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3D anatomical shape atlas construction has been extensively studied in medical image analysis research,
owing to its importance in model-based image segmentation, longitudinal studies and populational sta-
tistical analysis, etc. Among multiple steps of 3D shape atlas construction, establishing anatomical corre-
spondences across subjects, i.e., surface registration, is probably the most critical but challenging one.
Adaptive focus deformable model (AFDM) [1] was proposed to tackle this problem by exploiting cross-
scale geometry characteristics of 3D anatomy surfaces. Although the effectiveness of AFDM has been
proved in various studies, its performance is highly dependent on the quality of 3D surface meshes, which
often degrades along with the iterations of deformable surface registration (the process of correspon-
dence matching). In this paper, we propose a new framework for 3D anatomical shape atlas construction.
Our method aims to robustly establish correspondences across different subjects and simultaneously
generate high-quality surface meshes without removing shape details. Mathematically, a new energy
term is embedded into the original energy function of AFDM to preserve surface mesh qualities during
deformable surface matching. More specifically, we employ the Laplacian representation to encode shape
details and smoothness constraints. An expectation–maximization style algorithm is designed to opti-
mize multiple energy terms alternatively until convergence. We demonstrate the performance of our
method via a set of diverse applications, including a population of sparse cardiac MRI slices with 2D
labels, 3D high resolution CT cardiac images and rodent brain MRIs with multiple structures. The con-
structed shape atlases exhibit good mesh qualities and preserve fine shape details. The constructed shape
atlases can further benefit other research topics such as segmentation and statistical analysis.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

3D anatomical shape atlas is an important component in vari-
ous biomedical studies, e.g., the neuroanatomical shape complex
atlas [2] and the cardiac atlas [3]. In short, a 3D shape atlas pro-
vides reference of a population of shapes (usually of the same or-
gan/anatomical structure) in a statistical way. These shape
statistics can be exploited in numerous applications such as, but
not limited to, statistical analysis of the populations [4], the seg-
mentation of the structures of interest [5], the detection of the dis-
ease regions [6] and tracking for MRI-guided robotic intervention
[7–9].

A 3D shape atlas is usually constructed from a set of volumetric
images with organs of interest labeled. In general, as shown in
Fig. 1, the construction of a shape atlas consists of three major
steps, surface reconstruction, surface registration and statistical
analysis. Surface reconstruction aims to convert a labeled volume
to a surface. Although different surface representations have been
proposed in [10–12,2], triangle mesh is the most widely used one,
which can be reconstructed by the marching cube algorithm [13].
In this way, a surface is described by a set of vertices and triangle
patches. After a population of surfaces are reconstructed, surface
registration is performed to build correspondences across different
surface instances. More specifically, vertices of the same local anat-
omy should be labeled as correspondences across population. Only
after correct correspondences are established, can statistical anal-
ysis (e.g., Principal Component Analysis [4]) be performed to ex-
tract meaningful shape statistics. In fact, since the quality of a
shape atlas is highly dependent on the accuracy of surface registra-
tion, surface registration becomes the most critical yet challenging
step of the construction of 3D shape atlas. We will mainly focus on
surface registration in the remainder of this paper.
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http://www.sciencedirect.com/science/journal/10773142
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Fig. 2. The source mesh is registered to the target one using AFDM. The resulting mesh contains many artifacts because of the mesh degeneration during the deformation.

Fig. 1. General framework of the construction of a shape atlas. SSM stands for statistical shape model. Our work focuses on the shape registration, which is highlighted in the
framework.
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Surface registration1 has been extensively studied in recent dec-
ades (detailed in Section 2). Adaptive focus deformable model
(AFDM) [1,14] is one of the most representative ones. In AFDM, a
set of geometric attributes are designed to characterize a surface.
By matching these geometric attributes, a surface can deform to an-
other, which essentially establishes correspondences between them.
Apart from the success of AFDM in various applications, the registra-
tion accuracy of AFDM is sensitive to the mesh qualities, which
might degrade during the surface deformation. As shown in Fig. 2,
if irregular topology and skinny triangle patches appear, geometric
attributes will unexpectedly change, hence, the registration accuracy
decreases.

In this paper, we propose a new framework for 3D anatomical
shape atlas construction. Our method aims to robustly establish
correspondences across different surfaces and simultaneously gen-
erate high-quality surface meshes without losing shape details.
Mathematically, a new energy term is incorporated into the origi-
nal energy function of AFDM to preserve surface mesh qualities
during deformable surface matching [15]. More specifically, we
employ the Laplacian representation to encode shape details and
smoothness constraints. An expectation–maximization style algo-
rithm is designed to optimize multiple energy terms alternatively
until convergence. In addition, a hierarchical strategy is employed
to effectively extract shape statistics of complex anatomical struc-
tures, which often include multiple parts. In this way, only a lim-
ited number of training samples are required to obtain statistics
of complex anatomical shapes.

