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Abstract

To achieve optimal performance, garbage-collected applications
must balance the sizes of their heaps dynamically. Sizing the
heap too small can reduce throughput by increasing the number
of garbage collections that must be performed. Too large a heap,
however, can cause the system to page and drag down the overall
throughput. In today’s multicore, multiprocessor machines, mul-
tiple garbage-collected applications may run simultaneously. As a
result, each virtual machine (VM) must adjust its memory demands
to reflect not only the behavior of the application it is running, but
also the behavior of the peer applications running on the system.

We present a memory management system that enables VMs to
react to memory demands dynamically. Our approach allows the
applications’ heaps to remain small enough to avoid the negative
impacts of paging, while still taking advantage of any memory that
is available within the system. This memory manager, which we
call Poor Richard’s Memory Manager, focuses on optimizing over-
all system performance by allowing applications to share data and
make system-wide decisions. We describe the design of our mem-
ory management system, show how it can be added to existing VMs
with little effort, and document that it has almost no impact on per-
formance when memory is plentiful. Using both homogenous and
heterogenous Java workloads, we then show that Poor Richard’s
memory manager improves average performance by up to a fac-
tor 5.5 when the system is paging. We further show that this result
is not specific to any garbage collection algorithm, but that this im-
provement is observed for every garbage collector on which we test
it. We finally demonstrate the versatility of our memory manager by
using it to improve the performance of a conservative whole-heap
garbage collector used in executing .Net applications.

Categories and Subject Descriptors D.3.4 [Processors]: Mem-
ory management (garbage collection)
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1. Introduction

Today’s developers are increasingly taking advantage of garbage
collection (GC) for the many software engineering benefits it pro-
vides. Developers can do this using garbage-collected languages
(e.g., Haskell, Java, ML), conservative collectors (e.g., the Boehm-
Demers-Weiser collector [19]), or scripting languages executing on
a garbage-collected virtual machine (VM) (e.g., JRuby or Groovy).
While one study found that programs can be executed just as
quickly whether they use garbage collection or explicit memory
management, this performance comes only when the garbage-
collected heap has been sized appropriately [27]. But keeping the
heap an appropriate size is extremely difficult: collecting the heap
too early increases GC overhead, but allow the heap to grow too
large harms performance by decreasing data locality and increasing
the number of TLB misses [13].

Even worse than decreasing locality, allowing a heap to grow
too large could mean that it no longer fits in RAM and must
have pages evicted to disk. Accessing memory that has been saved
back to disk can require six orders of magnitude more time than
if it were in main memory. Even if the mutator does not touch
the evicted pages, it can still hurt performance during garbage
collection. During whole-heap collections, the GC examines all
of the reachable data. Because the mutator can only use reachable
objects, the garbage collector’s working set is at least as large as
the mutator’s, if not larger. A GC can therefore cause a massive
slowdown due to paging despite the mutator not suffering any
page faults. Thus selecting when to collect the heap depends on
many factors: the program, the garbage collector, and the resources
available.

As a result of the difficulty selecting a proper heap size, many
workarounds and optimizations have been proposed. For develop-
ers, the simplest approach is to require users select a static heap size
that fits into memory. Others have studied using heap and GC statis-
tics or program profiling to determine the optimal times to collect
the heap (e.g., [2,5,14,20,23,37,41,43]). While these approaches
can provide significant improvements when memory is plentiful,
they often make poor decisions when resource-bound because they
ignore paging’s costs.

Other approaches have enhanced the OS to enble making
resource-based garbage collection decisions which also factor in
paging costs when selecting a heap size (e.g., [6,7,26,28,44-46]).
While the scope of their changes varies greatly, all these projects
require some additional OS and JVM features. The need for these



features limits the ease of adopting them in new or different envi-
ronments. Another problem is the multiprogrammed environments
that are common today. In these situations, the amount of mem-
ory available changes dynamically and unpredictably. When these
changes are observed by like-minded programs, they would choose
to react similarly. Should the programs follow a conservative ap-
proach, resources may be left underutilized. More aggressive ap-
proaches, however, set a collision course to severe contention and
poor performance. Unfortunately, this earlier research assumes an
application was running on a dedicated machine and did not evalu-
ate how it would perform when this was not the case.

Contributions: In this paper we address this problem of shared
resource utilization by introducing Poor Richard’s Memory Man-
ager. Poor Richard’s handles both the adjustments needed by a sin-
gle process on a dedicated system and those needed to achieve good
performance in the chaotic environments created by executing mul-
tiple processes. Poor Richard’s provides this improvement by hav-
ing each process monitor its own performance. Each process also
has access to a shared whiteboard, in which they can each post in-
formation about their own state and read information about others’
states. This allows processes to make a joint response to dynamic
events and ensure that it can make a system-wide decision about
this shared resource.

Following ideals espoused by its namesake, Poor Richard’s
uses a frugal, lightweight approach to perform its tasks. Appli-
cations monitor their state using only information already made
available by most operating systems, thus avoiding any changes
or additions to the OS. Similarly, Poor Richard’s needs only lim-
ited interactions with the virtual machine and is entirely indepen-
dent of the garbage collector being used. The code used to trigger
resource-based collections in the conservative whole-heap Boehm-
Demers-Weiser collector [19] is the same as the code used to trigger
resource-based collection in the generational collectors defined by
MMTk. This combination makes it very simple to port and adopt
Poor Richard’s memory manager in any system.

