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Abstract. We introduce a novel algorithm for segmenting the high resolution
CT images of the left ventricle (LV), particularly the papillary muscles and the
trabeculae. High quality segmentations of these structures are necessary in order
to better understand the anatomical function and geometrical properties of LV.
These fine structures, however, are extremely challenging to capture due to their
delicate and complex nature in both geometry and topology. Our algorithm com-
putes the potential missing topological structures of a given initial segmentation.
Using techniques from computational topology, e.g. persistent homology, our al-
gorithm find topological handles which are likely to be the true signal. To further
increase accuracy, these proposals are measured by the saliency and confidence
from a trained classifier. Handles with high scores are restored in the final seg-
mentation, leading to high quality segmentation results of the complex structures.

1 Introduction

Computed tomography (CT) is a very important imaging modality for diagnosing car-
diovascular diseases. Compared with other imaging modalities (such as ultrasound
and magnetic resonance imaging), CT is able to show detailed anatomic structures
within the cardiac chambers [16]. Recent advances in CT technology allow a 320 multi-
detector CT scanner to successfully capture the papillary muscles and trabeculae at a
resolution which has not been reached before.

Most of the existing methods to perform cardiac segmentations [3, 22, 14] model
the inner heart wall as a smooth surface, which does not include the papillary mus-
cles and the trabeculae at all. Zheng et al. [22] proposed an algorithm to automatically
segment the four chambers of the heart in four seconds. Ecabert et al. [5] presented a
learning-based approach based on active shape model (ASM) for the segmentation of
four chambers and major vessel trunks. Other models include, but are not limited to
graph cut [8], atlas based segmentation [11] and local deformation [12].

These methods, although proven to be successful in various situations, are not de-
signed to accurately segment smaller, complex structures such as the papillary muscles
and the trabeculae. Previous attempts [3, 19] were able to capture the papillary muscle,
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but could not segment trabeculae with satisfying quality. Gao et al. [9] manually seg-
mented one frame (at the end-diastole state) of an image sequence of a cardiac cycle,
and then deformed the segmentation to match the other frames. Although their method
focused on preserving the fine structures during the deformation, it only enforced con-
sistency of geometry [18], not of topology. Accurately segmenting the complex struc-
tures of the papillary muscles and the trabeculae is still a challenging task. The reason
is threefold. 1) The detailed structures are complex and small, making them hard to be
distinguished from noise. 2) Some trabeculae go through the ventricle cavity and are
very thin. Existing methods often fail to segment them due to the smoothness prior. 3)
Such complex structures have a very different nature from other parts such as free wall
and septum. Furthermore, trabeculae have a large variety of geometry and intensity even
within the same cardiac image. This requires the segmentation method to be extremely
adaptive in terms of parameters, making full automation very difficult.

Fig. 1. Left: Left ventricle anatomy, picture from [10]. Right: Segmentation results represented
as a 3D triangle mesh successfully captured the papillary muscle and the trabeculae.

Accurately segmenting the papillary muscles and the trabeculae is very important
and of high interest to doctors for several reasons. First, left ventricular(LV) mass and
ejection fraction have been widely used in diagnosis and therapy. Inclusion or exclu-
sion of these structures significantly affects quantification of LV volume and mass [21].
Second, the functions of the papillary muscles and the trabeculae have still not been
fully understood. Left ventricle anatomy is show in Fig. 1. The papillary muscles are
attached to the valves via chordae tendineae. The trabeculae project from the inner
surface of both ventricles of the heart. Some are completely attached to the wall of the
heart. Others are fixed at both ends to either the ventricular wall or septum, but the inter-
mediate section is freely mobile within the cavity, forming topological handles. There
are a number of functional hypotheses for the trabeculation of the heart wall. High qual-
ity segmentations of such structures are useful for further investigating their functions,
the mechanics of the heart [13] and geometrical properties of cardiac structures [14].