Our method is evaluated in three very diverse applications: (1)
left ventricle atlas construction from sparse cardiac MRI slices, (2)
high resolution cardiac atlas construction from CT images, and (3)
atlas construction rodent brains (with multiple structures) from
dense brain MRI. For these two cardiac applications, our method
is able to find the anatomical point correspondence both among
multiple instances of the same phase of a cardiac cycle or sequen-
tial phases of one cycle. The ability to fit the atlas to all temporal
1 In literatures, it is sometimes named as ‘‘correspondence matching’’ or ‘‘surface
matching’’.
phases of a dynamic study can benefit the automatic functional
analysis. For the brain application, our approach is able to discover
the spatial relationship among multiple structures and construct a
shape atlas for all structures.

The major contributions are as follows:

1. Propose a novel approach to improve the traditional AFDM by
incorporating an energy term to preserve shape quality during
surface deformation. Besides establishing surface correspon-
dences, registered surfaces have high mesh qualities and are
generally smooth without significantly sacrificing shape details.
Furthermore, a hierarchical strategy is employed to extract
shape statistics of complex shapes (with multiple structures)
using a limited number of training samples.

2. Using this approach, we solve several diverse and challenging
tasks. Specifically, we create a high resolution cardiac shape
atlas with many complex shape features such as papillary mus-
cles and the trabeculae. We also effectively construct the atlas
of multiple rodent brain structures (i.e., the cerebellum, the left
and right striatum, and the left and right hippocampus) using a
small set of samples.

The rest of the paper is organized as follows. Section 2 reviews
related work of surface registration. Section 3 details our approach,
including the whole framework (Section 3.1), different energy
terms (Sections 3.2–3.4) and the extraction of shape statistics (Sec-
tion 3.5). Section 4 shows the experimental results of three appli-
cations. Section 5 concludes this paper.
2. Related work

In this section we review relevant work of surface registration
[16]. When two surfaces have the same number of vertices,
Procrustes analysis [17] can be employed to find an optimal global
transformation (e.g., rigid or similarity transformation) to align
them. However, established surface correspondence is a prerequi-
site of Procrustes analysis. One can use the Iterative Closest Point
(ICP) algorithm [18] or the Soft-assign Procrustes [19] to establish



Fig. 3. Illustration of the geometric attributes of AFDM. Volumes of tetrahedrons
with different colors describe geometric characteristics in a local-to-global fashion.
(For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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correspondences. These two methods also find the optimal similar-
ity transformation from one surface to the other as a result. This
constraint adversely affects the registration performance when
dealing with shapes having complex local details. In fact, non-rigid
registration of training meshes is a better choice in these scenarios.
Representative work of deformable registration includes B-Splines
[20] and multi-resolution Octree splines [21]. Another type of
methods use pattern recognition techniques to determine corre-
spondences. For example, unsupervised clustering has been em-
ployed to detect the corresponding parts on other shapes [22].
Dynamic programming and pattern matching has also been used
to find corresponding points according to features learned from a
set of sparsely annotated training examples [23]. Both methods
have only been validated on 2D cases. One can also assume the
alignment of two point sets as a probability density estimation
problem. Following this assumption, Coherent Point Drift (CPD)
[24] and Robust Point-set Registration [25] have been proposed.
Some other algorithms, [26,27], have used auxiliary information,
such as a set of landmarks, which can be used to guide a Thin-
Plate-Spline deformation in deformable shape registration.

Different from the aforementioned algorithms, AFDM [1] aims
to register surfaces by exploiting comprehensive geometric charac-
teristics. As shown in Fig. 3, each vertex has multiple geometric
attributes that are defined by the volumes of tetrahedrons (color
dashed lines in Fig. 3) consisting with its neighbors. In this way,
the geometric characteristics of a surface are described in a local-
to-global fashion. Surface registration is then formulated as an
optimization problem, which aims to maximize the geometric sim-
ilarities between two surfaces. In practice, the optimization is real-
ized via iteratively deforming one surface to the other. Although
AFDM achieved tremendous success in various applications
[5,28–30], its performance is dependent on the quality of the sur-
face mesh. It is not difficult to see that a low quality mesh, i.e., a
mesh with highly non-equilateral triangle patches, will contain
abnormal geometric attributes, which will adversely affect the reg-
istration accuracy. In fact, AFDM often requires the pre-process of
both surfaces, which ensures good mesh qualities. However, since
traditional AFDM does not preserve mesh qualities during surface
deformation, the inaccurate registration resulting from degraded
mesh qualities cannot be avoided.

