What Do “CS1” and “CS2” Mean?
Investigating Differences In the Early Courses

Matthew Hertz
Computer Science Department
Canisius College
Buffalo, NY 14208
hertzm@canisius.edu

ABSTRACT

Thirty-one years ago, the ACM Computing Curricula used
the terms “CS1” and “CS2” to designate the first two two
courses in the introductory sequence of a computer sci-
ence major. While computer science education has greatly
changed since that time, we still refer to introduction to pro-
gramming courses as CS1 and basic data structures courses
as CS2. This common shorthand is then used to enable
students to transfer between institutions and as a base of
many research studies.

In this paper we show that while there is wide agreement
on the connotation of CS1 and CS2, there is little agreement
as to the denotation of these terms. Surveying CS1 and
CS2 instructors, we find little agreement on how important
various topics are to each of these course and less agreement
on how well students master the material. Even after limit-
ing the analysis to whether a topic has ANY important or
students complete a course with ANY mastery of the mate-
rial, we continue to find significant disagreements between
instructors.

Categories and Subject Descriptors

K.3.2 [Computers and Education]: Computers and In-
formation Science Education—Computer science education;
Curriculum

General Terms

Standardization

Keywords
CS1, CS2, Survey, Curriculum Design

1. INTRODUCTION

The introductory sequence of Computer Science courses in-
cludes a first course introducing students to programming
fundamentals and an additional one or two courses teaching

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SIGCSE’10, March 10-13, 2010, Milwaukee, Wisconsin, USA.

Copyright 2010 ACM 978-1-60558-885-8/10/03 ...$10.00.

data abstractions/data structures. Using the terminology
originally developed by the ACM’s 1978 Computing Cur-
ricula [2], the introductory course is commonly referred to
as CS1 and the latter course(s) are called CS2. While ear-
lier Computing Curriculum had been developed [6, 1] and
changes continue to be made to the (now joint ACM-IEEE)
curriculum [13, 12, 11], these concepts endure. The accepted
nature of CS1 and CS2 can further be seen in how these
ideas have been incorporated into other model curricula that
have been developed [3, 14, 5].

The names and general principles of CS1 and CS2 have
continued, but the past 30 years have changed the concepts
covered in these courses. Between the Liberal Arts Curricula
and the most recent ACM-IEEE curricula there are 3 pro-
posed ways to organize CS1 and CS2 courses. Each of these
curricula includes courses organized in an object-first manner.
The ACM-IEEE curricula also defines an imperative-first ap-
proach to these courses while the liberal arts curricula defines
a functional-first model. Many departments deviate from
these models focusing more than required on specific topics,
introducing new topics, or ignoring topics.

Given all of these potential differences, we must ask whether
the terms “CS1” and “CS2” actually convey any real meaning
anymore. The answer to this question is very important.
Each year at SIGCSE and other computer science education
conferences there are many papers examining student per-
formance in CS1 and CS2 (for example, [7, 8, 10]). This
research assumes a common understanding of these courses.
The validity of cross-institutional studies also rely upon a sin-
gle definition of CS1 and CS2. Whenever students consider
transferring and faculty evaluate the transcripts of transfer
students, they rely upon the common agreement of these
topics. For all these situations, it is important to verify that
these assumptions are valid. If there is no common under-
standing, it is important that this fact be understood and
we always make explicit the information needed to evaluate
a course.

To investigate whether there is any underlying agreement
on what occurs in CS1 and CS2 courses, we examined a
range of topics from the ACM Small College and ACM-IEEE
Computing Curricula. Respondents to our survey were asked
to rate both the importance and student achievement on each
topic in their CS1 and CS2 courses. Using Fleiss’ kappa [9],
we then determine the level of overall agreement between
instructors. We further examine the level of agreement of
whether instructors felt topics had any importance and stu-
dents left their course with any ability on each topic.

As we show, there is little of the agreement suggested by

Control constructs
Methods, functions, subroutines
Variables, types, expressions
Error handing (e.g., exceptions)
I/O (e.g., files, printing to screen)

Style (e.g., indentation, variable names)

Stacks, queues, lists

Abstraction mechanisms (e.g., interfaces, abstract classes)

Testing
Debugging
Recursion

Arrays, strings

Sorting

Trees
Graphs
Other data structures

Object-oriented programming (e.g., inheritance, class anatomy)

Table 1: List of Topics Used in the Survey

use of the terms CS1 and CS2. While some general agreement
exists on the most basic of topics, beyond this we found little
to suggest any common definitions of CS1 and CS2. Even
at the coarsest of granularities, there is little agreement on
which topics are taught in each of these courses. So while
we often discuss CS1 and CS2, these courses are taught so
differently as to make them nearly meaningless.

