram image segmentation
to demonstrate it effectiveness.

Index Terms— Image Segmentation, Transductive Learn-
ing, Unbalanced Classification, Graph Learning, Semi-
supervised Learning

1. INTRODUCTION

Image segmentation plays a crucial role in many medical
imaging applications by automatically detecting the regions
of interest. For example, the accurate and automatic seg-
mentation of tissue regions in cervigram images is useful
to identify the precancerous regions. Specifically speaking,
Acetowhite (AW) region, which is caused by the whitening of
potentially malignant regions of the cervix epithelium is the
most important observed area to segment. Accurate identifi-
cation and segmentation of AW regions in cervigrams have
significant implications for diagnosis and grading of cervical
lesions. While the task of segmenting this area is important, it
is particularly challenging due to high variability where tissue
color distributions frequently overlap with different classes.

Accurate segmentation of medical images has many chal-
lenges, such as the common presence of image noise, nonuni-
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Fig. 1. The flow diagram of our segmentation approach.
form object texture, variations in lighting, and various oth-
er artifacts in medical images. To address these challenges,
many segmentation techniques have been developed, such as
deformable models, level set, statistical shape, appearance
model and graph-based segmentation [1]. Essentially, the im-
age segmentation issue is a pixel labeling problem. However,
there are several specific characteristics of the medical image
segmentation task that makes it unique in comparison with the
regular labeling problem: 1) The training data is limited, since
manual labeling of the ground truth by experts is very time
consuming and uneconomical; 2) The pixels of the image can
be input as a batch; and 3) The positive and negative pixels
are often highly unbalanced, since the region of interest often
only represents a small fraction. For example, the number of
negatives in our used cervigram images is twenty times more
than the number of positives. Clearly, an ideal labelling algo-
rithm for tackling the medical segmentation task should ac-
commodate these three characteristics. Transductive learning
is a good option for such medical image segmentation-based
labeling, since it can accommodate the first two characteris-
tics [2]. The main assumption behind the transductive learn-
ing model is that points that share more similarities are likely
to have the same label. Although it already has been proved
to be successful in various applications, it is still not wide-
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ly used in medical image segmentation. As far as we know,
the transductive learning only has been applied for prostate
segmentation [3].

In order to accommodate the three aforementioned char-
acteristics, we improve the conventional Graph-based Trans-
duction (GT) algorithm as a new unbalanced transduction
algorithm called Class Averaging Graph-based Transduction
(CAGT). In CAGT, the classification loss of GT is averaged
by classes to avoid the sample is labeled biased towards to
the label with a high proportion. Moreover, Simple Linear
Iterative Clustering (SLIC) [4] is applied to efficiently gen-
erate the superpixels from image for incorporating the local
spatial information and speeding up the segmentation. Fi-
nally, the segmentation can be achieved by the CAGT-based
superpixel labeling. The framework of our approach is il-
lustrated in Figure 1. An archive of 60, 000 images of the
uterine cervix [5, 6] is employed for evaluating our work.
The experimental results demonstrate the superiority of the
proposed algorithm in comparison with the baseline methods.

We conclude three contributions of our works: as far as
we know, our work is the first approach that applies the graph-
based transduction to the cervigram image segmentation; We
present a novel graph-based transduction algorithm for ad-
dressing the unbalanced labeling issue; Superpixel technique
is leveraged for speeding up and incorporating the local spa-
tial information.

2. METHODOLOGY

We present an image segmentation approach that segments
the medical image via labeling its superpixels. Figure 1 il-
lustrates our framework. It has three steps. The first step is
the efficient generation of the superpixels using Simple Lin-
ear Iterative Clustering (SLIC) [4]. The second step is the
representation of superpixel. The third step is the unbalanced
binary transduction for superpixel labelling.

2.1. Superpixel Generation and Representation
SLIC, which is a recently popular superpixel generation algo-
rithm in computer vision community, is adopted for superpix-
el generation [4]. It efficiently generates the high quality su-
perpixels via simply performing the k-means clustering based
on the location and color information of pixels. We consider
the mean LAB color vector of pixels in the same superpixel
as the representation of superpixel.

xi =
∑
t∈i

pt
ni

(1)

where xi is the representation of superpixel i, pt is the LAB
color vector of the pixel t and ni is the number of pixels in
superpixel i.

In the training dataset, we only have the labels of pixels
while the labels of superpixels are unknown. We label these
superpixels by computing the proportions of positive and neg-
ative pixels in the superpixels. Let us consider the positive
label as 1 while the negative label as 0. The label assignment

of the superpixel i can be denoted as follows

li =

{
1, Pi > Pall

0, otherwise
(2)

where Pi is the proportion of the positive pixels in the su-
perpixel i and Pall is the one of the whole training dataset.
This strategy can avoid the biased labeling when the data is
extremely unbalanced.