In this paper, we propose a topological method to restore missing structures of a
given segmentation, generated by any existing segmentation tool. It proposes hypothe-
ses of where and how topological handles should be reestablished. On the basis of those
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Fig. 2. Improvement of our method. (a) Baseline segmentation. (b) Proposed restoration handles.
(c) Final segmentation. (d)-(g) Zoomed-in views of comparisons of our method.

topological proposals, a two-step screening is performed to select handles with higher
confidence for structure restoration. Our algorithm evaluates each handle independently
based on its saliency, rather than absolute intensities. Explicitly restoring selected han-
dles makes the restoration adaptive to each trabecula, thus avoiding a universal thresh-
old in the whole domain. Furthermore, such explicit restoration is not affected by the
smoothing prior of segmentation models. Fig. 2 shows the improvements of our algo-
rithm, with restored trabeculae highlighted. Quality of restored handles can be verified
by comparing with the intensity function in Fig. 3.

Using topological information in image segmentation has been studied in both com-
puter vision [2] and medical imaging [17]. As far as we know, in all previous methods,
that use either random field energy models (MRF and CRF) [15] or deformable models
[20], topological priors such as connectivity or handle-free are enforced as a segmen-
tation constraint. In this paper, instead of enforcing the final segmentation to have an
upper bound of the number of components or handles, we restore topological features,
as long as we have high confidence in them.

2 Methodology

The algorithm flow is illustrated in Fig. 3. An initial segmentation is applied on the
image and then we compute handles that need to be restored. Each handle is delineated
by a thickened cycle, as illustrated in Fig. 3 (c). The segmentation is fixed accordingly,
by enforcing these cycles to appear in the final segmentation.
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(a) (b) (c) (d)

Fig. 3. A two-dimensional slice of the data on which we illustrate the workflow. (a) CT image.
(b) Initial segmentation. (c) Proposed fixing cycles (partially occluded). (d) Final segmentation
with handles restored.

(a) (b)

(c) (d) (e)

Fig. 4. (a) A given cycle is sealed by two different patches (pink and green). (b) The sum of two
cycles is sealed by a tube shaped patch (pink), which delineates a way to deform between the two.
(c) The mod-2 sum of two cycles, and a sealing patch. (d) Various cycles for a given function. (e)
Sum of the corresponding blue and red cycles.

In this section, we first state the desired properties for the cycles that we should use
for handle restoration. Next, we build a connection to a theory of persistent homology
[6] in the computational topology community. The output of persistent homology is a
set of dots corresponding to handles that appear when we threshold the domain using
a function value. Based on such theory, we design an algorithm to compute proposal
cycles, each of which delineates one handle. We conclude this section by explaining
how to choose the promising candidates from all these proposals so that they satisfy the
desired properties.

2.1 Intuition and the Desired Properties of Cycles for Handle Restoration

We start by introducing some terminology. A closed curve is called a cycle. The mod-2
sum (exclusive or) of a set of cycles is also called a cycle. A 2-manifold with boundary is
called a surface patch. A patch c seals a cycle z if its boundary is z, formally, ∂(c) = z.
When the sealed cycle is the sum of two cycles, the patch could be considered as the
area swept through when we smoothly deform the first cycle into the second. In a 3D
image, there could be infinitely many patches that seal a given cycle, and thus infinitely
many ways to deform between cycles. See Fig. 4(a)-(c) for illustration.
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Given a function defined on the image domain f : Ω → R, Ω ⊆ R3. To restore
missing handles based on the image f , the two blue cycles in Fig. 4(d) are natural
choices. Intuitively, a cycle is chosen if the intensity along it is low; yet the intensity
between the corresponding handle and the wall is high. On the other hand, we need to
propose a set of cycles such that any two of them would not delineate the same trabec-
ula. Furthermore, each trabecula should be covered by a proposal. These intuitions lead
to three properties need to be satisfied.

