
PRACTICAL PATIENT-SPECIFIC CARDIAC BLOOD FLOW SIMULATIONS USING SPH

Scott Kulp1, Mingchen Gao1, Shaoting Zhang1, Zhen Qian2, Szilard Voros2, Dimitris Metaxas1, Leon Axel3

1CBIM Center, Rutgers University, Piscataway, NJ 08854, USA
2Piedmont Heart Institute, Atlanta, GA 30309, USA

3New York University, 660 First Avenue, New York, NY, 10016, USA

ABSTRACT

While recent developments in the field of ventricular blood
flow simulations have pushed modeling to increasingly high
levels of accuracy, there has been a steep cost in computa-
tion time. Current state-of-the-art simulators take days to run,
which is impractical for use in a clinical setting. In this paper,
we describe novel adaptations of the SPH algorithm to this
problem to achieve an order of magnitude faster performance,
while maintaining accuracy in the flow. By constructing ap-
propriate boundary particles and wall motion and adding a
fast collision detection component to an existing SPH archi-
tecture, our system is able to simulate a cardiac cycle in as
little as 30 minutes. This breakthrough will, in the near fu-
ture, allow the useful simulation of blood flow and its related
characterization for clinically useful applications.

Index Terms— Blood flow, CT, cardiac, SPH

1. INTRODUCTION AND RELATED WORK

Simulating patient-specific blood flow has recently become
an area of great interest to doctors. In patients who experi-
ence a heart attack, or in those who suffer from other vari-
ous cardiovascular diseases, the motion of the heart walls and
valves can become disturbed, leading to an abnormal blood
flow pattern. If the blood is not being fully circulated within
the heart and becomes stagnant, these patients are at high risk
of thrombus, leading to stroke. Thus, it is very important for
doctors to be able to visualize and understand a patient’s car-
diac blood flow. While it is possible to acquire flow data from
MRI or Doppler ultrasound imaging, the relatively low qual-
ity and resolution of this data severely limits its usefulness to
doctors. In recent years, though, as cardiac blood flow sim-
ulations have demonstrated accurate results and the potential
of visualizing problems in the flow, this field of research has
become increasingly active.

Early work in ventricular simulations used highly simpli-
fied models of the heart walls and structure. Jones et al. [1]
were the first to use MRI data to perform patient-specific car-
diac blood flow simulations, applying fluid velocity boundary
conditions at the valves. More recently, in 2010, Mihalef et al.
[2] used CT data to simulate left ventricular blood flow, and

(a) (b)

Fig. 1. Meshes reconstructed from CT data. (a) Outside heart (b)
Apex.

were able to compare the computed flow fields in healthy and
diseased hearts. In [3], a more sophisticated method of ex-
tracting the heart and its motion from CT was used to capture
the geometry of the trabeculae and show evidence of interac-
tions between these structures and the blood flow.

However, as the geometry and motion of the heart wall
models become more realistic and complex, the computation
time for running these simulations becomes extremely high;
for example, [3] states that a single simulation takes nearly a
full week to complete. In a clinical setting, these long waits
for one result would be unacceptable. However, in recent
years, there has been increasing interest in meshless meth-
ods, such as Smoothed Particle Hydrodynamics (SPH), due
to their improved running times. However, while these algo-
rithms are fast, working with complex boundary conditions
is a notoriously difficult unsolved problem. While SPH has
been successfully used for blood flow simulations before [4],
these studies have focused entirely on the flow through blood
vessels, which is far simpler than that of the heart. In this
paper, we present three major contributions: 1) A method to
manage the highly complex boundary conditions of the heart
using SPH by thickening the walls and treating the boundaries
as particles, 2) A very fast and effective collision detection
method optimized for a GPU implementation of SPH, and 3)
Analysis of the SPH results that clearly show that these meth-
ods are practical and accurate enough in a clinical setting.

2. DATA AQUISITION

The CT images we used to generate the 3D heart mesh data
were created on a Toshiba Aquilion ONE 320-MSCT scan-



ner, which produces 10 images of the whole heart in a single
cardiac cycle at a volumetric resolution of 0.3mm, and an in-
plane resolution of 512x512.