Section 2 explains the design of the survey and the steps
taken to minimize survey error. Section 3 presents our results
and Section 4 discusses what the results mean. Finally,
Section 5 presents our conclusions and discusses future work.

2. SURVEY DESIGN

In order to determine what, if any, agreement exists on
the content of CS1 and CS2 courses, we developed a survey.
Our first step in developing this survey was to create a list of
topics by which we could evaluate the courses. We examined
existing curricula and chose to base our list on the division of
topics presented in the LACS Model Curriculum for a Liberal
Arts Degree. This outline is itself based upon the ACM-IEEE
Model Curriculum, but is more detailed in specifying each
topic. This topic listing is still general enough for to be
mapped to courses taught using either object-oriented or
functional languages. We therefore thought this made it
ideal to analyze the range of introductory courses taught
under aegis of CS1 and CS2. Starting from this list, we
then made several small changes to insure the accuracy of
our results. The list of topics we used in our survey can
be found in Table 1 and the changes made can be found
in Table 2. Our changes largely fit into 4 categories. The
first set of changes was splitting possibly unrelated topics.
These changes help insure we collect results at the finest
grain possible. We also tried to generalize topics to best
match all the programming languages that could be used.
These resulted in our second set of changes. Our third set of
changes combine closely related topics. These changes keep
our survey to a reasonable reasonable size. Finally, we added
a topic that we felt was frequently taught, but not included
in any curricula.

Given the final list of topics, we next needed to deter-
mine how to best collect data that would enable us to see if
there was agreement on these topics. We were interested in
whether a universal definition of CS1 and CS2 exists. This
focuses more on peoples’ perception of these courses than
on objective standards. We therefore used a subjective scale
for instructors to rate their own courses. Instructors marked
how important each topic is for success in their course from
1 (“unrelated”) to 5 (“critical”). Instructors also rated how
capable students were on each topic at the completion of their
course from 1 (“none”) to 5 (“mastered”). While these results

are subjective (instructors may differ on what it means for a
topic to be “important” rather than “critical” or for students
to be “knowledgeable” on a topic rather than “demonstrate
mastery”), we believe this to be an important consideration.

To gather respondents, we used a targeted snowball sam-
ple [4]. Initial invitations were repeatedly posted to the
SIGCSE e-mail discussion list. Within this invitation was
a request that the invitation be forwarded to other related
mailing lists or forwarded directly to CS1 or CS2 instruc-
tors. This led to 143 respondents to the survey. (This and
all future numbers treat a single respondent who answered
questions about both the CS1 and CS2 as if they were two
separate responses. As we are analyzing these two data sets
separately, we feel this is less likely to cause confusion). In-
complete surveys were then pruned. After pruning we had
58 completed surveys about CS1 and 41 completed surveys
on CS2.

3. RESULTS

It was clear, even before the survey response period was
complete, it would be difficult to find any common definition
of CS1 or CS2. Several respondents either added comments
at the end of the survey or e-mailed us directly to discuss their
difficulty responding to their survey. Most of these comments
questioned our combining arrays and strings in a single topic.
While agreeing that strings are important, the respondents
either teach in languages that do not include arrays, such as
Python, or utilize a heavily object-oriented style which prefers
lists. Respondents suggested that this grouping showed a
historical bias that was no longer reasonable. While these
comments were too late for us to change our survey to capture
these differences, they clearly point to an important deficiency
in how even the most recent curricula describe what is learned
in CS1 and CS2.

The responses we received about mixing arrays and strings
provided a clear showing of how wide a range of material is
subsumed under the CS1 and CS2 monikers. The comments
left by respondents to the questions about CS2 more clearly
showed the diversity of meanings of “CS2”. Using the com-
mon [12, 5] and historical [1] definitions, we referred to the
course as CS2/Data Structures throughout our survey. Yet,
5 out of 64 individuals (7.8%) added comments stating that
CS2 was not their primary data structure course. At their
institutions, CS2 now means “the course after CS1” and is
stripped of any other connotation.

