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ABSTRACT

QUANTIFYING AND IMPROVING THE PERFORMANCE OF
GARBAGE COLLECTION

SEPTEMBER 2006

MATTHEW HERTZ

B.A., CARLETON COLLEGE

M.Sc., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Emery D. Berger

Researchers have devoted decades towards improving garbage collection performance.

A key question is: what opportunity remains for performance improvement? Because the

perceived performance disadvantage of garbage collection is often cited as a barrier to its

adoption, we propose using explicit memory management as the touchstone for evaluating

garbage collection performance.

Unfortunately, programmers using garbage-collected languages do not specify when

to deallocate memory, precluding a direct comparison with explicit memory management.

We observe that we can simulate the effect of explicit memory management by profil-

ing applications and generating object reachability information and lifetimes to serve as

zero-cost oracles to guide explicit memory reclamation. We call this approach oracular

memory management. However, existing methods of generating exact object reachability

are prohibitively expensive. We first present the object reachability time algorithm, which

vii



we call Merlin. We show how Merlin runs in time proportional to the running time of

the application and can be performed either on-line or off-line. We then present empirical

results showing that Merlin requires orders of magnitude less time than brute force trace

generation.

We next present simulation results from experiments with the oracular memory man-

ager. These results show that when memory is plentiful, garbage collection performance is

competitive with explicit memory management, occasionally increasing program through-

put by 10%. This performance comes at a price. To match the average performance of

explicit memory management, the best performing garbage collector requires an average

heap size that is two-and-a-half or five times larger, depending on how aggressively the

explicit memory manager frees objects.

This performance gap is especially large when the heap exceeds physical memory. We

show the garbage-collector causes poor paging performance. During a full heap collection,

the collector scans all reachable objects. Which a reachable object resides on a non-resident

page, the virtual memory manager reloads that page and evicts another. If the evicted page

also contains reachable objects, ultimately it too will be accessed by the collector and

reloaded into physical memory. This paging is unavoidable without cooperation between

the garbage collector and the virtual memory manager.

We then present a cooperative garbage collection algorithm that we call bookmarking

collection (BC). BC works with the virtual memory manager to decide which pages to evict.

By providing available empty pages and, when paging is inevitable, processing pages prior

to their eviction, BC avoids triggering page faults during garbage collection. When paging,

BC reduces execution time over the next best collector by up to a factor of 3 and reduces

maximum pause times by over an order of magnitude versus GenMS.

This thesis begins by asking how well garbage collection performs currently and which

areas remain for it to improve. We develop oracular memory management to help answer

this question by enabling us to quantify garbage collection’s performance. Our results show
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that while garbage collection can perform competitively, this good performance assumes

the heap fits in available memory. Our attention thus focused onto this brittleness, we de-

sign and implement the bookmarking collector. While performing competitively when not

paging, our new collector’s paging performance helps make garbage collection’s perfor-

mance must more robust.
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CHAPTER 1

INTRODUCTION

Automatic memory management, or garbage collection, provides significant software

engineering benefits. Automatically reclaiming unneeded heap data prevents memory leaks

from unreachable objects, “dangling pointers” (when a programmer accesses previously

freed memory), and security violations [90, 110]. Garbage collection also improves soft-

ware modularity by eliminating object ownership and reclamation problems that arise when

memory is passed across module boundaries. Because of these benefits, programmers are

increasingly using garbage-collected languages such as Java and C#.

Despite these clear software engineering advantages, garbage collection’s impact on

application performance remains controversial. Garbage collection requires that the run-

time system determine which memory can be safely reclaimed. This additional work that

garbage collection performs to find unreachable (or garbage) objects is believed to impose

a substantial performance penalty [100, 102, 105, 109]. One study shows that applications

spend up to 46% of their execution time in garbage collection [55]. This research, how-

ever, examines only the relative amount of time spent collecting the heap and offers no

comparison with the overhead imposed by other methods of memory management.

