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Abstract
Device-free passive (DfP) localization techniques can lo-

calize human subjects without wearing a radio tag. Being
convenient and private, DfP can find many applications in
ubiquitous/pervasive computing. Unfortunately, DfP tech-
niques need frequent manual recalibration of the radio signal
values, which can be cumbersome and costly. We present
SenCam, a sensor-camera collaboration solution that con-
ducts automatic recalibration by leveraging existing surveil-
lance camera(s). When the camera detects a subject, it can
periodically trigger recalibration and update the radio signal
data accordingly. This technique requires camera access oc-
casionally each month, minimizing computational costs and
reducing privacy concerns when compared to localization
techniques solely based on cameras. Through experiments
in an open indoor space, we show that this scheme can retain
good localization results while avoiding manual recalibra-
tion.

Categories and Subject Descriptors
C.3 [Special-Purpose and Application-Based System-

s]: Real-time and embedded systems

Keywords
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1 Introduction
In the vision of pervasive computing, future smart envi-

ronments will contain hybrid sensors to enhance life; ex-
amples include elder care, security at commercial places,
etc. The key to these ubiquitous applications is the ability
to localize various subjects and objects in the environmen-
t. Device-free passive (DfP) localization [3] has been pro-
posed as a way of detecting and tracking subjects without
the inconvenience and loss of privacy associated with carry-
ing tags or devices.

Copyright is held by the author/owner(s).

SenSys’12,November 6–9, 2012, Toronto, ON, Canada.
Copyright c© 2012 ACM 978-1-4503-1169-4/11/12 ...$10.00

Several RF-based DfP localization techniques have been
proposed in [3, 2, 1]. These approaches observe how people
disturb the pattern of radio waves in an indoor space and
derive their positions accordingly. They either calibratethe
system by fingerprinting [3, 2], or use attenuation models
based on the position of the subject relative to a line-of-sight
radio link [1].
Limitation In State-of-Art Work Because of changes in ra-
dio attenuation as objects or people move in the environment,
the received signal strength (RSS) changes enough to require
frequent recalibration to maintain localization accuracy. As
shown in [2], the localization accuracy can drop from 97%
to 20% without any recalibration after only one month. Fre-
quent recalibration entails high overheads in time and effort,
especially in a large space.
Camera-Assisted Automatic Recalibration We design
SenCam, an automatically calibrated DfP system that lever-
ages cameras that already exist in many indoor environ-
ments, such as supermarkets, grocery stores and offices that
have been equipped with surveillance cameras for security
reasons. Many data collected by these cameras can be pro-
cessed to provide recalibration data for a DfP system with-
out the interference associated with RF-based approaches.
SenCam works as follows: first, when we collect radio fin-
gerprinting data from multiple radio links in the region and
image data from one or more cameras. From time to time,
when camera is on, it detects the subject location, records
the time and radio data, and updates the radio training data
accordingly. Thus, we can retain good localization results
while avoiding manual recalibration over time.

2 Camera-Assisted DfP Localization
The goal is to localize a subject without requiring that

they carry any device. We slice a deployed region into cell-
s, and seek to identify the occupied cell of the subject. To
characterize the environment, we take fingerprints in both ra-
dio RSS values and camera images while having the subject
make random movements within each cell. Then, we treat
each cell’s fingerprints as a class, and adopt proper classi-
fication algorithms to build RSS and image classifiers re-
spectively. After the initial training phase, the camera will



Figure 1. 10 wireless transmitters
and 6 receivers are deployed in this
20× 20 m open space.
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Figure 2. Comparing the CDF of lo-
calization error distances with dif-
ferent recalibration effort.
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Figure 3. Cell estimation accuracy
with 95% confidence interval error
bar versus the learning rate.