We present an empirical evaluation of Poor Richard’s perfor-
mance using multiple garbage collectors with both heterogeneous
and homogeneous workloads and on two different architectures.
We show that it has minimal effect on performance when there is
no memory pressure. We further demonstrate that Poor Richard’s
provides significant performance improvements with every garbage
collector we tested when memory pressure increases. Because it
limits the effects of paging in an orthogonal manner to how the VM
already sizes its heap, Poor Richard’s enables systems to use their
existing heap sizing algorithms without worrying about how they
will perform if the amount of available memory suddenly changes.

The rest of the paper is organized as follows: Section 2 pro-
vides an overview of Poor Richard’s Memory Manager and how it
coordinates a system-wide response to memory pressure. Section 3
describes the implementation of Poor Richard’s and its whiteboard.
The results from our emprical investigation of Poor Richard’s are
found in Section 4. Section 5 discusses related work, and Section 6
discusses future directions for this research and concludes.

2. Overview of Poor Richard’s

Poor Richard’s must first be used for it to ever be useful. Adoption
of this memory manager is unlikely if it required executing addi-
tional processes or adding to or modifying the OS. Even needing
substantial changes to the virtual machine can limit the desire to
adopt a system. We therefore made the decision that Poor Richard’s
would make its decisions independent of the virtual machine and
that any work which needed to be performed would be done by pro-
cesses using Poor Richard’s only. This simplifies porting it to new
environments easy as it relies only on information already available

and data common to all garbage-collected applications and requires
minimal changes to the VM.

The goal of Poor Richard’s memory manager is to eliminate
the need to consider paging when selecting a heap size. This re-
quires allowing processes to utilize as much main memory as they
need, but not allow them to use so much that paging limits through-
put. This problem is difficult on a dedicated machine since it re-
quires balancing the mutator’s and GC’s working sets and adapt-
ing to changes in mutator behavior. When multiple processes are
executing, the problem only gets harder. Any solutions must now
account not only for changes in other processes’ behavior, but
also the possibility of other processes starting and stopping. Just
modifying heap sizes may not be enough, since new demands
may trigger paging before the next collection yields a chance to
shrink the heap size. Poor Richard’s solves this dilemma by work-
ing orthogonally to heap size selection. Instead it performs peri-
odic checks and, when necessary, triggers an immediate whole-
heap “resource-driven” GC. If memory suddenly becomes avail-
able, Poor Richard’s will not trigger a GC and can continue using
the optimal heap size previously computed.

Poor Richard’s works orthogonally to systems’ existing heap
sizing algorithms; the resource-driven collection works like an im-
mediate one-time shrinking of a process’s heap. Because this col-
lection is performed as soon as memory pressure is detected, it
only needs to maintain the existing level of memory pressure to
avoid significant slowdowns. By finding and freeing garbage ob-
jects in the heap, the collection ensures future allocations goes to
pages that already contain live objects and so avoid the need to
page. If the collector also performs compaction or frees pages from
the heap or containing metadata, then the collection can not only
prevent paging, but even reduce memory pressure. Because the pre-
vention of paging occurs as a result of the garbage collection and
does not rely on any specific algorithm, resource-driven collections
should improve the performance of any system from those using
whole-heap conservative collectors to those using compacting, gen-
erational collectors.

By working in multiprogrammed environments, our system
must handle an additional concern. As they are running, all pro-
cesses will see the same stimuli and react identically. If pro-
cesses are able to react fast enough this may not be a problem,
but this could lead to resources being underutilized from overly-
conservative decisions or lead to contention as a result of hyper-
aggressive choices. An alternative is to allow processes to work
collaboratively and develop a system-wide response. As machines
feed their increasing numbers of cores by execute more processes
simultaneously, we feel coordination is important if the costs of
coordinating the response can be limited. Poor Richard’s therefore
includes a mechanism by which processes can coordinate a strat-
egy. To test this idea empirically, we implemented several different
coordination strategies with different coordinating costs:

Selfish The simplest coordination strategy is to not coordinate
at all. Selfish runs of Poor Richard’s do not use any coordinat-
ing mechanisms and make decisions independently. When running,
these processes perform a whole-heap collection whenever they
detect memory pressure and do not communicate with other pro-
cesses.

Communal A second approach to coordinating a response is to
have processes share fully in any necessary responsibilities. When
using a Communal strategy, processes notify all others when they
detect memory pressure. When they check for memory pressure,
processes also look for these notifications. Whether the process
detects memory pressure itself or is notified that it was detected
by another, the process performs a whole-heap collection.

If multiple cooperative applications began collecting their heap
at the same time, the increased memory demands could itself



trigger further paging and contention accessing the disk. Poor
Richard’s prevents this by using a flag placed in a shared mem-
ory buffer (the “whiteboard”) to record whenever a process is
performing resource-driven collection. While a process performs
a resource-driven collection, others will continue executing nor-
mally, including performing demand-driven collections. Once the
resource-driven collection completes, the process clears the shared
flag and allows another to perform its resource-driven collection.
Thus the need to reduce memory pressure is shared while the col-
lections are serialized to prevent clustered collections from over-
loading the system.

Leadered Our third approach tries reducing the overheads of
the Communal strategy while providing a more systemic solution
than the Selfish strategy. Instead of all processes collecting their
heaps once memory pressure is detected, a process detecting mem-
ory pressure signals a single process (the “leader”) to perform a
whole-heap collection. This ensures only one process collects its
heap, thereby reducing memory demands while needing minimal
overheads. How the leader is chosen can be tailored to the goals or
needs of the machine. So long as some process collects their heap,
memory pressure is reduced and the performance is not hurt. In this
work, we evaluated selecting the process with the largest heap size
as the leader.