The set of cycles we select should satisfy the following properties. First, we require
a high saliency for each selected cycle. A selected cycle z needs to go through points
with relatively low function values, and any surface patch sealing this cycle has to have
some points with relatively large function values. We measure the saliency of the cycle
using the difference of maximal function values of the cycle and a sealing patch. There
are infinitely many possible patches sealing a given cycle (Fig. 4(a)). Among them, we
choose the patch whose maximal value is the smallest, formally,

Saliency(z) =

(
min

c:∂(c)=z
max
p∈c

f(p)

)
−max

p∈z
f(p) (1)

In Fig. 4(d), the blue and red cycles have high saliency, but green ones do not.
Second, we should not select several cycles that in fact correspond to the same

trabeculae/handle. Any two selected cycles are required to have a large dissimilarity,
i.e., the saliency of their mod-2 sum,

Dissimilarity(z1, z2) = Saliency(z1 + z2)

The dissimilarity between a cycle and zero is its saliency. In Fig. 4(d), there is a small
dissimilarity between each blue cycle and the red cycle surrounding it. We should select
only one of them. The sum of of the corresponding cycles, which are represented as
yellow cycles in Fig. 4(e), have low saliency.

Third, we should exhaustively select all possible salient cycles. Any given cycle z
should have a small dissimilarity from the set of selected cycles, Z, which is defined as
the minimal dissimilarity between z and the mod-2 sum of a subset of Z,

Dissimilarity(z, Z) = min
Z′⊆Z

Dissimilarity

(
z,
∑
z′∈Z′

z′

)

This quantity lowerbounds the saliency of z itself since we allow Z ′ to be empty. Thus
the dissimilarity is small if z has small saliency. In other words, any cycle z either has
a low saliency, or has a good approximation from the given set Z, expressed as the sum
of a subset Z ′ ⊆ Z.

2.2 Persistent Homology

In order to compute cycles that serve our purpose, we use persistent homology. The
input of the tool is a topological space and a scalar function, e.g., the image domain Ω
and the image function f . The output is a set of dots on R2 corresponding to a set of
features.
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(a) function (b) ` = b1 (c) ` = b2
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Fig. 5. (a) Synthetic function. (b)-(e), Sublevel sets Ω` at time b1 < b2 < d2 < d1. Bottom row:
2D slices of the sublevel sets. We also show the intensity inside the sublevel sets. The red, yellow
and green cycles are z1, z2 and z3 respectively.

For a given scalar value `, we call the set of points with function value no greater
than ` a sublevel set, formally, Ω` = {x ∈ Ω | f(x) ≤ `}. We study the topological
changes of sublevel setsΩ` as the parameter ` increases from−∞ to +∞, during which
the sublevel set grows from empty to the whole domain Ω. For convenience, we say a
topological event happens at time `0 if it happens when we grow the sublevel set from
Ω`0−ε to Ω`0 .

In this paper, we focus on a specific kind of topological feature, handle. In Fig. 5, at
time b1, a new handle (delineated by the cycle z1) is created. This handle is destroyed
(becomes trivial) at time d1. The two corresponding function values are called the birth
time and death time of this topological feature. At time b2 and d2, another handle (delin-
eated by the cycle z2) is created and destroyed. For each handle, the difference between
its death time and birth time is called the persistence.

0 100 200 300
0

100

200

300

Birth

D
e
a
th

(a) (b)
0 100 200 300
0

100

200

300

Birth

D
e
a
th

(c)

Fig. 6. (a) Persistence diagram of the synthetic function Df . (b) Perturbed function f̂ = f + e.
(c) Persistence diagram of the perturbed function Df̂ .