However, other studies show that garbage collection can improve program performance

by increasing cache program locality [26]. Research also shows copying collection can

improve cache and page locality by dynamically reordering objects [68]. Unfortunately,

these studies suffer the same methodological flaw as the research documenting garbage

collection’s performance penalties: they examine garbage collection’s impact, but do not
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evaluate if its collection costs are higher than its benefits; neither do they perform any

comparisons to other memory managers.

Those past studies that compare garbage collection performance to that of other mem-

ory managers, rely upon rough estimates of explicit memory manager performance [26, 68]

or analyze only conservative, non-moving garbage collection [53, 114]. While these results

are instructive, it is unclear how they apply to modern precise, copying and hybrid col-

lectors. These best-of-breed collectors have the highest throughput and smallest memory

footprints [26], and are currently the most commonly used.

1.1 Contributions

Understanding how garbage collection currently performs is a crucial step to improv-

ing its performance. The results of our analyses highlight areas where garbage collection

already outperforms and areas where its performance suffers. By focusing research only

on those areas which are the biggest bottlenecks or yield the biggest gains, this thesis im-

proves upon researchers’ current approach of using intuition or educated guesses in devel-

oping new approaches. Therefore, analyzing garbage collection not only provides useful

performance data, but also provides a detailed map of how to improve its performance.

Unfortunately, comparing different memory managers is not simple, especially within

garbage-collected languages. These languages lack the free calls needed for region-based

or explicit memory management. While we could insert calls to free by hand, rewriting

the code may not place these calls in the same location as would the original programmer.

This solution examines our skill in rewriting code as much as it evaluates memory manager

performance. We instead simulate different locations where a programmer could insert

free calls. We use object reachability information to insert these calls at the last possible

time a programmer could free objects during an execution. Using object lifetime infor-

mation, we insert calls to free at the earliest moment a programmer could free an object.

While these simulations are imperfect (e.g., iterations a loop may only occasionally reclaim
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an object), these imperfections reflect the program’s behavior and are both predictable and

repeatable.

While object lifetime and reachability information is usually generated via program

heap traces, relying upon these traces introduces new problems. The brute force method

of computing object reachability that had been used is prohibitively expensive, because it

must analyze the entire heap each time it determines which objects are no longer reach-

able. Researchers previously minimized these costs by instead generating traces that are

only periodically accurate (granulated traces). While granulation makes trace generation

tractable, it yields significant inaccuracies.

We develop a new algorithm that computes object reachability in asymptotically op-

timal time, significantly improving upon the brute force approach. This new algorithm,

called Merlin, uses a two pass approach. A forward pass records the last time each ob-

ject was provably reachable. A backward pass then propagates these last known reachable

times to compute when each object became unreachable. We show that trace generation

with Merlin computes object reachability nearly three orders of magnitude faster than gen-

erating traces with brute force. In fact, Merlin computes allocation-accurate reachability

information faster than brute force computes reachability accurate to a granularity of only

16KB of allocation. Using Merlin allows researchers using program heap traces to generate

accurate results quickly.

Merlin can therefore generate the object reachability information we need to insert

free calls into the program. But while Merlin’s backward pass enables the speedy com-

putation of object reachability, it completes generating reachability times only when a pro-

gram terminates. We therefore cannot get results from the Merlin algorithm until after the

program runs. We therefore require at least two identical runs of each program. A first pro-

filing run generates the program heap trace, while later runs can then use the reachability

and lifetime information as a zero-cost oracle specifying when to insert free calls.
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We use this profile-based approach, which we call oracular memory management, to

quantify garbage collection performance by comparing it with explicit memory manage-

ment. We use explicit memory management as a touchstone, because it is often cited as

top performing method of managing heap memory [20, 59, 95]. By comparing with the

best performing explicit memory managers, we measure if garbage collection speeds up

performance or slows performance down.