To build the mesh animation, we first apply a smoothing
filter to the 3D image that corresponds to the beginning of
diastole, and then extract a mesh through isosurfacing. Fol-
lowing manual cleanup with a 3D modeling tool, we transfer
motion data, acquired from the same CT scan, to the mesh to
generate a total of 10 frames. Since the valve motion is diffi-
cult to extract through CT imagery, we add models of the mi-
tral and aortic valves generated from ultrasound data. Finally,
we use cubic spline interpolation to create a final, smooth ani-
mation of 50 3D meshes, appropriate for use by the simulator.
As can be seen in Figure 1, the reconstructed results are highly
detailed, clearly showing the papillary muscles and trabecu-
lae.

3. SIMULATION SYSTEM

The motion of an incompressible fluid is governed by the laws
of conservation of momentum and mass. These two laws are
modeled by the Navier-Stokes equations:

ρ(
∂u

∂t
+ u · ∇u) = −∇P + µ∇2u (1)

∇ · u = 0 (2)

where u is the velocity field, P is pressure, ρ is the density,
and µ is the coefficient of viscosity. The first equation bal-
ances the forces within the fluid and enforces conservation of
momentum, while the second maintains conservation of mass.

3.1. SMOOTHED PARTICLE HYDRODYNAMICS

SPH [5] is a meshless method for solving fluid flow, where
we seek to explicitly solve the equations of motion at uncon-
nected points, or ”particles,” within the domain, each storing
its own mass, density, pressure, position, and velocity. Unlike
Eulerian-based methods, such as FDM and FEM, no compu-
tational mesh is required, and particles are free to move in the
flow. At the beginning of a time step, for each particle i, we
first search for all neighboring particles within some distance
h. The particle’s density is computed as follows:

ρi =

N∑
j=1

mjW (ri − rj , h), (3)

where N is the number of neighboring particles, mj is the
mass of particle j, r is a particle’s position, and W (r, h) is a
smoothing kernel of radius h. We use the same choices for
smoothing kernels as in [6]. In SPH, fluid is actually assumed
to be semi-compressible, and so to find we pressure, we use
the constitutive equation

Pi = c2(ρi − ρ0), (4)

where c is the speed of sound and ρ0 is the rest density,
which we set to 1050kg/m3[2]. Higher values for c represent
greater incompressibility, but will cause the simulation to
become unstable if δt is too high. Once density and pressure
are computed, we can compute the forces as follows:

fpressurei = −
N∑
j=1

mj

ρj

Pi + Pj

2
∇W (ri − rj , h), (5)

fviscosityi = µ

N∑
j=1

uj
mj

ρj
∇2W (ri − rj , h). (6)

3.2. BOUNDARY MANAGEMENT

The enforcement of boundary conditions is one of the most
challenging problems in SPH. To the best of our knowledge,
no other group has attempted to adapt SPH to a problem of
such complex geometry and movement as the left ventricle. A
variety of methods have been proposed to prevent fluid parti-
cles from passing through solid boundaries. Most techniques
either use fluid particles to model the solid boundaries, or use
ghost particles [7]. Ghost particles generally perform quite
accurately, but they are not well-suited for problems in which
the solid is thin and complex. In these difficult problems,
fluid particles on each side of the thin surface will produce
their own ghost particles, which the fluid particles on the other
side will include in its list of neighbors during density/force
computation, generating instability.

Most techniques that use fluid particles as boundaries ei-
ther keep the boundary pressure constant, or raise it slightly to
discourage particles from entering. However, we found that
in our problem, these methods causes significant instabilities
in the flow, due to the complex nature of the geometry and
wall movement. We note that as the left ventricle expands
during diastole, the pressure within the left ventricle drops,
which allows fluid from the left atrium to enter. If the bound-
ary particles at the walls maintain a constant pressure as the
fluid particles within encounter an lower pressure, the fluid
will unrealistically be repelled from the wall and cause insta-
bilities. Similarly, we found that low pressure at the walls
during systole will also become unstable. To overcome this
problem, we used a technique that allows the boundary parti-
cles to naturally change in pressure with the rest of the fluid.