3. Poor Richard’s Memory Manager

The original Poor Richard espoused the ideals of frugality, effi-
ciency, and unobtrusiveness. We adopted those ideals in creating a
lightweight system that can easily be added to virtual machines to
preserve throughput even when systems becomes resource-bound.
In this section, we discuss the different techniques Poor Richard’s
Memory Manager employs to meet these ideals. We will initially
present Poor Richard’s frugality in having applications detect mem-
ory pressure only using information the operating system already
provides and without knowledge of the VM or GC. We then dis-
cuss our implementation and use of the whiteboard to allow pro-
cesses to communicate and cooperate. Finally, we document Poor
Richard’s interactions with the host VM and how it communicates
its decisions.

3.1 Process Self-Monitoring

In Poor Richard’s, each process is responsible for monitoring its
own state for signs of memory pressure. In particular, processes
track how many major page faults (evicted pages that have been
read back into memory) they trigger and their resident set sizes
(RSS) (number of pages physically residing in main memory). Poor
Richard’s relies upon the number of major page faults occuring
since the end of the last GC as its primary indicator of memory
pressure. Multiprogrammed systems running multithreaded pro-
cesses can tolerate low levels of major page faults by execut-
ing the processes and threads that are not blocked by I/O. Be-
ing overly conservative, therefore, increases overheads without im-
proving throughput. Only when the number of major page faults
passes a threshold value, for this paper we used 10, will Poor
Richard’s report it detected increased memory pressure and take
action.

As Grzegorczuk et al. correctly noted [26], however, processes
seeing major page faults can tell that the system is resource-bound,
but lack knowledge of the source of this contention. We further
observe that major page faults can only be detected AFTER mem-
ory pressure not only caused pages with usable data on them to be
evicted to disk, but that the data they contain was again needed by
the mutator or GC. As Poor Richard himself noted, “the early bird
catches the worm”; by reacting to memory pressure earlier, systems
can avoid making the situation even worse. Towards this end, Poor
Richard’s also checks for changes in the process’s resident set size.

extern "C" int checkMemoryPressure ()
long long recentPFaults;
long currentR35;
long deltaRss;

recentPFaults = getPageFaults() - lastPFaults;
currentR5S = getResidentSetSize():
deltaR55 = currentRSS5 - lastRSS;

lastRSS = currentR35;
return ((recentPFaults »>= 10)
}

(deltaRss < 0));

Figure 1. Example code by which Poor Richard’s memory man-
ager determines if memory pressure warrants further action. While
this assumes the VM does not relinquish pages, it could be handled
by comparing deltaRSS with the number of relinquished pages.

For performance or correctness reasons, most VMs do not willingly
relinquish pages; a decrease in the RSS means resources were lim-
ited enough to require evicting the process’s pages.' Without mak-
ing significant changes to the OS or VM this metric is imperfect:
it fails to detect a problem when the process allocates or faults in
more pages than are evicted. As we found, however, RSS frugally
provides an early notification of memory pressure that would oth-
erwise go unnoticed.

By focusing on being frugal, adopting Poor Richard’s memory
manager is made easier. Figure 1 shows the code it executes to
check whether increased memory pressure requires further action.
The only environment-specific portion of this code are the meth-
ods finding the process’s current count of major page faults and
resident set size. In Linux, processes can find these values among
the performance statistics available in /proc/self/stat [4].> As
part of the /proc directory, this pseudo-file can be opened and read
like a normal file, but is really an interface for processes to access
data from the kernel [42]. Thus Poor Richard’s need not rely on any
OS-specific features or modifications and can be easily ported.

3.2 Whiteboard Communication

In the multiprogrammed environments that are frequently used,
each process’s decisions about shared resources impact the other
processes being executed. Consider, for example, the effect of a
process performing a whole-heap collection. Whereas the mutator’s
working set may include only a subset of reachable data, the GC
must examine all reachable objects. As a result, garbage collection
will temporarily increase the memory needs of that process. Should
multiple processes using resource-based collection detect increased
memory pressure at the same time, their combined increased mem-
ory demands could result in severe paging and contention accessing
the disk.

Were processes able to communicate, problems such as these
could be avoided. As we expect memory pressure and paging to not
be the common case, it is vital that collaborations be as efficient
as possible. As in Wegiel and Krintz [40], Poor Richard’s uses a
shared memory buffer to facilitate efficient interprocess communi-
cation. Into this buffer, Poor Richard’s allocates a common “white-
board”. Processes can then use this whiteboard to share important
information and coordinate their actions. When they begin execut-
ing, processes can load the whiteboard into their address space and
register themselves as a participant. As part of their registration

I'This would also work with VMs that voluntarily relinquish memories
(e.g., HotSpot with ergonomics [1]), by allowing the VM to specify the
number of pages it gave up and returning if the RSS decreases by more than
this expected amount.

2While /proc/*/stat exists only in Linux, these values are obtainable in
Solaris, AIX, and other Unix systems using the getrusage function [3].



with the whiteboard, each process takes a space of its own on the
whiteboard. At the end of each whole-heap collection, the process
updates this space to specify its heap size, resident set size, and
number of page faults. Each private space in the whiteboard also
contains a flag that other processes can set to get that process’s at-
tention. The whiteboard also contains a shared data area in which
are stored data needed for bookkeeping and to prevent data races.
This shared area also contains a flag that processes can set while
they perform a whole-heap collection to alert others that they will
be increasing memory pressure on the system temporarily. Prior
to termination, processes remove themselves from the whiteboard
and make their private space available for use by another process.
The whiteboard’s memory demands are very limited needing only
848 bytes to hold the common values and 32 bytes for each private
space.