To validate the proposed shape registration method, we measure
the registrations errors and shape quality [31]. In addition, we also
measure the goodness of correspondence established by our meth-
od. We follow the measurements that have been widely used [32–
34], including the model compactness and model generalization.
3. Methodology

3.1. Algorithm framework

As discussed before, the performance of AFDM relies on the
mesh quality, which might degrade during the deformable regis-
tration. In fact, the deformed surface with bad mesh qualities af-
fects not only the registration accuracy but also the statistical
analysis. Though pre-processing techniques using mesh smoothing
methods such as [35–37] can alleviate the problem to some degree,
it is still highly possible that the mesh is degenerate during shape
deformation. Thus it is desirable to design a unified framework to
consider shape deformation and mesh quality simultaneously,
which will be detailed next.

Denote Mo and Mt as the source and target surface, respectively.
Surface registration aims to deform Mo to Md, such that Md and Mt

have maximum geometric similarity. This process is formulated as
an energy minimization procedure. Three energy functions are
introduced to control the model deformation and preserve the
mesh quality, i.e., model energy, external energy and shape energy.
The energy function is defined as:

E ¼ ½EmodelðMd;MoÞ þ EextðMd;MtÞ� þ EshapeðMd; LoÞ: ð1Þ

Here, External energy Eext(Md, Mt) is the distance between Md and Mt.
It is designed to drive the model deforming towards the boundaries
of the target model Mt. Model energy Emodel(Md, Mo) reflects the geo-
metric differences between Mo and Md. It preserves the geometric
characteristics during the deformation. By jointly minimizing these
two terms, the model will deform to the boundaries of the target
and still preserving its geometric characteristics. In our study, an
additional term Shape energy Mshape(Md, Mo) is designed to ensure
that vertices are evenly distributed and shape details are roughly
preserved. Using only Emodel and Eext produces similar results as
AFDM, which makes the surface registration sensitive to mesh qual-
ity. The quality energy Mshape induced here ensures that the mesh
quality is improved during deformation procedure, making the
whole model more robust to handle diverse input.

To optimize this energy function, we use an expectation–maxi-
mization (EM) type of algorithm. During the ‘‘E’’ step, the model
energy and external energy are minimized using similar approach
as AFDM. Thus the source surface is deformed to fit the target one,
although this deformation may degrade mesh quality and not be
accurate. In the ‘‘M’’ step, the mesh quality is improved by mini-
mizing the shape energy. As we show in Section 3.4, this step is for-
mulated as a least square problem and solved efficiently. Two
procedures are alternately performed to robustly register the
source surface to the target surface. In the following sections, we
will introduce the details of different energies as well as the opti-
mization algorithms.
3.2. External energy

External energy measures the distance between the deformed
surface and the target one. The minimization of external energy
Eext is fairly standard. First, distance transform is applied to Mt to
obtain a binary distance 3D image It, which is the implicit embed-
ding space of the target mesh. Then the deformed mesh Md is
placed in the embedding space It. Standard gradient on Md vertices
is computed from It. The gradient force drives Md to be close to Mt

on the boundaries. The details of Emodel and Equality are introduced in
the next two subsections.

EextðMd;MtÞ ¼ EextðMd; ItÞ ¼ �jrIj2; ð2Þ

where r is the gradient operator.



Fig. 4. Vertex vi and its 1-ring neighbors. The red arrow (center) is the vector
obtained from the uniform weights, which points to the centroid. The green arrow
(to the right) is the vector obtained from the cotangent weights 1

2 ðcot aþ cot bÞ
� �

,
which approximates the normal. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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3.3. Model energy

Model energy measures the geometric differences between the
original model and its deformed version. It is designed to maintain
the geometric characteristics of the source surface while it is
deforming to the target one. Model energy is defined by the differ-
ences of geometric attribute vectors. An attribute vector is attached
to each vertex of the model, which reflects the geometric structure
of the model from a local to global level. For a particular vertex Vi in
3D, each attribute is defined as the volume of a tetrahedron on that
vertex. The other three vertices form the tetrahedron are randomly
chosen from the lth level neighborhood of Vi. Smaller tetrahedrons
reflect the local structure near a vertex while larger tetrahedrons
reflect a more global information around a vertex. The attribute
vector, if sufficient enough, uniquely characterizes the different
anatomical structures along a surface. Denote the volume of a tet-
rahedron as fl(Vi), the attribute vector of a vertex is defined as:

FðViÞ ¼ ½f1ðViÞ; f2ðViÞ; . . . ; fRðViÞðViÞ�; ð3Þ

where R(Vi) is the neighborhood layers we want to use around Vi.
The model energy term reflects the differences of attribute vec-

tors between the original and the deformed surface. Mathemati-
cally, it is represented as:

EmodelðMd;MoÞ ¼
XN

i¼1

XRðViÞ

l¼1

dlðfd;lðViÞ � fo;lðViÞÞ2; ð4Þ

where fd, l(Vi) and fo, l(Vi) are components of attribute vectors of the
deformed surface and surface at vertex Vi, respectively. dl here de-
notes the importance of the lth neighborhood layers. R(Vi) is the
number of neighborhood layers around vertex Vi.

