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ABSTRACT
Current CT techniques are able to produce isotropic high res-
olution CT images (0.5mm). Recent research has revealed
that the interior of the left ventricle has complex structures
and topology, which has potentially valuable information.
However, this makes the matching between models much
more challenging. In this paper, we propose a novel method
to match two models with non-trivial topology. 3D mesh
models are flattened onto a 2D planar surfaces using discrete
hyperbolic Ricci flow. Therefore, the 3D matching problem
is converted to a much simpler 2D matching problem. We
show the performance on the registration of high resolution
left ventricle models.

Index Terms— high resolution CT, shape registration,
Ricci flow

1. INTRODUCTION

Recent papers about cardiac reconstruction using high res-
olution CT images [4] have shown the complex topological
structure of the left ventricle. The interior of the left ventricle
surface includes many holes and handles. Papillary muscles
are also topologically complicated, as they are “rooted” on the
interior surface of the left ventricle. Even if we smooth out the
model and basically ignore the complicated trabeculae, there
are still a handful of handles left on the base of the papillary
muscles. To build a faithful and useful model, the complex
structures (especially the papillary muscles), which contain
clinically useful information, have to be preserved while mod-
eling for structural and functional analysis.

Establishing point-correspondences that have anatomical
meaning is crucial for many applications. For instance, the
Active Shape Model (ASM) requires a one-to-one correspon-
dence to get the mean geometry of a shape and some statis-
tical modes of geometric variations [1]. Another example is
the patient-specific blood flow simulation, which is a power-
ful tool for the study of cardiac blood flow and is getting more
and more attention in the medical imaging community [9].
The detailed cardiac shape is used as the boundary conditions
in a fluid simulator to derive the hemodynamics throughout
the whole heart cycle. This simulator also requires that the

cardiac shape must contain the correct one-to-one correspon-
dence among frames to provide the velocity of the boundary
in order to drive the simulator.

Existing registration methods are not suitable for this
problem. The complicated structure of the left ventricle
makes the registration very different from that of some or-
gans such as liver, lung, etc., which are usually modeled
with simple topology as genus zero. There are several cate-
gories of shape registration algorithms such as, point based
methods, including point set registration using Gaussian Mix-
ture Models [6], iterative closest point(ICP) methods [14, 3],
optical-flow-like correspondence interpolation [13] and de-
formable model methods [4, 10]. These shape registration
techniques has been widely investigated in biomedical appli-
cations [12].Those methods do not explicitly include topol-
ogy, thus that there is no guarantee of topology consistency
after registration. Some methods could handle the genus zero
surfaces, such as a harmonic map [16]. However, the method
cannot handle surfaces with arbitrary topology.

For the particular application of high resolution cardiac
registration, in [4], Gao et al. proposed a framework that uses
high resolution data to reconstruct the 4D motion of the en-
docardial surface of the left ventricle for a full cardiac cy-
cle. Their method deforms the same mesh model between
frames, such that it obtains one-to-one correspondence as a
byproduct while reconstructing the left ventricle. The es-
sential method used in their framework is the adaptive fo-
cus deformable model(AFDM) [11]. The deformable model
deforms in a way that seeks regions with similar geometric
structure. While the AFDM model works well in many cases,
especially with simple topology, a major drawback is that the
AFDM method cannot prevent models from self-intersection.
The high genus of the surfaces makes direct registration meth-
ods challenging. All the methods mentioned above cannot be
applied directly in this scenario.

These challenges, i.e., complex topology and large defor-
mation, motivate us to apply a novel method based on sur-
face Ricci flow. According to the uniformization theorem
in differential geometry [7], all surfaces in real life can be
flattened onto one of three canonical spaces, the sphere, the
plane and the hyperbolic disk, in an angle preserving manner.



Therefore, all geometric problems in three dimensional Eu-
clidean space can be converted to two dimensional problems
on the plane. High genus surfaces can be flattened onto the
hyperbolic disk. For surface registration, we map both mod-
els to their canonical shape; thus, our problem becomes a 2D
matching problem which is much easier. Surface Ricci cur-
vature flow is a practical method to compute such types of
flattening.