Given these two early findings, we also wanted to see if
there was any agreement on either what topics were impor-
tant in CS1 and CS2 courses or the capability of students at
the end of these courses. To quantify this level of agreement,
we evaluated our data using Fleiss’ kappa [9]. Fleiss’ kappa

Topic in LACS Curriculum

Topic in Survey

Split Topics

Tracing, testing, debugging Testing

Debugging

Arrays, lists, strings

Arrays, strings

Searching, sorting Sorting

Generalized Topics

Streams, files

I/0 (e.g., files, printing to screen)

Interfaces

Abstraction mechnisms (e.g., interfaces, abstract classes)

Exceptions

Error handling (e.g., exceptions)

Advanced structures

Other data structures

Combined Topics

Anatomy of a class
Inheritance

Object-oriented programming (e.g., inheritance, class anatomy)

Stacks, queues

Stacks, queues, lists

Added Topics

| | Style (e.g., indentation, variable names) |

Table 2: Starting from the topics for CS1 and CS2 in the LACS Model Curriculum, we then made these
changes to create our final list. The changes here are grouped by the reason for making the change.

evaluates the consistency of judges using categorical ratings
and returns a score from 0 to 1. A score of 0 on Fleiss’ kappa
denotes complete disagreement amongst the judges; a score
of 1 arises when the judges are in complete agreement. While
there is no agreed upon standard for how to interpret these
results, one guideline uses a linear binning of the results [15].
Each topic is evaluated independently using this metric, but
we are interested in examining all of the results for each
course. We therefore plotted these results using a radar plot.
The results from CS1 can be seen in Figure 1(a) and the plot
of CS2 results are found in Figure 2(a).

Fleiss’ kappa is defined only for nominal data and treats
all disagreements equally. In reality, the difference between
whether a topic is “important” or “critical” is much less sig-
nificant than the difference between a topic being “beneficial”
and “unrelated”. This could result in Figures 1(a) and 2(a)
providing an overly dismal view of the level of agreement
that actually exists. We therefore generated a second set of
results to examine if there was at least agreement on the top-
ics covered in each course. To perform this measurement, we
recoded responses as 0 if a topic was unrelated to their course
or students were incapable with the material and recoded the
response as a 1 for all other responses. Thus encoded, Fleiss’
kappa measures the agreement that the topic belongs in the
course at all or that students end the course with any ability
to perform this work. The results of this second analysis can
be seen in Figure 1(b) for CS1 and Figure 2(b) for CS2.

4. ANALYSIS

The results seen in Figures 1 and 2 are very telling, espe-
cially when combined with the qualitative responses from the
previous section. As we now discuss, there would appear to
be little agreement as to what it means to be a CS1 or CS2
course. While there is more agreement as to which topics are
important for CS2 students, this agreement comes with the
significant caveat that few of the agreed upon topics include
any data structure. We will now discuss the results from
each course in turn.

Figure 1(a) shows that there is very little agreement as to
either importance of topics in CS1 or students’ ability after

CS1. While there was some agreement on how important
some of the most basic underpinning of programming (control
constructs; methods, functions, subroutines; variables, type,
expressions) were to respondents CS1 courses, that was about
all that could be agreed upon. The next 4 topics with the
highest levels of agreement are ones for which 57% to 78%
of respondents stated that the topics had nothing to do
with their courses. When examining students’ abilities after
CS1, there was only agreement on those topics which a
majority of respondents never cover. The next highest kappa
was only a 0.38 for control constructs. This low-level of
agreement suggests that there is little common skill levels
among students across different institutions.

We continue to see very little agreement when we limited
our analysis to look at if topics were at all related to their
course or students passing this course had any ability with
the material. As Figure 1(b) shows, most agree that basic
programming concepts are part of their CS1 course and that
student passing CS1 have some ability in them. But there
are still very significant disagreements on about half of the
possible topics. These results show that while we can expect
all students coming out of CS1 to have some knowledge of
basic programming concepts, exactly which topics and the
level of this expertise is going to vary greatly.