The proposed algorithm is optimized iteratively. In each itera-
tion, a neighborhood of a vertex has been examined and the point
in the neighborhood with the minimum model energy would be
chosen as the new location of the vertex. The iterations continue
until the energy converges. During the deformation, we suggest
moving a surface segment as a whole, rather than a single vertex.
This would avoid the risk of getting trapped in a local minimum,
and also speed up the convergence. Let Vi be the vertex to be de-
formed during a particular iteration. The first to R(Vi)th neighbor-
hood layers are about to move together as a surface segment.
Suppose Vi is to move to Vi + D as a tentative position. Then the
new position of each vertex nbrl, m(Vi), the mth vertex on lth neigh-
borhood layer, is set to move to:

nbrl;mðViÞ þ D � exp � l2

2d2

 !
; ð5Þ

where d is a parameter determining the locality of the transforma-
tion. We make the deformation unchanged on the boundary of the
surface segment, such that the continuity has been maintained.

The parameter R(Vi) that determines the locality if the deforma-
tion is chosen to be large in the initial iteration, and is then grad-
ually reduced to 1. Therefore, initially there are more vertices
involved in the deformation. More global features are used in
deformation. In later stages, more local deformations are
performed.

3.4. Shape energy

Shape energy is used to smooth the shape without losing the
important details. Usually there is a tradeoff between the smooth-
ness and keeping shape details. We extend the Laplacian coordi-
nate to achieve this. Let the mesh M of the shape be described
by a pair ðV; EÞ, where V ¼ fv1; . . . ;vng describes the geometric
positions of the vertices in R3 and E describes the connectivity.
The neighborhood ring of a vertex i is the set of adjacent vertices
Ni ¼ fjjði; jÞ 2 Eg and the degree di of this vertex is the number of
elements in Ni. Instead of using absolute coordinates V, the mesh
geometry is described as a set of differentials D = {di}. Specifically,
coordinate i will be represented by the difference between vi and
the weighted average of its neighbors:

di ¼ v i �
X
j2Ni

wijv j; ð6Þ

where wij is computed from cotangent weights [38] (Fig. 4). Assume
V is the matrix representation of V. Using a small subset A � V of m
anchor points, a mesh can be reconstructed from connectivity infor-
mation alone. The x, y and z positions of the reconstructed object�

V 0p ¼
h
v 01p; . . . ; v 0np

iT
;p 2 fx; y; zg

�
can be solved for separately by

minimizing the quadratic energy:

EshapeðMd; LoÞ ¼ kMd � Lok ¼ kLuV 0p � Dk2 þ
X
a2A
kv 0ap � vapk2

; ð7Þ

where Lu is the Laplacian matrix from uniform weights, and the vap

are anchor (landmark) points. kLV 0p � Dk2 tries to smooth the mesh
when keeping it similar to the original shape, and

P
a2Akv 0ap � vapk2

keeps the anchor points unchanged. The cotangent weights approx-
imate the normal direction, and the uniform weights point to the
centroid. By minimizing the difference of these two (i.e., LuV0 and
D), the vertex is actually moved along the tangential direction. Thus
the shape is smoothed without significantly losing the detail. With
m anchors, (7) can be rewritten as a (n + m) � n overdetermined lin-
ear system AV 0p ¼ b:

L

Iap

� �
V 0p ¼

D

Vap

� �
: ð8Þ

This is solved in the least squares sense using the method of normal
equations V 0p ¼ ðA

T AÞ�1AT b. The conjugate gradient method is used
in our system to efficiently solve it. The first n rows of AV 0p ¼ b
are the Laplacian constraints, corresponding to kLV 0p � Dk2, while
the last m rows are the positional constraints, corresponding toP

a2Akv 0ap � vapk2. Iap is the index matrix of Vap, which maps each
V 0ap to Vap. The reconstructed shape is generally smooth, with the
possible exception of small areas around anchor vertices. Different
from [39], we use cotangent weights instead of uniform weights.
Thus the movement along the normal direction is prevented, and
shape details can be better preserved.

Although this method is able to improve mesh quality during
runtime, it may still have difficulty to handle very dense and
degenerated initial meshes. Furthermore, the computational effi-
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ciency can also be adversely affected by such dense meshes. Thus,
we can also improve the mesh quality in the pre-process step, as
shown in Fig. 5. Usually mesh decimation can be employed to de-
crease the number of vertices, and this shape energy can be used to
smooth the mesh.