This thesis evaluates memory manager performance on a range of Java programs using

a cycle-level processor simulator. Using a simulator not only ensures we have identical

benchmark runs, but also enables collection of a variety of performance metrics. We show

that a generational collector with non-copying mature space provides a modest throughput

improvement over a similar explicit memory manager, on average, and that garbage collec-

tion can outperform the explicit memory manager by up to 10% on certain benchmarks. We

also show that this performance comes at a price. Garbage collection achieves this top per-

formance by using a heap that is two-and-a-half or five times larger, on average, than that of

an explicit memory manager freeing memory in the most conservative and most aggressive

manners, respectively. Runs with explicitly managed heaps perform orders-of-magnitude

better compared with garbage collection when limited memory forces the eviction of heap

pages to disk, dominating garbage collection at all reasonable memory sizes.

Garbage collection’s poor paging performance compared to explicit memory manage-

ment is due to the tracing phase of collection. While explicit memory managers touch

pages only when allocating or freeing objects, garbage collectors periodically collect the

heap by tracing through the reachable objects. This tracing can trigger page faults, as ex-

isting collectors do not track which pages are in memory, and thus cannot avoid touching

objects on evicted pages. This poor paging behavior is exacerbated by the virtual memory

manager’s keeping pages with which the collector is finished (as these pages have recently

been touched) and evicting pages that the collector will soon visit. This combination causes

a cascade of page faults, stalling progress and increasing garbage collection times.
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This thesis presents a new algorithm, called bookmarking collection, that improves gar-

bage collection’s paging performance. Bookmarking collection (BC) works with the virtual

memory manager in evicting pages. The virtual memory manager initiates communication

by notifying a process whenever it schedules one of its pages for eviction. Upon receiving

this notification, the bookmarking collector tries to reduce its memory footprint and pre-

vent the need for an eviction. BC first attempts to provide the virtual memory manager an

unused (discardable) page. When all pages are in use, the system collects the heap. After

completing the collection, BC tries to provide the virtual memory manager with enough

newly discardable pages to prevent heap pages from being evicted. If there are still not

enough empty pages, BC processes the pages that will be evicted and records summaries

of the references to other pages. With these remembered references, the collector can pre-

serve all objects reachable through references evicted pages and will not fault the page in

for future collections. This entire process enables the bookmarking collector to avoid page

faults during garbage collection and potentially eliminate application page faults.

We show that the bookmarking collector performs well in a variety of environments.

We first demonstrate that BC matches or exceeds the performance of the best performing

collector we test when there is no memory pressure. When paging, bookmarking collection

reduces execution time over the next best collector by up to a factor of three and reduces

the maximum pause times versus GenMS by more than an order of magnitude. This collec-

tor dramatically improves overall application usability and substantially improves garbage

collection utility.

1.2 Summary of Contributions

This thesis presents a method by which we can generate exact object reachability in-

formation and then show how we can use this information to compare garbage collection’s

performance with that of explicit memory management. We use this system to provide

the first apples-to-apples comparison within a garbage-collected language of which we are
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aware. We find that while garbage collection performance can match that of explicit mem-

ory management, but also that this good performance requires the system be able to hold the

larger heap without paging. Using these results, we focus our attention on the area where

garbage collection suffers most: its paging performance. We then develop and implement a

garbage collector that performs well when not paging and cooperates with the virtual mem-

ory manager to continue providing good throughput and pause times even when increased

memory pressure prevents the entire heap from fitting in memory.

This thesis starts by answering questions about how well garbage collection performs

currently, and what opportunities remain for its performance to be improved. Absent head-

to-head performance comparisons, developers used incorrect, but widely-held, assumptions

of garbage collection’s poor performance to reject using this method of memory manage-

ment. This work presents methods by which we can quantify the performance of different

memory managers and compare where each performs well and where each performs poorly.