First, to generate the boundary particles, an implicit func-
tion computing the distances to the mesh is rasterized onto a
1003 grid. Then, at each grid point where the value of the
implicit function is less than some distance ε, we label the
particle generated at this position as a boundary. All other
particles at a distance greater than ε are labeled as normal
fluid particles. We then perform a search for the k closest
mesh vertices, and the boundary particle’s velocity is set to
the inverse-distance weighted average of the velocities of its
neighbors. Note that ε must be thick enough to prevent parti-
cles within the heart near the boundaries from including par-



(a) (b) (c) (d) (e)

Fig. 2. Collision detection on CUDA. (a) Initial State - Boundary (red) and fluid (black), sphere of radius hsolid surrounds each particle;
(b) Boundary moves, new location too close to fluid; (c) Pass 1: Bounding box collision to detect danger pairs; (d) Pass 2: For all danger
pairs, determine if line segment intersects sphere. If so, push fluid particles forward in the same direction as the boundary; (e) New positions:
Boundary is no longer too close to fluid particles

ticles outside the heart during the neighborhood search. We
found that setting ε ≥ h/2 and k = 5 produces the most
stable results.

At each time step, each boundary particle’s density and
pressure is computed in the same manner as a normal fluid
particle, but its velocity is forced to match its corresponding
heart mesh vertices’ velocities. As such, during diastole, the
pressure at boundary particles drops as they move slightly far-
ther apart, and the opposite occurs in systole. We found this
method to be remarkably effective, and consistently produced
stable and accurate results, as we discuss later.

4. CUDA IMPLEMENTATION

To further improve performance, we implemented and opti-
mized our simulator using CUDA, allowing it to take advan-
tage of highly-parallelizable GPUs. A framework for imple-
menting SPH on CUDA, including the neighborhood search,
density/pressure gradient computation, etc, is described in
[8].

Collision detection is another open problem in SPH. Most
methods focus on polygon-sphere collision, such as [9], who
recently developed a method for continuous collision detec-
tion optimized for GPUs. Our problem requires sphere-sphere
collision detection, so we devised a new GPU-optimized algo-
rithm for this task. First, we set hsolid to be the minimum dis-
tance a fluid particle must be from a boundary particle (Figure
2 (a)). At the beginning of each time step, the boundary parti-
cles will advance forward in time. Let di be the line segment
connecting particle i’s starting and end positions (Figure 2
(b)). In the first pass, we make a list of all fluid-boundary
particle pairs that are in danger of colliding by performing a
bounding box test between di and each neighbor (Figure 2
(c)). Each time a potential ”danger pair” is encountered, the
particle pair indices are saved in global RAM. When done,
we have a full list of all potential collisions. We then exe-
cute a second CUDA kernel, where each thread performs a
sphere-line segment collision test on a single pair (Figure 2
(d)). If a collision is detected, we know where on the line
segment the intersection took place, and move the fluid par-
ticle in the direction of the boundary’s motion such that the

collision is resolved. The reverse procedure is done after the
fluid particles move, to prevent them from moving through
the boundary.

5. RESULTS

As mentioned previously, the models used in this simulation
were generated from CT imagery from a healthy patient’s
heart. The simulation was run three times, with different set-
tings of c and ∆t for each run. Each experiment was ini-
tialized with 1003 particles evenly-spaced throughout the do-
main, and the smoothing radius h was set to 2.5x the initial
distance between particles. In run 1, we set ∆t = 0:001s, and
c = 10m/s. In run 2, we set ∆t = 0:0005s, and c = 20m/s.
Finally, in run 3, ∆t = 0:00025s, and c = 30m/s. As c in-
creases, the fluid becomes less compressible, and so we ex-
pect accuracy to improve. All simulations were performed on
an Nvidia Geforce GTX 590. The running time of the simu-
lations scaled linearly as ∆t dropped. The total computation
time for run 1 was 30 minutes, the time for run 2 was 62 min-
utes, and the time for run 3 was 126 minutes. All of these
running times are orders of magnitude better than those de-
scribed in other methods. Each time step took 2.5-3 seconds
to complete. The force computation was the most expensive
step, taking an average of 1.5 seconds per iteration. The den-
sity computation took, on average, 0.5 seconds each per time
step. The rest of the time in each iteration was spread across
the remaining CUDA kernels, including the collisions; com-
pared to the density/force/velocity correction functions, the
others’ individual running times were negligible.

Visualizations of the blood flow can be seen in Figure 3.
Columns 1, 2, and 3 correspond to Runs 1, 2, and 3, respec-
tively. Frames in row 1 were taken during mid-diastole, and
frames in row 2 were taking during mid-systole. All frames
in a row were taken at equivalent time steps. The direction
of the flow is seen in the direction of the embedded cones,
and the velocity magnitude is shown by color, where blue re-
gions represent velocities approaching zero, and red regions
represent velocities approaching 1 m/s. We can see that as
∆t decreases and compressibility goes down, the computed
velocities within the heart go up and approach more accurate



(a) (b) (c)

(d) (e) (f)

Fig. 3. Velocity fields for simulations with different ∆t. Top row: Diastole, Bottom row: Systole, Left column: ∆t=0.001s, Middle column:
∆t=0.0005s, Right column: ∆t=0.00025s.

values. We note, however, that by thickening the walls as de-
scribed in Section 3.2, interactions between blood flow and
trabeculae are not clearly visible.