All topological features are recorded in a persistence diagram. Each handle corre-
sponds to a dot in R2, whose x and y coordinates are the birth and death times. The
vertical or horizontal distance of a dot from the diagonal x = y is its persistence. Fig. 6
is the persistence diagram of the synthetic function, with the two handles corresponding
to two blue dots.
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A justification of using the persistence diagram is its stability with regard to pertur-
bations of the function [4]. Formally, the bottleneck distance between the diagrams of
a function and the same function with added noise is upperbounded by the L∞ norm
of the noise, dist(Df ,Df̂ ) ≤ ‖f − f̂‖∞ = ‖e‖∞, where f̂ = f + e. In Fig. 6, af-
ter introducing noise e into the synthetic function, the persistence diagram could have
many new dots with small persistence (≤ ‖e‖∞). However, no large persistence dots
are introduced or removed. The large persistence dots only move in the diagram by at
most 2‖e‖∞. In other words, noise in the image only introduces spurious handles that
are destroyed right after creation.

In order to compute the persistence diagram, we first discretize the image domain
into a cubical complex whose basic elements are cells of dimension zero to four, i.e.,
vertices, edges, squares and cubes, respectively. The set of vertices corresponds to the
set of all voxels in the image. In Fig. 7(a), we show an example complex in 2D, with val-
ues of vertices specified. This discretization corresponds to the 4-/6-neighborhood for
2D/3D images, as defined in digital topology. In general, different discretizations could
lead to different persistent diagram. The treatment for 8-/26-neighborhood is studied by
Edelsbrunner and Symonova [7].

We build the boundary matrix of dimension d, whose columns and rows correspond
to d-dimensional cells (d-cells) and d-dimensional cells ((d − 1)-cells) respectively.
Columns and rows are indexed from left to right and from top to bottom respectively,
corresponding to cells sorted according to function values. An entry of the matrix is
set to 1 if the corresponding (d− 1)-cell belongs to the boundary of the corresponding
d-cell, and 0 otherwise. The one-dimensional boundary matrix is, in fact, the adjacency
matrix of the underlying graph. For the example complex in Fig. 7(a), the sorted cells,
and one-and-two-dimension boundary matrices are given in Fig. 7(b). Each column
vector of the two-dimensional boundary matrix is a cycle, and the boundary of a 2-cell
is a square. Since we use mod-2 addition, the sum of any set of columns is a cycle and
the boundary of a patch which is the sum of the set of corresponding 2-cells. Columns
of the boundary matrix span the space of all possible cycles of the discretized image
domain Ω.

To compute the one-dimensional persistence diagram, which records features cor-
responding to handles, we apply a matrix reduction on the two-dimensional boundary
matrix. Note that all additions are mod-2. We reduce columns of the matrix from left
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Fig. 7. (a) Example cubical complex, with function values given. (b) Boundary matrices of di-
mension one and two. (c) An indicative example of the reduced matrix R. This example does not
correspond to boundary matrices in (b).
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to right. For each column, we only use the columns on its left to reduce it. We start
from the row index of the lowest nonzero entry of column i, called low(i). If this row
index is equal to low(j) for some column j that has been reduced, we add column j
to i, and thus reduce low(i). We repeat until low(i) is not the lowest nonzero entry of
any column j < i, or column i becomes zero. In the former case, this reduced column
corresponds to a handle in the persistence diagram, whose birth (resp. death) time is the
function value of the cell low(i) (resp. the cell i). One property of the reduced matrix is
that the lowest nonzero row index low(·) for all nonzero columns are unique, formally,
low(i) 6= low(j) for any i 6= j. Fig. 7(c) shows an example of the reduced matrix,
denoted by R. The edge low(i) and the square i are where the handle is created and
destroyed, called the creator and destroyer.

2.3 Computing Proposal Cycles

We first compute one proposal cycle for each handle from the persistence diagram. For
a handle that is born at time b and dies at d, we take a cycle that goes through the handle
and lies within the sublevel setΩb. Furthermore, we choose a cycle which is sealed by a
patch with the maximum function value d. For example, in Fig. 5, we choose z1 for the
handle born at b1. For the handle born at b2, we choose z2 instead of z3, because it is
sealed up by a patch with a maximum value d2. We say the computed cycle delineates
the corresponding handle. We denote by Z̄ the set of all proposal cycles, delineating all
handles that appeared in some sublevel sets. How to choose from them the salient ones
will be discussed later.