3.5. Shape statistics

The one-to-one correspondence is obtained for each vertex
among all shapes after shape registration. Then the shape statistics
can be computed straightforwardly using generalized Procrustes
analysis and hierarchical PCA. Given any two shapes, they can be
fitted to each other using a similarity or rigid transformation. Pro-
crustes analysis is used to find the translation, rotation and scaling
components. Since there is no mean shape in the beginning, gener-
alized Procrustes analysis arbitrarily chooses a shape to use as the
reference and transforms all the rest to fit it. After that, a mean
shape is computed by averaging all transformed shapes. Then, this
mean shape is used as a reference shape in the next round. We re-
peat this procedure until the mean shape converges to a stable
state. Note that normalization is necessary, as otherwise the mean
shape will degenerate to a single point. After the alignment, each
resulting shape is filled into a matrix as a column vector. PCA is ap-
plied to get the Point Distribution Model (PDM).

To effectively extract shape statistics from complex shapes,
which often have multiple structures, we employ PCA hierarchi-
cally. First, RPCA is applied on each structure separately. Thus,
shape variation of individual structure can be well discovered even
with limited number of samples. Second, their relative locations
with respect to the mass centroid are also modeled using PCA. This
global statistics is used to place structures. Then local statistics of
shapes is employed to select the important ‘‘modes’’ (i.e., eigenvec-
tors corresponding to the largest eigenvalues) to cover more than
80% of the variance. Combining the mean shape and the modes,
the PDM is able to summarize and describe the sample shapes con-
cisely and accurately.

4. Experiments

In this section, we validate our method using three applica-
tions: construction shape atlas of (1) left ventricle from sparse
Fig. 5. Illustration of geometry processing methods, including decimation and detail
characteristics with certain level of details, while the mesh quality is highly improved.
MRI; (2) cardiac anatomies form high resolution CT images; and
(3) multiple structures of rodent brains from MR Microscopy.

4.1. Left ventricle 3D shape atlas in sparse MR

MRI has been proven to be a noninvasive tool that can be used
to measure the myocardial mass and functional deformation of the
heart [40]. Quantification of ventricular mass and function are
important for early diagnosis of cardiac disorders and quantitative
analysis of cardiac diseases. Recent developments in Cine MRI fur-
ther help the diagnosis of heart disease by analyzing the heart
function throughout the cardiac cycle. MRI is becoming considered
as a gold-standard for cardiac function [41,42]. In this context, the
construction of an anatomical shape atlas of the structures in the
heart has been of particular interest and its importance has been
emphasized in a number of recent studies [43–45]. In this experi-
ment, we evaluate our method on 36 3D CINE MRI scans along with
their 2D delineations. These cine steady state free precession
(SSFP) MR short axis (SAX) images were obtained with a 1.5T GE
Signa MRI. All the images were obtained with a temporal resolu-
tion of 20 cardiac phases over the heart cycle, and scanned from
the ED phase. The slice thickness is large, which is a tradeoff be-
tween spatial and temporal resolution. Thus it is difficult to do real
3D annotations. Manual segmentation was applied in each 2D slice.

Mesh decimation is applied as pre-process (Fig. 6), and our
method is then employed to generate surface correspondences.
The quality of resulting meshes are evaluated in two aspects: (1)
mesh quality and (2) similarity to the original shape. To evaluate
the mesh quality, we report the mean and minimum values of
the radius ratio [31]. It is computed from 2 r

R, where r and R are
the radii of the inscribed and circumscribed circles of each triangle,
respectively. Larger values are preferred. In the original meshes,
the mean is 0.654 and minimum is 0.00028. Such mesh quality is
not desirable for applications like simulation and segmentation.
After using our method, the mean and minimum values become
0.962 and 0.661. The mesh quality is significantly improved. To
evaluate the similarity between the processed mesh and the origi-
nal mesh, we compute the voxel distance between them. As shown
in Fig. 7, most distances between corresponding vertices are within
one voxel. The resulting shapes are more smooth and most
artifacts are removed, while the shape detail is still preserved. Fur-
preserve smoothing. After these operations, the mesh still has similar geometric



Fig. 6. Samples of decimated 3D meshes, from five different cardiac phases (left to right). The first row shows the surface rendering, and the second row shows their
corresponding mesh frames. The artifacts along the long axis can still be observed. Note that these shapes do not have one-to-one correspondences for vertices.
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thermore, the resulting meshes have the same topology and
one-to-one correspondence since they all start from the same
reference mesh.