Use of this whiteboard is therefore very efficient. Absent mem-
ory pressure, processes need only access shared areas only twice —
when they register and unregister with the system — and only update
their private space at the completion of each whole-heap GC. Using
Poor Richard’s whiteboard, processes can notify others when they
detect memory pressure and allow easy implementation of any of
the coordination strategies presented in Section 2. No matter the
coordination strategy, Poor Richard’s whiteboard enables this com-
munication to occur efficiently and with a minimum of overhead.

3.3 Interaction with the VM

All of Poor Richard’s frugality would be for naught were exist-
ing VMs required to make substantial changes to use it. The final
ideal of our design was unobtrusiveness: that Poor Richard’s mem-
ory manager require minimal changes and few interactions with the
host VM. By doing this, we maintain all of a VM’s existing opti-
mizations and tuning to preserve their existing good performance
when memory pressure is low.

These minimal changes are possible because most of the mem-
ory manager resides in a separate, fully independent, library of “C”
code that gets compiled into the VM when the VM is built. Within
this library resides all of its whiteboard functionality as well as the
code with which a process monitors itself for signs of memory pres-
sure. This library also contains the code which analyzes all of this
data, coordinates actions with other processes, and determines the
appropriate action for the VM.

To ensure Poor Richard’s remain unobtrusive, code in the
garbage collector is responsible for initiating all communication.
The first of the calls from the GC to Poor Richard’s is added to
the end of the GC code responsible for reclaiming space following
a whole-heap collection. When this call is made, Poor Richard’s
updates its baseline values of both the number of major page faults
seen by this process and the process’s resident set size. These are
the values that the system uses to determine when a process is
seeing sufficient memory pressure to warrant a response (the vari-
ables lastPFaults and lastRSS in Figure 1). During this call,
Poor Richard’s also updates the data stored in the process’s private
area of the whiteboard (i.e., the number of major page faults seen,
resident set size, and the size of the heap after heap memory was
reclaimed). As the purpose of this call is purely informational, no
data is returned and, once complete, the GC continues as normal.

The second of the calls from the GC is where Poor Richard’s can
modify the behavior of the VM. This call allows Poor Richard’s to
check for rising memory pressure and require the GC to act when
it is necessary. An example of the code executed by Poor Richard’s
during this call is shown in Figure 2. How the calls interacting with
the whiteboard are defined depends on coordination strategy be-
ing used. For Selfish runs of Poor Richard’s, these functions did
not use the whiteboard, but instead checked a global variable. For
other runs, they would use the whiteboard. This makes this code

extern "C" int consultPoorRichards() {
int forceGC = checkWBFlags();
if (!forceGC) {
int memoryPressure = checkMemoryPressure();
if (memoryPressure)
setWBFlags () ;
forceGC = checkWBFlags ()
return forceGC;

b

Figure 2. Example of Poor Richard’s code that determines if
a process should perform a whole-heap collection. This initially
checks if any external process has flagged this process to perform
a resource-driven collection. If not, it checks for memory pressure.
If memory pressure is detected, the current coordination strategy
selects the process(es) chosen to perform a resource-driven collec-
tion. Finally, it checks again to see if the current process was among
those selected to perform a resource-driven collection.

public final static boolean USING PRMM = true;
public static int waitConsult = 100;
public static int slcwPathsWait = 0;
public final boolean gcCheck() {
int nurseryPages = nurserySpace.reservedPages();

if (nurseryPages >»= Options.nurserySize.getMaxNursery () ||
nurseryPages >= getMatureSpacePagesAvail()) {
return true;
else if (USING_PRMM && ++slowPathsWait >= waitConsult) {
boolean forceGC = consultPoorRichards();
waitConsult = computeNextDelay():;
slowPathsWait = 0;
forceFullHeapCollection = forceGC;
return forceGC;
}
return false;
}

Figure 3. Example of a collector’s “slow-path” allocation code
modified to also check with Poor Richard’s memory manager. With
this addition, the routines which already trigger demand-driven
collections will also trigger any resource-driven collections.

very easy to modify and update with new coordination strategies.
consultPoorRichards begins by checking the private area of the
whiteboard to see if another process detected memory pressure and,
following the active coordination strategy, determined that the cur-
rent process must reduce its working set. When selected to per-
form a whole-heap collection, Poor Richard’s returns immediately
and notifies the GC of this need. If it is not notified that it must
collect its heap, we perform the self-monitoring process from Fig-
ure 1. If this monitoring does not detect any memory pressure (i.e.,
checkMemoryPressure () returns false), Poor Richard’s is done
and allows the GC to continue as normal. When memory pressure
is detected, Poor Richard’s applies the active coordination strategy,
notifies any processes which will need to perform a whole-heap
GC, and returns if it was the selected process. How the calls in-
teracting with the whiteboard are defined depends on coordination
strategy being used.

The call in which the VM consults Poor Richard’s is appended
to the GC’s existing “slow-path” allocation routine. Within this
slow-path routine the GC already checks for demand-driven col-
lections and so is a natural place to trigger resource-driven collec-
tions. An example of this modified slow-path routine is in Figure 3.
The call to Poor Richard’s is additive only and will not interfere or
override any demand-driven collection decisions. When resources
are plentiful, Poor Richard’s never signals for a collection and so



the system executes as normal. Even when resources are limited,
Poor Richard’s will not reject any collections or modify the pre-
ferred heap size. Instead Poor Richard’s directs a process to collect
its heap, thereby shrinking the working set and reducing memory
pressure. If more resources become available immediately follow-
ing a resource-driven collection, Poor Richard’s memory manager
would revert to not signalling collections and the process would
continue executing as before.