To compute elements of Z̄, we reuse the output of the algorithm for the persistence
diagrams, in particular, the reduced matrix R (Fig. 7(c)). To compute a cycle for the
handle corresponding to column i, collect the set of columns R(∗, j) on R(∗, i)’s left
such that low(j) < low(i), e.g., the three marked columns in Fig. 7(c). These columns
form a new matrix, R̂i. The following theorem shows that any cycle that is the sum
of the i-th column and a set of columns in R̂i is a valid cycle representing the handle
corresponding to column i.

Theorem 1 ∀x, y = R(∗, i) + R̂ix is a cycle delineating the corresponding handle.4

A delineating cycle may have freedom to wiggle within a handle, as long as it con-
tains the creator edge low(i). Thus we prefer computing a cycle with simple geometry.
This leads to the problem of computing the shortest cycle among all candidates.

Problem 1 Compute y = R(∗, i) + R̂ix with the minimal number of nonzero entries.

Unfortunately, this problem is not only NP-hard, but also NP-hard to approximate
within any constant.

Theorem 2 Problem 1 is NP-hard to approximate within any constant factor.

Alternatively, we propose a heuristic method to compute y as follows. Starting with
the i-th column y = R(∗, i). Iterate through the row indices from low(i) − 1 to 1. For

4 Theoretical proof is omitted here for limited space.
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each row index k, if y(k) 6= 0, and k = low(j) for some j < i, and adding R(∗, j) to y
would reduce the number of nonzero entries, then add R(∗, j) to y.

Over the course of the algorithm, all used columns R(∗, j) will belong to R̂i. So
we always get a valid y. Furthermore, the number of nonzero entries of y monoton-
ically decreases. The cycle gets shorter after each addition. In practice, the heuristic
algorithm generates cycles that are reasonably simple. Trabeculae usually correspond
to thin handles, which leave limited space for cycles to wiggle within.

2.4 Selecting Proposal Cycles Satisfying Desired Properties

From the set of all proposed cycles, Z̄, we select the set of promising ones using a
two level screening method. In the first level, we select cycles delineating handles with
persistence not less than a threshold θ.

In fact, the saliency of each delineating cycle as defined in Equation (1) is equal
to the persistence of the handle. To show this, recall that the cycle goes through the
creator edge and lies within the sublevel set defined by the birth time. Thus, its maximal
function value is equal to the birth time. Since the death time d is when the handle is
destroyed, the cycle is sealed by a patch within the sublevel Ωd. However, there is no
such patch within Ωd−ε. Thus the death time d is equal to the first item in Equation (1).

We abuse notations and say a proposed cycle has the same birth time, death time
and persistence as its corresponding handle. The following theorem guarantees that the
selected set of cycles, namely, Zθ = {z ∈ Z̄ | persistence(z) ≥ θ}, satisfies the three
desired properties we discussed in Section 2.1.

Theorem 3 (A) Any cycle in Zθ has a saliency at least θ;
(B) The dissimilarity between any two cycles of Zθ is at least θ;
(C) For any cycle z, its dissimilarity from Zθ is at most θ.

Although high persistence cycles lead to salient handles that are more likely from
trabeculae, in practice, the first screening would inevitable select certain wrong cycles.
Therefore, we use a classifier with geometrical features as the second level screening.

3 Experiments

We empirically evaluated the effectiveness of our proposed topological repaired seg-
mentation algorithm. The proposed algorithm was employed on 6 cardiac CT image
at the end diastolic state, where trabeculae structures are separated the most. The CT
data were acquired on a 320-MDCT scanner, using a conventional ECG-gated contrast-
enhanced CT angiography protocol. The imaging protocol parameters include: prospec-
tively triggered, single-beat, volumetric acquisition; detector width 0.5 mm, voltage 120
KV, current 200− 550 mA. The resolution of each time frame is 512 by 512 by 320.