Figure 2(a) shows that CS2 has even less agreement than
we found in CS1. While there continued to be some agree-
ment on the four most basic topics, the next highest kappa
we measured was a 0.46 for object-oriented programming
concepts. These results show that there is less agreement on
both the importance of these topics and on students ability
after passing the course. Most of this decrease is explained
by the increasing rate respondents reporting that a topic is
at least partially related and that students complete their
course with at least some ability. This effect can better be
witnessed by the greatly increased agreement in Figure 2(b).
Even when limiting our analysis to this binary analysis, we
still find strong disagreements on several important data
structures such as trees, graphs, and other data structures.
These kappas all stay below 0.82 and several remain below
0.5.

These results are not due to the range of languages used

Agreement Factor Among CS1 Instructors
Control

S

Other _— ——_ Methods

‘ Arrays

Topic Importance

1 10
| B Topic Ability

7 style

N] \ >Abstracti
] - ons

Debuggi*
ng

(a) Graph showing the level of agreement among CS1 in-
structors.

:I'esting

Agreement Factor Among CS1 Instructors

Control

Other -+ F T ——_,Methods
Graphs 0% L —L k‘\-TVPEs
/ \i \h FoNC £\
Trees /. t 2\ Arrays
/ Binary Topic Importance
Lists e/ e narv Topie e
| I W Binary Topic Ability
| |
| Fo
Sorting ',-Style
Recursio \ %
N
n /00
Y { N/
b i] __~Abstracti
Error ~ p\
- F [ons
Debugg

VTesnng

ng
(b) Graph showing how much CS1 instructors agree that a
topic has any importance or students had any ability in a
topic.

Figure 1: Graph showing the level of agreement among CS1 instructors as to the importance of each topic
in their CS1 course and how capable students were at the completion of that course. The level of agreement
was measured using Fleiss’ kappa. A result of 1 denotes perfect agreement and a result of 0 denotes no

agreement.

in these courses. When we examined the results for object-
oriented, procedural, and functional languages separately,
our results were identical. This finding was true for every
analysis: both CS1 and CS2 and both the importance and
student abilities. Rather than being a result of the language
used, these differences arise from the wide variety of styles
and methodologies used by the respondents.

There are a number of important conclusions that one can
draw from these results. While it appears that CS1 continues
to be synonymous with an “Introduction to Programming”
course, CS2 is no longer used strictly as another name for a
course on data structures. Further, both CS1 and CS2 have
been stretched to include a much wider range of activities
than when originally proposed. As a result of these changes,
there is little agreement on what topics are important to
these courses and whether students passing these courses will
have any knowledge of this material.

Continuing to use the CS1/CS2 terminology could cause
more harm than good in the long run. These terms gives
students a false sense that the skills learned in CS1 at one in-
stitution will automatically prepare them for CS2 at another
school. Similarly, faculty need to know more than whether a
class at another institution was called CS2 to determine if it
could be used to replace a data structures course they offer.
These results also suggest that we, as education researchers,
must do more to place our results in context. To understand
how others’ research would apply at our own institutions,
or to explain how our own research would apply to others,
we must understand what the content of the course really
is — just saying it is a CS1 or CS2 course provides very
little explanation. By providing this extra information, we
can make explicit the pedagogical assumptions that underlie
the research and enable everyone to better understand the
results.

S. CONCLUSION

While the community continues to use the terms CS1 and
CS2, the reality has moved away from these terms having any
meaning. In our survey of educators, we found that there is
little agreement about how important a range of topics are
to these courses. Moreover, we show that there exists only
very weak agreement as to whether these topics even apply
to each course. Sadly, there is even less agreement as how
capable students are with these concepts after passing each
courses. We think that these disagreements are part of, and
vital to, the continued evolution of how we teach computer
science. Rather than try and pigeonhole courses into terms
we, as a community, have outgrown we instead propose that
in research, course descriptions, and other important works,
we provide more complete descriptions of the course and
provide the context needed for others to understand what it
includes.

Acknowledgements

The authors would like to thank Sarah Ford, R. Mark Meyer,
Paul Gestwicki, the survey respondents, and the anonymous
reviewers for their help in improving this paper.

6. REFERENCES

[1] W. F. Atchison, S. D. Conte, J. W. Hamblen, T. E.
Hull, T. A. Keenan, W. B. Kehl, E. J. McCluskey, S. O.
Navarro, W. C. Rheinboldt, E. J. Schweppe,

W. Viavant, and D. M. Young, Jr. Curriculum 68:
Recommendations for academic programs in computer
science: a report of the acm curriculum committee on
computer science. Commun. ACM, 11(3):151-197, 1968.