After obtaining one-to-one correspondence, it is straightfor-
ward to compute the mean shape and its variances, by using gen-
eralized Procrustes analysis and PCA. Fig. 8 shows the major modes
having largest variances. The first three modes cover more than
80% of the variance. Although the shapes of original data are di-
verse, the modes are very simple. By changing the variances from
�3r to 3r, where r is the standard deviation, the first mode just
represents the contraction of the heart. The second mode is the
movement along the short axis. The third mode is the twisting.
These observations are in accordance with the clinical knowledge.
For better visualization, please refer to the video sequences in sup-
plementary materials.

4.2. High resolution cardiac shape atlas

Recent developments on the 320 multi-detector CT technolo-
gies have made the volumetric acquisition of 4D high resolution
cardiac images in a single heart beat possible. We applied our
framework to 10 cardiac CT volumes, which captures a whole cycle
of cardiac contraction. The CT data were acquired on a 320-MDCT
scanner using a conventional ECG-gated contrast-enhanced CT
angiography protocol. The imaging protocol parameters include:
prospectively triggered, single-beat, volumetric acquisition; detec-
tor width 0.5 mm, voltage 120 kV, current 200–550 mA. Recon-
structions were done at 10 equally distributed time frames in a
cardiac cycle. The resolution of each time frame is 512 by 512 by
320. The voxel size is 0.35 � 0.35 � 0.5 mm. 3D annotations are ob-
tained from a semi-automatic segmentation algorithm [46]. Our
Fig. 7. Visual validation of resulting meshes at three distinct cardiac phases. These meshe
vertex is plotted using different color. Green means that the error is within one voxel. Blu
color in this figure legend, the reader is referred to the web version of this article.)
reconstruction method successfully captured the papillary muscles
and the trabeculae of the left ventricle. The challenge of this task is
to handle these complex shape details. Our framework is able to
provide high quality meshes without removing these details. Fur-
thermore, it can robustly discover the one-to-one correspondence
among different time frames.

Fig. 9 shows the reconstruction results of high resolution car-
diac CT images. Each shape contains around 20–25 K vertices in or-
der to capture fine details. The three-dimensional structures, their
relationship and their movement during the cardiac cycle are
much more readily appreciated from the shape model than from
the original volumetric image data. After applying detail preserved
smoothing and surface registration, we can simply use linear inter-
polation to obtain higher temporal resolution.

The distance between the registered shape and the target shape
is preferred to be as small as possible. This can be well achieved for
shapes that are not complex (e.g., left ventricle shapes extracted
from MRI). However, it is difficult to handle complex shapes having
many local details (e.g., high resolution cardiac shapes). Therefore,
we evaluate this measurement on this challenging dataset, and
compared our proposed method with several other widely used
registration algorithms both qualitatively and quantitatively.

Fig. 12 shows the visualization comparisons between our meth-
od and three widely-used shape registration algorithms: (1) Coher-
ent Point Drift (CPD) [24], (2) robust point set registration using
Gaussian Mixture Models (GMMs) [25], and (3) the Thin Plate
Spline robust point matching (TPS-RPM) [47]. We register the
shape at the first frame to the one at the fifth frame, and then
use color maps to visualize the distance between the registered
shape and the ground truth. Green colors mean that the distances
are within one voxel. Red colors mean under-segmentation while
s are generally smooth and nearly identical to the original meshes. The errors of each
e and yellow denote errors within two voxels. (For interpretation of the references to



Fig. 8. Principal modes of variation for an SSM of the cardiac shape. For each row, we show the variation of the largest eigenmode between �3r and 3r (from left to right).
The first row: the first mode represents the contraction. The second row: the second mode is the movement along the short axis. The third mode is the twisting. For better
visualization, please refer to the video sequence in the supplementary materials.

Fig. 9. The cardiac shapes extracted from high resolution CT images, at four distinct cardiac phases. The complex shape details (i.e., internal structures) are captured.
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blue colors mean over-segmentation. Shape registration is very
challenging since there are many shape details in this cardiac data.
Large regions of the compared three methods are in blue and red,
which means inaccurate local fitting. Compared to the three meth-
ods, the proposed method has achieved the best accuracy and pre-
served most visual details.

Table 1 shows the results of quantitative comparisons. We com-
pare the accuracy of registration measured by the mean and stan-
dard deviation of voxel distances between the target and deformed
shapes. We also compare the mesh quality measured by the min
and mean values of the radius ratio [31] and the running time,
since preserving the shape quality and details is one of our major
contributions. Usually keeping shape details reduces the mesh
quality. However, our proposed method ensures both fine shape
details and high mesh qualities, because of the mesh quality term.
Furthermore, its computational cost is also comparable to the
Table 1
Quantitative comparisons of the proposed method and four widely-used methods: (1)
Coherent Point Drift (CPD), (2) robust point set registration using Gaussian Mixture
Models (GMMs), (3) the Thin Plate Spline robust point matching (TPS-RPM), and (4)
the original AFDM. We compare the mesh quality measured by the min and mean
values of radius ratio (Qmean, Qmin), the accuracy of registration measured by the mean
and standard deviation of voxel distances between the target and deformed shapes
(Voxel Distance), and the running time (Time).