We used the region competition algorithm [23] to initialize the segmentation. In
order to focus on restoring the missed trabeculae, we decreased the function value of
a voxel to zero if it was already segmented as the heart wall, the papillary muscles or
the trabeculae. Handles which correspond to the structures that had been successfully
captured would have birth time 0 and appear as dots on the y axis of the diagram. Their
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Fig. 8. (a) Diagram of persistent pairs. The persistence threshold is marked as 80. (b) The rela-
tionship of persistence threshold and number of topological repairs. As the threshold moves from
120 to 80, it includes more and more positive pairs.

cycles were not be used for restoration. Fig. 8(a) illustrates the persistence diagram of
one cardiac image. To compute the persistence diagram and corresponding cycles, our
algorithm was run on a commodity machine in 6 to 8 minutes using 6 to 10 GB memory.

For all images, proposal cycles for all persistence dots were computed. We used 5
out of 6 images for selecting persistence threshold, and training, and the remaining im-
age for testing. We had human experts carefully examine proposal cycles and mark them
as positive and negative, by studying the image function. (For example, the blue cycles
in Fig. 3(c) are considered positive.) We performed the two level screening to select
promising proposals. We empirically chose the persistence threshold. For illustration,
in Fig. 8(b) we plotted the number of positive and negative dots with persistence above
a threshold, for one training image. We chose θ = 80 so that we included all positive
proposal cycles and a reasonable number of negative ones from the training images. In
the persistence diagram shown in Fig. 8(a), we drew the line y = x+ θ. All dots above
this line were selected after the first level screening. Dots on the y axis were all positive.
Notice the big variation of the birth and death times of positive dots. This implies that
it is impossible to detect them using an universal intensity prior.

(a) (b) (c) (d)

Fig. 9. (a) Baseline segmentation. (c) Proposed segmentation. (b)(d) Distance map from the
pseudo-groundtruth to the baseline segmentation, and the proposed segmentation, respectively.
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Next we explain how to train the classifier for the second level. For all six images,
we selected 458 positive out of 1095 proposals after persistence screening. Among those
selected proposals, we used the ones from the five training images for training and 10-
fold cross validation, and the ones belonging to the test image for testing. We used the
LIBSVM toolbox [1] to train our classifier. Features used were birth time, death time,
persistence, length of the cycle, and the relative position in the ventricle. We achieved
81.69% accuracy in the testing.

After promising proposals were selected, we generated the final segmentation by
enforcing these cycles to be included. We reused the region competition algorithm with
the same parameters so that the remaining parts of the final segmentation are the same
as the initial one. Groundtruth is extremely difficult to get for this kind of data using
manual segmentation. We generated the pseudo-groundtruth for the testing image by
enforcing the human marked positive cycles. We compared the results of our method
to that of a baseline segmentation generated by the region competition method (Fig. 9).
We showed the distance from the pseudo-groundtruth to the baseline segmentation and
to our segmentation. Distance was represented by different colors. Green, red and blue
represented accurate segmentation, over segmentation and under segmentation, respec-
tively. The trabeculae missing from the baseline segmentation had greater error and are
shown in red and blue colors. Our segmentation, as shown in Fig. 9(b), successfully cap-
tured more trabeculae. The distance error of the initial segmentation is 0.2108±0.4973
voxel, whereas our segmentation method has distance error 0.1101± 0.3679 voxel.

4 Conclusion

In this paper, we proposed a novel left ventricle segmentation method which capture the
complex structures of the papillary muscles and the trabeculae. Our segmentation ap-
proach is generic and could be applied to other topologically complicated segmentation
problems, such as blood vessels and lung airways. It would be of theoretical interest if
we build a quantitative relationship between the signal-noise ratio of the image and the
stability of the persistent diagram. It would also be nice if we could combine persistence
with the segmentation model in a more seamless fashion.
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