Each time the VM calls Poor Richard’s to check if a demand-
driven collection is necessary there will need to be multiple func-
tion calls, an interaction with kernel data, and access to several
buffers used only for this process. The overhead of this process
is cheap relative to the cost of a hard drive access, but calling this
too frequently would harm performance when memory is plentiful.
Thus the VM will not perform on each slow-path allocation, but
instead makes this call only periodically. This rate is determined
using an additive increase/multiplicative decrease algorithm. Using
this heuristic, whenever a process detects memory pressure in its
self-monitoring it immediately reduces the number of slow-path al-
locator calls between consultations (i.e., waitConsult in Figure 3)
by an order of magnitude; when no memory pressure is detected the
rate is decreased by 1. This approach allows Poor Richard’s to re-
spond quickly when a response appears likely, but limit overheads
when memory is plentiful.

Just as being frugal makes it easy to port our memory manager
to many different environments, being unobtrusive simplifies the
task of adding the system to an existing VM. The needed changes
to the VM require finding where a GC releases memory at the
end of a whole-heap collection and the allocation’s slow path. The
code within Poor Richard’s cannot depend on any implementation
details of the VM in which it runs and will not require any existing
VM code be modified. As with the other ideals espoused by the
its namesake, remaining unobtrusive keeps the implementation of
Poor Richard’s lightweight and ready to be included within a VM
with the addition of only a few lines of code.

4. Results

We now present the results of our empirical analysis of Poor
Richard’s Memory Manager. We will describe our experimental
methodology including the environments and garbage collectors
with which we perform the majority of our experiments. We then
show how Poor Richard’s Memory Manager improves paging per-
formance on multiple garbage collectors and on multiple architec-
tures for both heterogenous and homogenous workloads. Finally,
we discuss porting Poor Richard’s to the Mono runtime and show
how it also improves the throughput of .Net benchmarks.

4.1 Implementation

For all of our Java experiments, we used the Jikes RVM/MMTK,
version 3.1.1. Nearly all of our implementation of Poor Richard’s
was written as a separate library of C code, however. This includes
all of the code detecting memory pressure, accessing the white-
board, and determining whether a process should perform a collec-
tion or not. Calls to Poor Richard’s required using SysCall rou-
tines to support the Java-to-C transition. Only two other additions
were made to the Jikes RVM/MMTKk. First, we modified the slow-
path allocation routines to consult with Poor Richard’s and allow
it to trigger resource-driven whole-heap collections. Second, we
added support within the garbage collectors to allow Poor Richard’s
to update the process’s private whiteboard space with the new heap
size following each whole-heap collections. Because of the sim-
plicity of these interactions, and despite needing each call to go
from Java to C and back, these changes required under 200 LOC.
To see how well our approach would work with other systems
and garbage-collection idioms, we also tested Poor Richard’s using

the Mono VM, an open source virtual machine which executes
applications written for .Net [32]. Because Mono is already written
in C, we were able to call directly into Poor Richard’s functions
without any overhead. As a result, we needed under 10 lines of code
to enable our system in Mono and did not require any modifications
to our memory manager.

4.2 Methodology

To determine how well Poor Richard’s will work in multiprogram-
ming environments, we performed our experiments on two separate
machines. The first machine contains two processors each of which
is a single-core, hyperthreaded 2.8GHz Intel Xeon processor with
IMB of L2 cache. For all of our unconstrained memory experi-
ments, we used the machine’s full 4GB of RAM. To create memory
pressure, we used the grub loader to limit the system to only recog-
nize 256MB of physical memory. Our second machine contained a
four-core, 2.6GHz Intel Core2 processor with 4MB of L2 cache. To
create memory pressure on this machine, we again used the grub
loader to limit the system to 512MB of physical memory. Both sys-
tem use a vanilla Linux kernel version 2.6.28. During these exper-
iments, each machine was placed in single-user mode with all but
the necessary processes stopped and the network disabled. Experi-
ments on the first machine ran two applications concurrently while
experiments on the second machine ran four applications concur-
rently. We ran as many application as there were machine cores,
but allowed the applications to execute normally and did not limit
or bind them to a core. For each experiment, we record the time
required until all of the processes completed.’

For these experiments, we used benchmarks drawn from two
sources. The first benchmark was pseudoJBB, a fixed workload
variant of SPECjbb [38]. In addition, we used four benchmarks
from the 2006-10-MR?2 release of the DaCapo benchmark suite:
bloat, fop, pmd, and xalan [15].

To limit variations between runs, these experiments used a
pseudo-adaptive compilation methodology [29, 35]. Under this ap-
proach, we initially timed five separate runs of each benchmark
when executing with the adaptive compiler and recorded the fi-
nal optimization decisions made in each run. Using the decisions
from the fastest of these five runs, all of our experiments duplicate
the decisions of an adaptive compiler strategy but in an entirely
repeatable manner. Compilation costs can still bias results of ex-
periments [24]. As a result, most experiments follow a second run
methodology [9]. We observed, however, that the first (“compi-
lation™) pass can trigger significant paging which influences the
results of further passes. Since we could control or eliminate the
effects of this compilation pass, we chose instead to loop the bench-
mark so that it ran at least five times to minimize biases introduced
by the compilation costs.