This work shows that garbage collection can already perform well, but that this good per-

formance is brittle and relies upon certain assumptions about the state of the system. We

develop a garbage collector that cooperates with the system to provide good performance in

a variety of states. More importantly, we feel this thesis provides a methodology by which

researchers can examine memory manager performance and focus their attention on those

areas where the memory manager quantifiably suffers most.
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CHAPTER 2

RELATED WORK

We now discuss the prior research on which this thesis builds. While there is a large

body of garbage collection research [72], we focus on specific areas which are most rele-

vant: methods of computing object reachability, analysis of memory manager performance,

and efforts to improve garbage collection paging behavior.

2.1 Object Reachability

While there is little previous research into methods of computing exact object reachabil-

ity, previous work has examined alternative methods of approximating the object reachabil-

ity information included in a heap trace. There have also been other algorithms that collect

the heap in a manner similar to how the Merlin algorithm computes object lifetimes. We

discuss these now.

2.1.1 Reachability Approximation

To cope with the cost of computing object reachability, researchers have investigated

methods of approximating the reachability of objects. These approximations model the

object allocation behavior and patterns of when objects become unreachable found in ac-

tual programs. One paper describes mathematical functions that model object reachability

characteristics based upon actual reachability information computed from 58 Smalltalk and

Java programs [99]. Other research compares several different methods of approximating

the object allocation and reachability behavior of actual programs [115]. Neither study

attempts to generate actual object reachability information; rather, these studies describe
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alternative methods of generating the information needed for memory management simu-

lations.

2.1.2 Reference Counting

While the Merlin algorithm does not perform reference counting (RC), issues that arise

from Merlin’s timestamping are similar to the issues that arise from counting references.

As a result of these similarities, we describe the RC collectors most closely related to the

Merlin algorithm here.

Reference counting associates a count of incoming references with each object; when

the count is 0, it frees the object [46]. To improve efficiency, deferred reference counters

do not count the numerous updates to stack variables and registers [54], but like other

algorithms, enumerates the stacks and registers to compute correct counts only when it

collects the heap. Since objects in a cycle never have a reference count of 0 [107], modern

implementations add periodic tracing collection or perform trial deletion to reclaim cycles

of unreachable objects [17, 106]. Trial deletion places objects that lose a pointer but whose

count did not reach 0 into a “candidate set”. It then recursively performs trial deletions on

the objects in this set and those objects reachable from them. If, by reducing this count for

one of these objects, all of the reference counts go to zero, the objects form a dead cycle

and can be reclaimed.

Unlike RC, the Merlin algorithm is not a garbage collector, but merely computes ob-

ject reachability. While there are similarities between Merlin and RC (deferring reference

counts to limit processing is similar to Merlin’s timestamping), Merlin relies upon an un-

derlying collector to actually reclaim objects whereas RC performs this reclamation itself.

2.2 Analyzing Memory Manager Performance

We first discuss past work analyzing the space and time overheads that different mem-

ory managers impose. We then examine work that uses models to analyze memory manager
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performance. Finally, we discuss work that uses conservative garbage collection to com-

pare the performance of garbage collection and explicit memory management. We now

discuss past work that examined program overheads as a means of exploring how well

memory managers perform.

2.2.1 Garbage Collection Overheads

Several studies have attempted to measure what fraction of program execution time

is consumed by garbage collection. Ungar [103] and Steele [98] observe that garbage

collection overheads in LISP account for around 30% of application running time. Diwan

et al. use trace-driven simulations of six SML/NJ benchmarks to conclude that generational

garbage collection accounts for 19% to 46% of application execution time [55]. Blackburn

et al. use several whole-heap and generational collectors to measure the space-time trade

off when selecting garbage collection [26]. Unfortunately, none of these studies measure

the running time and space overhead garbage collection has on the program (e.g., delays

resulting from the order objects are laid out in the heap, or due to a collection polluting the

cache). It is therefore difficult to ascertain how this overhead relates to those imposed by

other memory managers.