There are two main reasons for us to use superpixels in-
stead of pixels. The first reason is that it can greatly speed up
the segmentation, since the computational complexity of the
subsequent step is cubic with respect to the number of sam-
ples however SLIC can efficiently reduce this number. The
second reason is that the superpixels can improve the robust-
ness of our model, since the generation of superpixel incorpo-
rates the local spatial information which can benefit the seg-
mentation particular when the ground truth is not perfectly
labeled.
2.2. Unbalanced Binary Transduction
Now, the segmentation task is translated as a superpixel la-
beling task. As we have mentioned in Section 1, there are
three characteristics of the medical image segmentations spe-
cific labeling problem. A good suggestion for such labeling
is Graph-based Transduction (GT) [2], since it performs well
in the small training data case and can jointly label the sam-
ples via fully considering the unlabeled data. In other words,
it can perfectly accommodate the first two characteristics. In
this section, we intend to propose a new GT-based labeling
algorithm for accommodating the third characteristic that the
data is highly unbalanced.

Given the superpixels {xt}t∈i of the image i, we will
achieve the segmentation by performing the Graph-based
Transduction (GT). The main idea of the graph-based trans-
duction is to transductively infer the labels of the superpix-
els based on the similarities between each two superpixels.
Therefore, the core of the GT is the construction of the graph
Laplacian which encodes such similarities. Here we leverage
the heat kernel scheme [7] to measure this similarity between
each two superpixels wij = exp (− ||xi−xj ||2

σ ) where σ is a
positive for scaling the Euclidean distance between the su-
perpixels xi and xj . wij is regarded as the (i,j)-th element of
the affinity matrix W . Note, the affinity matrix is constructed
from the superpixels of both training images and the target
segmentation image, since the unlabeled superpixels from the
same image are jointly labeled.

According to the Laplacian Eigenmapping [8], the nor-
malized graph Laplacian can be computed as follows

L = D−1/2(D −W )D−1/2 = I −D−1/2WD−1/2 (3)

where D is a diagonal matrix and Dii =
∑
j wij . I is the

identity matrix.
The graph-based transductive label inference can be

naively deemed as a regularized normalize cut in which the
collection of graph cuts are defined as the classifiers [2, 9].
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Such graph cuts should not only minimize the loss of the
similarities among superpixels but also minimize the classifi-
cation loss of training data.

F̂ = argmin
F

(FTLF + λ||F − Y ||2) (4)

⇒ f̂i = argmin
fi

∑
i∈{pos,neg}

(fT
i Lfi + λ||fi − yi||2)

where F = [fpos, fneg] is the collection of graph cuts
(sub-classifier functions, fi(·), i ∈ {pos, neg}) and Y =
[ypos, yneg] is the collection of label vectors (label functions,
yi(·), i ∈ {pos, neg}). λ is a positive to reconcile these two
losses. In ypos, ypos(i) = 1 or -1 if the superpixel feature xi
has been labeled as positive or negative respectively, and 0 if
it is unlabeled. In yneg , the assignment of the yneg(i) is the
inversion of the assignment of the ypos(i).

According to Equation 4, we can know that such regular
graph-based transduction model measures the classification
loss by sample. However, the superpixel labeling task can
be considered as a typical unbalanced classification task, s-
ince the number of negative samples highly exceeds the one
of positives, for example, in our case, the negative samples are
more than twenty times of the positives. Clearly, the previous
classification loss computation strategy is easy to promote the
classification results biased towards to the negative samples
which leads to a poor image segmentation.

To address this problem, we measure the classification
loss by class instead of by sample. In that case, the classi-
fication loss of each class is treated equally. We consider the
mean of the classification losses of samples as the the classifi-
cation loss of a class. So, Equation 4 can be further modified
as follows

f̂i = argmin
fi

∑
i

{
fT
i Lfi + λ

∑
c∈C

∑
j∈c

[fi(j)− yi(j)]2

mc

}
⇒ F̂ = argmin

F
{FTLF + λM(F − Y )(F − Y )T } (5)

where C = {pos, neg, unlabeled} is the collection of class
labels (or the statuses of samples) and mc is the number of
samples in class c. M is a diagonal matrix called class aver-
aging matrix.

M = diag

 1

mpos
, · · ·︸ ︷︷ ︸

mpos

,
1

mneg
, · · ·︸ ︷︷ ︸

mneg

,
1

munlabeled
, · · ·︸ ︷︷ ︸

munlabeled

 (6)

We name this new graph-based transduction model Class
Averaging Graph-based Transduction (CAGT). This model
can be efficiently solved by the regularized least square. The
optimal F is as follows

F =
λMY

(L+ λM)
(7)

Finally, the labeling of i-th superpixel can be accomplished
by assigning it to the j-th class that satisfies

ĵ = argmax
j
fj(i), j ∈ {pos, neg} (8)
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(c) The relative improvement of CAGT over GT

Fig. 2. The performances of GT and CAGT in our synthesized
dataset.