[2] R. H. Austing, B. H. Barnes, D. T. Bonnette, G. L.
Engel, and G. Stokes. Curriculum ’78:
recommendations for the undergraduate program in

Agreement Factor Among CS2 Instructors

Control
T Method
[TS

Otherﬂ, _—

Graphs ,r"'

Trees /J/\ y > Arrays

Topic Importance

H Topic Ability

|
7 style

7 00

N/
>Abstrac
tions

Debuggi”
ng

(a) Graph showing the level of agreement among CS2 in-
structors.

Testing

Agreement Factor Among CS2 Instructors

Control

Method

™ mTypes

Trees /.) /hArrays

Binary Topic Importance

tists (L) - F'O W Binary Topic Ability
| |

L m ass
sorting M\ "Mstyle

Recursi ! y
on AN DA

\ — /

u ,.Jﬁbstrac
—d 1 tions

Debugell———— W

8 festing

ng

(b) Graph showing how much CS2 instructors agree that a
topic has any importance or students had any ability in a
topic.

Figure 2: Graph showing the level of agreement among CS2 instructors as to the importance of each topic
in their CS2 course and how capable students were at the completion of that course. The level of agreement
was measured using Fleiss’ kappa. A result of 1 denotes perfect agreement and a result of 0 denotes no

agreement.

computer science— a report of the acm curriculum
committee on computer science. Commun. ACM,
22(3):147-166, 1979.

[3] J. Beidler, R. H. Austing, and L. N. Cassel. Computing
programs in small colleges. Commun. ACM,
28(6):605-611, 1985.

[4] Implementation and Analysis of Respondent Driven
Sampling, New York, NY, Nov. 2006. Springer New
York.

[5] L. A. C. S. Consortium. A 2007 model curriculum for a
liberal arts degree in computer science. J. Educ.
Resour. Comput., 7(2):2, 2007.

[6] S. D. Conte, J. W. Hamblen, W. B. Kehl, S. O.
Navarro, W. C. Rheinboldt, D. M. Young, Jr., and
W. F. Atchinson. An undergraduate program in
computer science—preliminary recommendations.
Commun. ACM, 8(9):543-552, 1965.

[7] J. Gal-Ezer, T. Vilner, and E. Zur. Has the paradigm

shift in csl a harmful effect on data structures courses:

a case study. In SIGCSE ’09: Proceedings of the 40th
ACM technical symposium on Computer science
education, pages 126-130, New York, NY, USA, 2009.
ACM.

[8] E. Howe, M. Thornton, and B. W. Weide.
Components-first approaches to csl/cs2: principles and
practice. In SIGCSE ’04: Proceedings of the 35th
SIGCSE technical symposium on Computer science
education, pages 291-295, New York, NY, USA, 2004.
ACM.

[9] J. J. Randolph. Free-marginal multirater kappa: An
alternative to fleiss’ fixed-marginal multirater kappa. In
Joensuu University Learning and Instruction
Symposium, Joensuu, Finland, 2005. Available at:
http://wuw.eric.ed.gov/contentdelivery/servlet/
ERICServlet?accno=ED490661.

[10] H. Roumani. Practice what you preach: full separation
of concerns in csl/cs2. In SIGCSE ’06: Proceedings of
the 37th SIGCSE technical symposium on Computer
science education, pages 491-494, New York, NY, USA,
2006. ACM.

[11] SIGPLAN programming language curriculum workshop.
SIGPLAN Notices, 43(11), 2008.

[12] C. The Joint Task Force on Computing Curricula.
Computing curricula 2001. J. Educ. Resour. Comput.,
page 1, 2001.

[13] A. B. Tucker. Computing curricula 1991. Commun.
ACM, 34(6):68-84, 1991.

[14] H. M. Walker and G. M. Schneider. A revised model
curriculum for a liberal arts degree in computer science.
Commun. ACM, 39(12):85-95, 1996.

[15] Fleiss’ kappa. In Wikipedia, Retrieved 4 Sept. 2009.
Available at:
http://en.wikipedia.org/wiki/Fleiss’ _kappa.