High resolution cardiac

Qmin Qmean Voxel Distance Time

CPD [24] 0.00 0.63 2.21 ± 1.99 1002300

GMM [25] 0.00 0.68 2.73 ± 2.87 210500

TPS-RPM [47] 0.00 0.52 1.66 ± 1.26 3001200

AFMD [1] 0.00 0.73 2.03 ± 0.72 803700

Ours 0.02 0.97 0.47 ± 0.13 705600
AFDM, even with this extra energy term. The reason is that shape
quality constraint aims to produce evenly distributed vertices,
which also speeds up the convergence of the AFDM.

Fig. 10 compares the results using different smoothing weights,
i.e., cotangent or uniform weights. Using cotangent weights can
preserve more details than the uniform weights since the vertices
are moved toward the tangential direction.

Fig. 11 visualizes the shape variation along the first and second
principal directions. Our framework is robust and general enough
to handle such complex shapes. The first mode represents the
changing of the volume magnitude, and the second mode captures
the changing of shape details such as the papillary muscles and the
trabeculae. Again, these findings are in accordance with clinical
knowledge, which can be used to categorize the cardiac properties.
Cotangent Weights Uniform Weights

Fig. 10. Comparison of different smoothing weights. The left result is from the
cotangent weights, and the right one is from the uniform weights. As compared in
the green box, cotangent weights well preserve shape details, while the uniform
weights smooth out some local features (e.g., some muscles become much thinner).
(For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)



Mode 1

Mode 2

-3σ -1.5σ Mean 1.5σ 3σ

Fig. 11. Principal modes of variation for an SSM of the cardiac shape. For each row, we show the variation of the largest eigenmode between �3r and 3r (from left to right).
The first mode (the first row) represents the changing of the volume size. The second mode (the second row) is the changing of shape details such as papillary muscles. For
better visualization, please refer to the video sequence in the supplementary materials.

CPD GMM TPS-RPM Our Method

Fig. 12. Comparison of different shape registration methods. We show the results of registered shapes from two time frames (i.e., the first and the fifth frames). Color map has
been used to visualize the distance between each result and the ground truth. Green colors mean that the distances are within one voxel. Red colors mean under-
segmentation while blue colors mean over-segmentation. From left to right: registered results from (1) Coherent Point Drift (CPD), (2) robust point set registration using
Gaussian Mixture Models (GMMs), (3) the Thin Plate Spline robust point matching (TPS-RPM), and (4) our proposed method. Top and bottom rows show two different
viewpoints of the registered shapes. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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4.3. Shape atlas of multiple structures of rodent brains

Diagnosis of neurological and phychiatric disorders is mostly
based on behavioral observations and on data from neuroanatomi-
cal measures (MR, CT). In this study, we use proposed a method to
create 3D shape atlas of brain regions based on MR images of the
rodent brain. Rodents are often used as models of human disease
not only because they frequently exhibit key features of abnormal
neurological conditions [48] but also because they are a convenient
starting point for novel studies. Benefited from the hierarchical
scheme, only a small number of samples is needed to build atlas
for multiple structures. In our experiments, 11 adult male Spra-
gue–Dawley rats were transcardially perfused with 4% paraformal-
dehyde. Heads were stored in paraformaldehyde and scanned for
MRI. The brains were remained in the heads during scanning in or-
der to avoid tissue and shape distortions during brain extraction.
The heads were scanned on a 21.1T Bruker Biospin Avance scanner
(Bruker Biospin Corporation, Massachusetts, USA). The protocol
consisted of a 3D T2-weighted scan with echo-time (TE) 7.5 ms,
repetition time (TR) 150 ms, 27.7 kHz bandwidth, field of view
(FOV) of 3.4 � 3.2 � 3.0 mm, and voxel size 0.08 mm, isotropic. Be-
cause of this high resolution, real 3D annotation is performed man-
ually by multiple clinical experts. We focus on three complex
structures of the rodent brain: the cerebellum, the left and right
striatum, and the left and right hippocampus. It is worth mention-
ing that such atlas has been used as shape priors for segmentation
tasks [49].