Using these benchmarks we ran two sets of experiments. The
first set of experiments examined system throughput when pro-
cesses are executing homogeneous workloads. For these work-
loads, we timed how long was needed to completely execute two
or four parallel instances of the benchmark. For our second set of
experiments, we analyzed system performance on heterogeneous
workloads using each possible pairing of DaCapo benchmarks.
When running four applications, we had two processes execute one
of the benchmarks and another two processes running the other.
While these benchmarks would normally complete in a different
amount of time, we selected the number of times each benchmark
was looped so that they would complete within approximately one

3 We also examined the results using the average completion time of each
process. This did not change our results or conclusions and so is not
presented here.



Benchmark | Bytes | Min. # Description
Alloc. | Heap | Passes
pseudoJBB | 0.92G | 42M 1 Java server benchmark
bloat 684M | 22M 5 Java bytecode optimizer
fop 66M 24M 23 Translate XSL-FO to PDF
pmd 322M | 20M 7 Java program analysis
xalan 7™M | 99M 8 XSLT transformer

Table 1. Key Metrics for Single Pass of Each Benchmark

second of each other when run with no memory pressure. Table 1
provides important metrics for each of these benchmarks.

We ran five trials per data point and report the mean of each
set of trials. Our experiments found high variances for the results
of the default system. These variances decreased for Poor Richard’s
runs using the Collaborative strategy. For Poor Richard’s runs using
either the Selfish or Leadered strategy, the variances were minimal.
In our results, the variance appears correlated to the amount of
paging that occurs. This provides further evidence of how well Poor
Richard’s handles memory pressure.

4.3 Performance without Memory Pressure

While the rate with which the system consults with Poor Richard’s
does grow slowly, it will not go away. To maintain good perfor-
mance, it was important that the processing performed by Poor
Richard’s be as frugal as possible. When we tested the systems
using the full 4GB of RAM, we saw that this is the case. Us-
ing Genlmmix and averaged across all our experiments, there
is no meaningful difference between the time executing any of
Poor Richard’s coordinating strategies and the base Jikes RVM
runs — the differences are too small to be distinguishable from
the background noise. While the differences are slightly greater for
GenMS, the base system averages only up to 1.6% faster than using
Poor Richard’s with the Leadered coordinating strategy. As Poor
Richard’s using the Communal strategy is nominally faster, on av-
erage, than the base Jikes RVM at the same heap size, it suggests
that this result is probably within experimental error as well.

4.4 Performance with Memory Pressure

‘We now consider the performance of Poor Richard’s Memory Man-
ager when under memory pressure. We first examine whether Poor
Richard’s improves the performance of the two best performing
collectors included within Jikes RVM/MMTk: generational collec-
tors using either a mark-sweep policy (“GenMS”) or the Immix
algorithm [16] to collect its mature space (“Genlmmix”). Figure 4
uses the dual-processor machine to compare the performance of
Jikes RVM with runs with Poor Richard’s using either the Self-
ish strategy, the Communal strategy, or a Leadered strategy. To in-
sure that improvements are due to Poor Richard’s memory manager
only, these graphs (and all results in this paper) are for runs using
fixed heap sizes.* In these graphs, the z-axis shows the fixed heap
size used for the run and the y-axis shows the execution times rel-
ative to the performance of Poor Richard’s memory manager using
the Leadered strategy.

As soon as paging begins, the benefits of our approach become
immediately apparent. The performance of runs using either the ba-
sic GenMS or Genlmmix GCs quickly degrade as a result of pag-
ing. As Figure 4(a) shows, this degradation can lead to factor of
10 or more slowdowns. The results from the Poor Richard’s runs,
however, show that all of its strategies can reduce this slowdown

4We repeated these experiments with runs using the default heap sizing
algorithm and a fixed upper-bound on the heap size. These showed similar
relative results and support these conclusions.

considerably. The Communal strategy is consistently the worst per-
forming strategy for Poor Richard’s. This poor performance comes
about for multiple reasons. Forcing all processes to collect their
heap in response to memory pressure, even with those collections
being serialized, works only when executing homogeneous work-
loads (Figures 4(c) and 4(d)) or when both processes have heap
sizes that greatly exceed the size of the live data in the heap (Fig-
ure 4(b)). When processes have very different workloads, few of
the GCs triggered by the Communal strategy are needed and the
short-term increase in process’ working set sizes leads to greater
amounts of paging. This results in performance that can be worse
than the default approach (Figure 4(a)). As our results from the
Leadered strategy show, only one process needs to GC to alleviate
memory pressure. Second and subsequent resource-driven collec-
tions merely add GC overhead and are not needed to prevent pag-
ing.
The runs using Poor Richard’s with either the Selfish or Lead-
ered strategies, in contrast, provide very consistent results across
all benchmarks. Because these results are for runs using only two
processes, it is unlikely that both processes would perform simulta-
neous resource-driven GCs; one would expect the performance of
the these strategies to be very similar on this architecture. As can be
seen in Figure 5, this is the case. While the Leadered strategy was
slightly better, the differences seen between these two strategies
was within the variances we measured. A more interesting note is
that the performance of both these collectors was largely indepen-
dent of the heap size specified. At the largest heap sizes, the Lead-
ered strategy averaged throughput a factor of 1.07 slower than at the
smallest heap size using GenMS and a factor of 1.04 slower using
GenImmix. For the Selfish strategy, the slowdowns were roughly
similar: a factor of 1.06 for runs with GenMS and a factor of 1.05
slower for runs using GenImmix. This suggests that either of these
approaches work well towards eliminating paging concerns when
selecting a heap size on a dual-core machine.