occasionally capture images and identify the occupied cell
through computer vision techniques. Meanwhile, it can trig-
ger the sensors to take new RSS values and refresh and re-
calibrate the radio fingerprints.
Radio Frequency ApproachOur radio fingerprints for each
cell consist of RSS values of each radio link when the sub-
ject appears in that cell. Using these RSS values, Linear Dis-
criminant Analysis (LDA) is used to solve the RF-based DfP
indoor localization problem [2]. Essentially, the RSS vectors
will be collected and fitted into a multivariate Gaussian when
a subject is in different cells for training and testing.
Computer Vision Approach Starting with camera images,
pixel-wise absolute differences between each incoming im-
ageI(k) and the known background imageB are computed.
The pixels are assumed to contain the subject if the absolute
difference exceeds a predefined threshold level. After getting
the foreground image, we detect the boundary of the fore-
ground subject. The bottom position of the subject boundary
indicates the subject location. Features extracted using this
method are ready for training and testing. We use Support
Vector Machine (SVM) to identify the subject location in the
incoming images.
Sensor-Camera Collaboration While image fingerprints
remain stable over time, radio RSS fingerprints may quickly
age and become invalid because radio signals are easily af-
fected by changes in the environment. For instance, battery
drain can reduce output power, which can directly change
how much a subject can disturb ambient radio signals. As
another example, movement of the other objects in the en-
vironment can change the multipaths of the links, leading to
an unpredictable impact on the radio RSS values. Through
background subtraction, image training data is rather stable
over time. We make use of this property to recalibrate the
radio RSS fingerprints automatically. Specifically, we turn
on the camera from time to time to capture images. Once the
subject is identified in one of the cells, the system collectsthe
RSS data on all the radio links, and refreshes the radio RSS
fingerprints for this specific cell with the latest RSS read-
ings. In this way, we have implemented a DfP scheme that is
robust against environmental changes.

3 Experimental Evaluation
SenCam setup consists of a centralized PC serving as the

system manager, 10 wireless transmitters and 6 receivers.

Each transmitter broadcasts 10 beacons every second. After
receiving these beacons, the receivers extract the RSS values
in dBm and forward them to the centralized PC for data col-
lection and analysis. We also set up a webcam by placing it
at 2.5 m above the floor, taking images (each frame including
320× 240 pixels) every second. SenCam system is deployed
in a 20× 20 m room whose picture is shown in Figure 1. We
choose a 8× 8 m area, which is further partitioned into 16
cells, each of 2× 2 m in size.

We use cell estimation accuracy as our performance met-
ric, which is defined as the ratio of successful cell estima-
tions with respect to the total number of estimations. We
randomly choose a path consisting of 7 cells to test the track-
ing performance one month after initial profiling. Figure 2
shows the cell estimation accuracies for four different cas-
es. In the first case, there is no recalibration, and we just use
initial RSS fingerprints in the testing phase. In the second
case, we conduct one recalibration, during which the subjec-
t walks along the path, and we refresh the RSS fingerprints
with the help of camera. We conduct two rounds of recali-
bration in the third case, and three rounds in the fourth case.
Using initial fingerprints without any recalibration, DfP is
not robust against environmental changes and leads to poor
localization results, i.e. only 56% cell estimation accuracy.
The more recalibration we conduct, the better the localiza-
tion performance. For instance, when we have three rounds
of recalibration, we can retain a 91% cell estimation accura-
cies in spite of large environmental changes, which is shown
in “no calibration” case.

In each recalibration round, we can choose to update only
a subset of RSS fingerprints. We then define a parameter
calledlearning rate α, the proportion of the RSS fingerprints
we update in each recalibration round. We vary the value of
α and show our experimental results in Figure 3. We observe
that by updating less than half of the RSS training data, we
can achieve better localization accuracies.

4 References
[1] J. Wilson and N. Patwari. Radio tomographic imaging with wireless

networks. IEEE Transactions on Mobile Computing, 9(5):621 –632,
May 2010.

[2] C. Xu, B. Firner, Y. Zhang, R. Howard, J. Li, and X. Lin. Improving rf-
based device-free passive localization in cluttered indoor environments
through probabilistic classification methods. IPSN ’12, 2012.

[3] M. Youssef, M. Mah, and A. Agrawala. Challenges: device-free passive
localization for wireless environments. MobiCom ’07.