The algorithm proposed is as the followed. For each given
heart surface, we first compute the uniformization metric to
flatten it onto a Poincaré disk, using discrete hyperbolic Ricci
flow [7], then we segment the surface to canonical hyperbolic
hexagons, which become convex after they have been trans-
ferred into the Klein model [8]. The final step is to com-
pute the harmonic mapping between these convex hyperbolic
hexagons. By doing this, we transfer a high genus surface reg-
istration problem to a simple convex domain harmonic map-
ping problem, and guarantee the final mapping between sur-
faces will be one-to-one (diffeomorphism). We demonstrate
the performance of our method in high resolution left ventri-
cle models and compare it with the work in [4].

2. THEORETICAL BACKGROUND

In the following, we briefly introduce the background knowl-
edge needed for our method [2].

2.1. Surface Ricci Flow

Any closed surface S satisfies the following Gauss-Bonnet
theorem [2]: Ricci Flow[5] is a powerful curvature flow
method describing a process to deform the Riemannian met-
ric according to curvature, such that the curvature evolves
like a heat diffusion process:

dg
dt

= −2Kg. (1)

Theorem 1 (Uniformization) Suppose (S,g) is an oriented
metric surface, then it can be conformally mapped to one of
three canonical spaces, the sphere,the plane or the hyperbolic
disk, depending on its topology, and with constant Gauss cur-
vature everywhere.

2.2. Hyperbolic Geometry

Definition 1 (Poincaré disk) The Poincaré disk[2] is the unit
disk on the complex plane D = {|z| < 1, z ∈ C}, with hyper-
bolic metric ds2 = dzdz̄

(1−zz̄)2 .

Another model of hyperbolic space is the Klein model[8].
The following formula converts the Poincaré disk model to
the Klein model: z → 2

1+zz̄ . A pair of topological pants is
a genus zero surface with three boundaries. A pair of pants
is called a pair of hyperbolic pants, if it has a hyperbolic
metric, and all boundaries are geodesics.

Fig. 1. (a): A pair of hyperbolic pants with three geodesic
boundaries. (b): A genus g surface is decomposed to 2g − 2
pairs of hyperbolic pants by 3g − 3 geodesic cutting loops.

3. ALGORITHMS

The main algorithm pipeline is illustrated in Figure 2. The al-
gorithm includes three steps: Discrete Hyperbolic Ricci Flow,
Hyperbolic Pants Decomposition and Hyperbolic Hexagon
Matching.

Fig. 2. Algorithm pipeline: (a) Original surface M1. (b)
Compute the uniformization metric of M1 on the Poincaré
disk using discrete hyperbolic Ricci flow. (c) Segment M1

hyperbolic pants. (d) Further cut each hyperbolic pants into 2
hyperbolic hexagons. (e) The correspondent convex hexagon
of the hyperbolic hexagon. (f) The corresponding convex
hexagon of another surface M2 to be registered with M1.
Building all the mapping between corresponding hyperbolic
hexagons, induces the mapping between M1 and M2.

Step 1: Discrete Hyperbolic Ricci Flow The computa-
tion of the hyperbolic metric on a triangular mesh is based
on the discrete hyperbolic Ricci flow [7] [15], as Algorithm 1
shows.

Step 2: Hyperbolic Pants Decomposition Given a genus
g closed surface, we compute the hyperbolic pants decom-



Algorithm 1 Discrete Hyperbolic Ricci Flow.
Input: Surface M .
Output: The hyperbolic metric U of M .
1. Assign a circle at vertex vi with radius ri; For each edge
[vi, vj ], two circles intersect at an angle φij , called edge
weight.
2. The edge length lij of [vi, vj ] is determined by
the hyperbolic cosine law: coshlij = coshricoshrj +
sinhrisinhrjcosφij
3. The angle θjki , related to each corner , is determined by
the current edge lengths with the inverse hyperbolic cosine
law.
4. Compute the discrete Gaussian curvature Ki of each
vertex vi:

Ki =

{
2π −

∑
fijk∈F θ

jk
i , interior vertex

π −
∑

fijk∈F θ
jk
i , boundary vertex

(2)

where θjki represents the corner angle attached to vertex vi
in the face fijk
5. Update the radius ri of each vertex vi: ri = ri −
εKi sinh ri
6. Repeat the step 2 through 5, until ‖Ki‖ of all vertices
are less than the user-specified error tolerance.

position which decomposes the original surface into 2g − 2
hyperbolic pants. We compute a set of loops {l1, l2...l3g−3}
that topologically cutM into 2g-2 pants. And then compute a
set of geodesics loops {l̄1, l̄2... ¯l3g−3} that they are homotopic
to {l1, l2...l3g−3}. These geodesics loops can decompose M
into 2g-2 hyperbolic pants.