In Figure 6 one can see the results from 4 simultaneous runs
of pseudoJBB using the Genlmmix collector. These demonstrate
that the problems that arise with paging may only get worse as we
use machines with ever increasing numbers of cores. As when two
processes were simultaneously executed, paging causes significant
slowdowns to the default Jikes RVM system. As one might expect,
the overhead imposed by Communal strategy becomes increasingly
more expensive as we add processes. While this system-wide so-
lution to paging may seem attractive, its strength of involving all
processes in the solution also means it is unable to respond quickly
enough to avoid paging or even alleviate paging that might occur.
Similarly, these results begin to show the weakness of the Self-
ish approach. With more processes executing, we begin to see in-
stances where two processes perform resource-driven GCs at the
same time. As we predicted, this increases the memory pressure
on the system and actually causes more paging, not less. Because
this event does not always happen, the results for the Selfish strat-
egy become more erratic than before. When everything works the
Selfish strategy can still match the Leadered strategy, but only if
everything falls into place at the correct times. Figure 7 shows that
these findings continue to hold across the board. By collaborating
on a system-wide response, but without significant overheads, the
Leadered strategy continues performing well at all heap sizes.

4.5 Performance in Mono

As a last experiment to see how adaptable our approach really
was, we also ported Poor Richard’s to the Mono [32] VM which
executes .Net applications. This port was interesting because Mono
uses a conservative, whole-heap collector based upon the BDW
collector and is very different from the GCs on which we previously
tested Poor Richard’s. The differences were not hard to overcome,
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(c) Relative throughput executing pseudoJBB for GenMS and GenMS
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(d) Relative throughput executing pseudoJBB for GenImmix and Gen-
Immix with Poor Richard’s using 3 different strategies. Even with only 2
processes running in these experiments, the slight collaboration provided
by the Leadered strategy can improve overall throughput.

Figure 4. Graphs showing that Poor Richard’s memory manager improves the paging performance of both the GenMS and GenImmix
collectors in Jikes RVM on a dual processor machine for both homogeneous and heterogeneous workloads. Because paging’s impact affects
all processes, a system-wide response can improve performance even when only two processes are executing.

however. Because of the simplicity of our interface, this port was
very simple to make. Much more difficult was finding benchmarks
we could run that were capable of generating a heap that could
trigger paging. In the end, we relied on a port of the GCOId
synthetic benchmark. We used this with several different ratios of
short-to-long lived objects to test our system. Figure 8 shows that
Poor Richard’s memory manager was even able to improve the
throughput of 2 simultaneous executions of this system, offering
a speedup between 1.5 and 1.73.

5. Related work

The idea of using a lightweight approach to manage shared re-
sources was first investigated by Zhang et al. [47]. This work inves-
tigated ways of handling threads within virtual machines execut-
ing in multiprogrammed environments. Each “friendly” virtual ma-
chine estimates system load using information already made avail-
able by the OS. Each process works selfishly, suspending threads
upon determining the system is overloaded and resuming threads
when it finds the system can handle an increased load. The ear-
lier work focuses on optimizing system performance for embar-
rassingly parallel processes in which each thread can be treated
as equal and independent. Our work investigates a more complex
and dynamic environment with a far greater penalty for making the

wrong decision. While both works are motivated similarly, the re-
search differs greatly in their environments, goals, and the means
of achieving these goals.

Many early garbage collection algorithms included features de-
signed to reduce heap sizes or the effects of paging. One com-
mon solution is to use heap compaction algorithms, which re-
duce the size of a program’s working set and therefore the need
for a system to page [10, 11, 17, 18,22, 25]. As the size of avail-
able memory increased, algorithms were proposed to divide the
heap into spaces or generations which could be collected individ-
ually [8, 12,31, 33, 34, 39]. Our work, like these algorithms, tries
to control the size of the heap to limit applications’ and garbage
collectors’ working sets and thus reduce the need for pages to
be evicted and the effects of unnecessary paging. Our work dif-
fers, however, in that it includes system-wide communication about
memory pressure and is orthogonal to the specific GC algorithms
being used.

Several recent approaches explored resource-based memory
management and used both the operating system and virtual ma-
chine to improve paging performance. Yang et al. modified the op-
erating system to develop approximate reuse distance histograms
with which they could estimate the current available memory size.
Their CRAMM system then developed collector models which en-
abled the JVM to select a heap size that would utilize available
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(b) Relative throughput across all runs for Genlmmix and GenImmix
with Poor Richard’s using 3 different strategies. The Leadered approach
continues to provide good performance that is largely independent of the
heap size specified.

Figure 5. Graphs showing that Poor Richard’s memory manager improves the paging performance of both the GenMS and Genlmmix
collectors in Jikes RVM on a dual processor machine for both homogeneous and heterogeneous workloads. Because paging’s impact affects
all processes, a system-wide response can improve performance even when only two processes are executing.

physical memory fully [44,45]. Hertz et al. developed the Book-
marking Collector (BC), a paging-aware garbage collector that
worked in conjunction with a modified virtual memory manager.
When used together it was able to eliminate paging costs in large
heaps and greatly reduce paging costs in all situations [28]. Unlike
CRAMM and BC, Poor Richard’s needs no OS changes, interacts
minimally with the host VM, and is independent of the GC algo-
rithm being used.