Validation of cardiac blood flow simulations is difficult.
In the future, we plan to acquire both CT and MRI images of
the patient’s heart, and use the MRI flow data to compare and
validate. Here, we compute the ejection fraction by counting
the number of particles within the heart at the end of sys-
tole and the end of diastole. We found that for run 1, the
ejection fraction was about 0.42, for run 2, the ejection frac-
tion was about 0.48, and for run 3, the ejection fraction was
0.50. Again, the increase in accuracy as ∆t is decreased is
expected, and gives the doctor a scalable option.

6. CONCLUSION

In this paper, we have described an adaptation of SPH to sim-
ulate blood flow through the left ventricle quickly and accu-
rately. By simply scaling ∆t and c, doctors can choose an
appropriate level of accuracy, while maintaining faster speeds
than previous methods allowed. To the best of our knowl-
edge, this is one of the most complex problems successfully
attempted with SPH, and is the fastest that patient-specific
cardiac blood flow simulations has been solved.

7. ACKNOWLEDGEMENTS

This work is supported by the Multiscale Quantification of 3D
LV Geometry from CT project, sponsored by NHLBI under
Grant Award Number 5R21HL088354-02.

8. REFERENCES

[1] Timothy Jones, Timothy N. Jones, and Dimitris N. Metaxas,
“Patient-specific analysis of left ventricular blood flow,” in MIC-
CAI, William M. Wells, Alan C. F. Colchester, and Scott L.
Delp, Eds., 1998, pp. 156–166.

[2] Viorel Mihalef, Razvan Ionasec, Yang Wang, Yefeng Zheng,
Bogdan Georgescu, and Dorin Comaniciu, “Patient-specific
modeling of left heart anatomy, dynamics and hemodynamics
from high resolution 4d CT,” in ISBI, Wiro Niessen and Erik
Meijering, Eds., 2010, pp. 504–507.

[3] Scott Kulp, Mingchen Gao, Shaoting Zhang, Zhen Qian, Szi-
lard Voros, Dimitris N. Metaxas, and Leon Axel, “Using high
resolution cardiac ct data to model and visualize patient-specific
interactions between trabeculae and blood flow.,” in MICCAI
2011, 2011, pp. 468–475.

[4] Matthias Müller, Simon Schirm, and Matthias Teschner, “Inter-
active blood simulation for virtual surgery based on smoothed
particle hydrodynamics,” Technol. Health Care, vol. 12, no. 1,
pp. 25–31, Feb. 2004.

[5] J. J. Monaghan, “Smoothed particle hydrodynamics,” Annual
Review of Astronomy and Astrophysics, vol. 30, pp. 546 – 574,
1992.

[6] Matthias Müller, David Charypar, and Markus Gross, “Particle-
based fluid simulation for interactive applications,” in Proceed-
ings of the 2003 ACM SIGGRAPH/Eurographics symposium on
Computer animation, Aire-la-Ville, Switzerland, Switzerland,
2003, SCA ’03, pp. 154–159, Eurographics Association.

[7] Andrea Colagrossi and Maurizio Landrini, “Numerical simula-
tion of interfacial flows by smoothed particle hydrodynamics,”
Journal of Computational Physics, vol. 191, no. 2, pp. 448 –
475, 2003.

[8] Prashant Goswami, Philipp Schlegel, Barbara Solenthaler, and
Renato Pajarola, “Interactive sph simulation and render-
ing on the gpu,” in Proceedings of the 2010 ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation,
Aire-la-Ville, Switzerland, Switzerland, 2010, SCA ’10, pp. 55–
64, Eurographics Association.

[9] Min Tang, Dinesh Manocha, Jiang Lin, and Ruofeng Tong,
“Collision-streams: Fast GPU-based collision detection for de-
formable models,” in I3D ’11: Proceedings of the 2011 ACM
SIGGRAPH symposium on Interactive 3D Graphics and Games,
2011, pp. 63–70.