For a closed surface, each homotopy class has an unique
geodesic loop under a hyperbolic metric; the hyperbolic cut
loops form a canonical segmentation of the surface, so it is
intrinsic to enforce the corresponding hyperbolic hexagons
boundaries geodesics to be matched in Hyperbolic Hexagon
Matching subsection.

Step 3: Hyperbolic Hexagon Matching We carried out
the matching between hyperbolic hexagons using harmonic
mapping. It is well known that if the target mapping domain
is convex, the harmonic map will be a diffeomorphism. So
we first transfer the hyperbolic hexagon into the Klein model,
in which the hyperbolic hexagon is mapped to a convex Eu-
clidean polygon. This step guarantees the final registration
between heart surfaces is one-to-one. Details can be found in
Algorithm 2.

4. EXPERIMENTAL RESULTS AND VALIDATION

We applied our heart surface registration method to a se-
quence of high resolution left ventricle models. The models
are 10 frames of heart surfaces segmented from CT vol-
umes. The CT data were acquired on a 320 − MDCT
scanner using a conventional ECG-gated contrast-enhanced

Algorithm 2 Hyperbolic Hexagon Matching Algorithm.
Input: Two hyperbolic hexagons H1 and H2.
Output: The harmonic mapping between H1 and H2.
1. Compute hyperbolic mappings which map the H1 and
H2 onto the Poincaré disk. As we already have the uni-
formization metric of the original surface and the cut loops,
this step can be done by simply cutting the uniformization
domain mesh along the pants decomposition cuts loops (we
name the corresponding uniformization domain meshes U1

and U2).
2. Convert U1 and U2 from the Poincaré disk model to the
Klein model; then U1 and U2 become convex polygons.
3. Compute a harmonic map between U1 and U2, then con-
struct a mapping the between originalH1 andH2 using the
mapping between Hi and Ui, i ∈{1,2}.

Fig. 3. The model after registration in [4], which deforms the
source model to the target model. The method cannot prevent
self-intersections shown by the green regions, which are part
of the papillary muscle inside of the left ventricle and have
been deformed to the outside of the left ventricle.

CT angiography protocol. The imaging protocol parameters
include: prospectively triggered, single-beat, volumetric ac-
quisition; detector width 0.5mm, voltage 120KV , current
200 − 550mA. Reconstructions were done at 10 equally
distributed time frames in a cardiac cycle. The resolution of
each time frame is 512 by 512 by 320. The left ventricle
models are reconstructed using the method described in [4].
Although their methods already provide one-to-one corre-
spondence during reconstruction, the registration quality is
not reliable. Most importantly, their method cannot prevent
self intersection, as shown in Figure 3.

Figure 4 shows a colormap of the registration results. The
points with the same color correspondent to each other. The
results show reliable registration between frames. Figure 5
shows detailed point-to-point correspondence around han-
dles, which is a challenging part of the model. The same
color points correspond to each other. The proposed meth-
ods guaranteed the one-to-one correspondence and topology
consistency.

We evaluated the accuracy of the matching results φ :
S1 → S2 by using the shape error defined in [15], namely



Fig. 4. ColorMap for Registration results: the points which
have the same color correspond to each other. Figure (a)
and (b) show the registration in front view, figure (c) and (d)
show a view of the papillary muscle correspondence inside
the heart.

Fig. 5. Detailed point to point correspondent: the tiny balls on
two registered surfaces with the same color are corresponding
points.

Fig. 6. This figure shows the shape error. Each frame is reg-
istered to the following frame. The last frame is registered to
the first one.

the average distance between the source point and the cor-
responding image point, normalized by the diagonal of the
bounding box of the target surface. Figure 6 shows the shape
error. Both methods are tested on desktop Intel Core2 Quad
Q6600 2.4GHz. The proposed method is more efficient for
registering two models (20,000 vertices for each model) in
around 35′′ other than 8′30′′ in [4].

5. CONCLUSIONS

We have proposed a novel method to register the left ventricle
endocardial surface models. The complicated structures in-
side the left ventricle, such as the papillary muscles, are pre-
served during registration. Our method guaranteed the one-
to-one correspondence and the shape topology consistency.
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