Other studies of resource-based memory management consid-
ered ways to size the heap in response to memory pressure. Alonso
and Appel presented a collector that followed each collection by
consulting a process (the “advisor”). Their system could reduce
the heap size to a level based on the amount of available mem-
ory [6]. More recently, Grzegorczyk et al. developed a tiny addition
to Linux with which they could determine the number of page al-
location stalls. Using a count of these stalls, which they showed is
a good indicator of memory pressure [26], their Isla Vista system
could guide a VM’s heap sizing policy appropriately. Unlike these
past works our approach neither modifies applications’ heap sizes
nor requires any additions to the OS, but instead relies on frequent
polling of already available information. Our work also differs in
that it explicitly considers memory sharing by mulitple JVMs and
enables decision making based upon system-wide information.

Researchers have also investigated using program analysis to
reduce the effects of paging on garbage-collected applications. An-
dreasson et al. used reinforcement learning to improve GC deci-
sions through thousands of iterations. They assigned fixed cost for
GC and paging and predicted the running time as a function of
these and other parameters [7]. The average performance improve-
ment for SPECjbb2K running on JRockit was 2% with the learning
overhead and 6% otherwise. Instead of using a fixed cost and mem-
ory size, other recent work [46] adaptively monitored the number of
page faults and adjusted the heap size of a program in an exclusive
environment. Both of these methods relied upon manual analysis of
the program. Unlike those approaches, our work is fully automated
and can be applied to general programs. More importantly, Poor
Richard’s works in shared environments.

Many other adaptive schemes have been used for garbage col-
lection. Several studies examined adaptation based on the pro-
gram demand. Buytaert et al. use offline profiling to determine the
amount of reachable data as the program runs and generate a list-

ing of program points when collecting the heap will be most fa-
vorable. At runtime, they then can collect the heap when the ra-
tio of reachable to unreachable data is most effective [20]. Similar
work by Ding et al. used a Lisp interpreter to show that limiting
collections to occur only at phase boundaries reduced GC over-
head and improved data locality [23]. By using allocation pauses
to dynamically detect phase boundaries and limiting collections to
these phase boundaries, Xian et al. improved throughput by up to
14% [43]. Soman et al. used profiling, user annotation, and a mod-
ified JVM so a program may select which garbage collector to use
at the program loading time [37]. Wegiel and Krintz developed
the Yield Predictor which estimated the percentage of the heap a
whole-heap garbage collection would reclaim and so could be used
to skip performing unproductive collections and just grow the heap
initially [41]. MMTk [14] can adjust its heap size by analyzing
heap and garbage collection statistics and applying a set of prede-
termined ratios. Similarly, HotSpot [2] and Oracle JRockit [5] can
adjust their heap sizes to target a specific pause time, throughput,
or heap size. Our work is orthogonal and complementary because it
reacts to the changing resource in the system rather than predicting
the demand of applications.

While heap management adds several new wrinkles, there are
many prior works creating virtual memory managers which adapt
to program behavior to reduce paging. Smaragdakis et al. devel-
oped early eviction LRU (EELRU), which made use of recency in-
formation to improve eviction decisions [36]. Last reuse distance,
another recency metric, was used by Jiang and Zhang to avert
thrashing [30], by Chen et al. to improve Linux VM [21], and by
Zhou et al. to improve multi-programming [48]. All of these tech-
niques try to best allocate physical memory for a fixed subset of
the working set, but are of limited benefit when the total work-
ing set fits in available memory or when the available memory is
too small for the subset. Resource-based memory management, on
the other hand, only triggers collections upon detecting significant
memory pressure. Because it does nothing in the absence of pag-
ing, the heap will grow to take full advantage of physical memory
when it becomes available. Our system is therefore able to trig-
ger more frequent collections (avoiding paging costs) dynamically
without sacrificing the larger heap sizes (increased memory usage)
that would otherwise provide better performance.
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Figure 7. Average across all our runs when executing 4 process simultaneously. Poor Richard’s continues to scale to this environment and
the Leadered strategy’s minimal collaboration increasingly outperforms all other approaches.
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Figure 8. Graphs showing Poor Richard’s memory manager improves the paging performance of the Mono runtime system. Unlike Jikes
RVM, Mono uses a conservative, whole-heap collector.



6. Conclusions and Future Work

Garbage-collected applications need their heaps sized to be large
enough to provide optimal performance. Sizing the heap too large,
however, can lead the system to page and throughput to plummet.
When executed on the multi-processor, multi-core machines that
are increasingly common, this requires applications adjust their
heaps dynamically and in reaction to changes brought on by other
processes. Should other processes react to changes in available
memory similarly, the result could lead to either increased con-
tention as they all grab for the same resources or decreased utility
as they all react too conservatively.

Poor Richard’s memory manager avoids this problem by allow-
ing each process to detect and react to increased memory pres-
sure quickly and avoid paging. It does this in a simple, lightweight
manner that requires few changes to existing systems, allowing
them to keep their existing good performance when not paging,
and improves the paging performance of all collectors we tried. By
enabling processes to collaborate on system-wide solutions, Poor
Richard’s scales to multiprogramming environments easily and im-
proves the average throughput across a range of bencmarks by up
to a factor of 5.5.

As part of our future work, we plan to port Poor Richard’s to
addtional VMs and investigate alternative methods of selecting a
leader in Poor Richard’s Leadered strategy. In particular, we plan
on investigating approaches that would allow systems to tailor how
resources are allocated to meet their particular needs. By providing
a mechanism which could be used to ensure certain processes
meet guaranteed performance goals, optimize throughput, or allow
creation of multiple levels of priority, Poor Richard’s could help
ensure that the software engineering benefits of garbage collection
can continue.
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