3. EXPERIMENTS
We first use a synthetic dataset to verify the effectiveness of
our algorithm in unbalanced labeling case. In this dataset,
there are 200 positive samples and 2800 negative samples.
We use all positives and randomly select different amounts
of negatives to construct several experimental datasets which
suffer from different degrees of imbalance in distribution
of classes. For example, 200 positives and 1000 negatives
can construct a dataset whose ratio of negative to positive is
1000/200 = 5. In these datasets, we apply the two-fold cross
validation to study the influence of the imbalance of the data
distribution to the performances of GT and CAGT. Follow-
ing [10], Dice Similarity Coefficient (DSC), which is defined
as (2× True Positive)/(2× True Positive + False Positive +
False Negative), is employed as the evaluation metric. DSC
is a comprehensive measurement of the coincidence of the
labeling result with the ground truth.

Figure 2(a) shows the distribution of data. The labeling
performances of GT and CAGT are plotted in Figure 2(b)
while the relative improvements of CAGT over GT, which
is defined as (DSC of CAGT / DSC of GT - 1) under differ-
ent ratios of negative to positive, are reported in Figure 2(c).
From the results, we can know that CAGT consistently out-
performs in the unbalanced case and also can get a similar or
even better performance in the balanced case. Comprehen-
sively speaking, the relative improvement of CAGT over GT
is increasing along with the rising of the degree of imbalance
in the data distribution. This phenomenon verifies that CAGT
is more robust to the imbalance of data.

We apply our work to an archive of 60, 000 images of the
uterine cervix [6] for cervigram image segmentation. In this
archive, the training data is divided into five small training
subsets with ten images in each. In these subsets, the data is
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(a) GroundTruth (b) rLR (c) rSLR (d) NNC (e) GT (f) CAGT (ours)
Fig. 3. Best Segmentation results of different methods.

highly unbalanced. The ratios of negative to positive are 17,
39, 31, 27 and 32 in subset1, subset2, subset3, subset4 and
subset5 respectively at the superpixel level. The superpixels
of the training images and the given test image are used for
constructing the graph where each superpixel represents a n-
ode in this graph. By considering the trade off between the
accuracy and the efficiency, we set the maximal size of the
superpixel to 52 pixels in SLIC. The simple Nearest Neigh-
bour Classifier (NNC), the conventional Graph-based Trans-
duction (GT) [2], robust Logistic Regression (rLR) [10] and
robust Sparse Logistic Regression (rSLR) [10] are employed
for comparison.

Table 1. The accuracies of pixel labeling.
Train Sets DSC

subset1 subset2 subset3 subset4 subset5
NNC 0.1082 0.6409 0.2111 0.5051 0.1549

rLR [10] 0.4359 0.6337 0.1269 0.3339 0.3391
rSLR [10] 0.4218 0.5458 0.1079 0.3635 0.4047

GT [2] 0.3449 0.6832 0.2657 0.7704 0.4627
CAGT 0.7701 0.7687 0.7457 0.7990 0.7990

Table 1 reports the labeling performances of different ap-
proaches. Note, these labeling accuracies are based on the
pixels. The pixels are labeled based on the obtained super-
pixel labels. From the observations, it is clear that CAGT
outperforms the compared methods and significantly improve
the performance of GT. More specifically, the performance
gain of CAGT over GT are 0.4252, 0.0855, 0.4800, 0.0286
and 0.3363 on subset1, subset2, subset3, subset4 and subset5
respectively. Moreover, another interesting phenomenon we
can observe from the table is that CAGT is more robust to
the choices of the training samples in comparison with oth-
er methods. Figure 3 shows the best segmentation results of
different approaches for an image. Similar as the results re-
ported in Table 1, the observations demonstrate that our work
can achieve the highest quality of segmentation in compari-
son with the compared approaches. In our experiments, the
parameters of all methods are well tuned. We set µ = 1 and
λ = 10−3 for our model.

4. CONCLUSION

We presented a new solution for medical image segmenta-
tion which divided the image into dozens of superpixels first
and then labeled the superpixels by graph-based transduction.
Since the segmentation is regarded as a unbalanced binary
classification task, we address this problem via proposing a
new graph-based transduction method named Class Averag-
ing Graph-based Transduction (CAGT) which measures the
classification losses by classes instead of by samples. A lot of

meaningful works can be done to further improve our mod-
el. For example, the superpixel representation in this paper is
just the mean LAB color vector which is weak to distinguish
the positive and negative superpixels. Some more advanced
features maybe can be applied to better capture the charac-
teristics of superpixels. Moreover, different features can be
fused to improve the quality of segmentation.
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