Fig. 13 shows the shape variation along the first and second
principal directions. Our method is able to capture the spatial rela-
tionships among different neighboring structures. The first mode is



Fig. 13. Principal modes of variation for an SSM of the brain structure shapes. We show the variation of the largest eigenmode between �3r and 3r (from left to right). The
first mode represents the changing of the volume magnitude. For better visualization, please refer to the video sequence in the supplementary materials.
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the changing of the volume size. The second mode is the changing
of the local details, such as two protruding parts of the cerebellum.

We implemented this method using Python 2.5 and C++ on a
Quad CPU 2.4 GHz PC. It took about 5–8 s to do geometry process-
ing and shape registration for each data, and 2–4 s to construct the
atlas and shape statistics. The processing time may increase when
there are more vertices in each shape. In our test, each mesh con-
tained around 2000–3000 vertices and 4000–5000 triangles.

4.4. Measures of correspondence quality

In this section we measure the goodness of correspondence
established by our proposed method. We follow the measurements
that have been widely used [32–34]. Specifically, we measure the
model compactness and model generalization.

Model compactness: A compact model has as little variance as
possible and requires as few parameters as possible to define an in-
stance [32]. Therefore, we measure the compactness of the regis-
tered shapes by showing the cumulative variance covered by first
several modes. We measure the compactness of both the cardiac
shapes and the brain structure shapes.

Fig. 14 shows the cumulative variances covered by largest
modes. The cardiac shapes need six largest modes to capture more
than 90% shape variances of all data, and five modes are sufficient
1 2 3 4 5 6
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0.

0.

0.

1 2 3 4 5

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 14. The percentage of shape variances covered by major modes. The x-axis mean
for the brain structure shapes (i.e., cerebellum, left and right stria-
tum). It indicates that models created from the proposed method
are compact in general, and it helps to generalize shape informa-
tion with less descriptors.

Model generalization: The model generalization measures the
capability to represent unseen shapes using a set of training sam-
ples. We evaluate this by using the leave-one-out strategy [32]. A
model is built using all but one member of the training set and
then fitted to the excluded example. Specifically, each time we
choose one sample as the ‘‘unseen’’ one and use the model built
from the rest to approximate it. After obtaining the approximated
shape, we compute the mean distance between corresponding
points of the approximation and the testing shape. Smaller dis-
tance means better generalization.

We evaluate this measurement on the challenging dataset, the
high resolution cardiac shapes. Up to seven largest modes are se-
lected to approximate the unseen sample. Table 2 shows the quan-
titative results. In general the first two largest modes can well
approximate the unseen data, and the errors are reduced gradually
when more modes are used. In terms of the voxel distance, our pro-
posed method achieves 5.147 using the largest mode, 3.320 using
two largest modes, and 2.268 using seven largest modes, compared
to the 7.276, 5.723, and 5.085 achieved by AFDM. Our method is
consistently better. One potential reason is that our proposed
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s the number of largest modes. The y-axis denotes the ratio of covered variances.



Table 2
Quantitative comparisons of the model generalization measurement. We use leave-one-out strategy. Each time we choose one sample as the testing and the remaining as the
training. Then we use the first largest N modes learned from the training data to approximate the testing one. We report the mean distance (in voxel) between corresponding
points of the approximated result and the testing shape. Smaller distance means better generalization.

High resolution cardiac

1-mode 2-mode 3-mode 4-mode 5-mode 6-mode 7-mode

AFDM 7.276 5.723 5.685 5.427 5.347 5.173 5.085
Ours 5.147 3.320 2.783 2.485 2.401 2.284 2.268

1070 S. Zhang et al. / Computer Vision and Image Understanding 117 (2013) 1061–1071
method preserves shape details and ensures high-quality triangu-
lar meshes. Thus the models of shape variations can be well built,
and approximations using these models are relatively accurate.
5. Conclusions

In this paper we presented a novel method to construct 3D
shape atlas of different anatomies. Specifically, an algorithm is de-
signed to robustly discover geometric correspondences and effec-
tively model 3D shapes. This method improves the traditional
adaptive focus deformable model (AFDM) by incorporating a shape
energy, which ensures the mesh quality during deformable regis-
tration. Besides robustly establishing surface correspondences,
the registered meshes are generally smooth without sacrificing
geometric details, which facilitates the extraction of shape statis-
tics. Moreover, we employed a hierarchical strategy to learn shape
statistics of complex anatomical structures including multiple
parts. It is able to build accurate and concise shape atlas with a lim-
ited number of training samples. We extensively validated this
method in three very diverse applications relevant with different
anatomies and imaging modalities. Compared to other methods,
our approach exhibits better performance in both quantitative
and qualitative measurements. The proposed approach will in fact
benefit many other studies. In the future, we plan to use these gen-
erated 3D shape atlas to in segmentation and tracking studies by
using it as the shape prior information.
Appendix A. Supplementary material

Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/j.cviu.2012.11.018.
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