2.2.2 Explicit Memory Management Overheads

Researchers have also examined the cost of explicit memory managers, starting with

Knuth’s simulation-based study [75, p. 435–452]. Korn and Vo find that, of the explicit

memory management algorithms they studied, buddy allocation was the fastest and most

space-efficient [76]. Johnstone and Wilson measure the space overhead of several con-

ventional explicit memory managers and find that they wasted little memory beyond that

induced by object headers and alignment restrictions (they exhibited nearly zero fragmen-

tation) [70]. They also conclude that the Lea allocator performs best when considering

combined space and time overheads. Berger et al. measure the execution time and space

consumption for a range of benchmarks using the actual Lea and Kingsley allocators and

9



their counterparts written in the Heap Layers framework [22]. They find that programs

using general purpose memory managers can spend up to 13% of program running time in

memory operations. Because these studies measure different programs and cannot account

for changes to metrics such as cache locality, we cannot compare these memory manager

overhead costs to those from garbage collection directly, however. While explicit memory

management has a lower apparent cost, it is unclear if this would translate into improved

execution times.

2.2.3 Comparisons Using Explicit Memory Manager Performance Estimates

Comparing different memory managers running identical benchmarks is difficult; one

way that past researchers avoided this problem is to estimate explicit memory management

performance. Huang et al. [68] use the mutator time from runs of a full heap MarkSweep

collector as an estimate of explicit memory manager performance. They show that a copy-

ing collector using their on-line object reordering optimization is slightly faster than their

estimate of explicit memory management on a majority of benchmarks and provides sub-

stantial speedups on most other benchmarks. On only one benchmark does garbage collec-

tion perform significantly worse. Blackburn et al. [26] use an identical estimation method

to hypothesize that the top performing generational collector at any heap size provides

a performance improvement for 202 jess. Unlike this thesis, however, these estimates

cannot include the cost of explicit memory management. More importantly, this estimate

ignores the improved locality resulting from the immediate reuse of freed objects [60] and

the high proportion of very short-lived objects allocated by Java programs [69]. While we

see similar results to these past experiments, it is unclear how accurate this estimate of

explicit memory management actually is.

2.2.4 Comparisons Using Program Heap Models

Researchers have also developed mathematical models by which they could evaluate

and compare different memory managers’ performance on similar benchmarks. Zorn and
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Grunwald develop and evaluate several different mathematical methods of approximating

the object lifetime characteristics of actual programs [115]. Similarly, Appel develops a

mathematical model in which he can derive the relative cost for allocating objects into the

heap versus allocating them on the stack [13]. Using these models, he shows that in certain

environments garbage collection should outperform explicit memory management. Unlike

this thesis, these models could not match actual program behavior nor could they be used to

compare cache performance. Instead, these works attempted to roughly emulate program

behavior in such a way as to then enable them to then compare memory managers.

2.2.5 Comparisons With Conservative Garbage Collection

Past work comparing garbage collection with explicit memory management have under-

standably taken place using conservative, non-relocating garbage collectors for C and C++.

In his thesis, Detlefs compares the performance of garbage collection and explicit memory

management for three C++ programs [53, p.47]. He finds that while garbage collection

usually results in poorer performance (adding 2%-28% to the total program runtime), the

garbage-collected version of cfront performs 10% faster than a version that exclusively

uses a general-purpose allocator. However, the garbage-collected version still runs 16%

slower than the original cfront (which uses custom memory allocators).

Zorn also performs a direct empirical comparison of conservative garbage collection

and explicit memory management using a suite of C programs [114]. He finds that the

version of the Boehm-Demers-Weiser conservative garbage collector [36] he tests performs

faster than explicit memory allocation on occasion. He also finds, however, that the BDW

collector normally consumes more memory than the explicit memory managers, in one

case needing 228% more memory to hold the heap.

Unlike these prior studies, this thesis focuses on the performance of programs writ-

ten for a garbage-collected language. We can therefore examine the impact of the pre-
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cise, copying garbage collectors that usually provide higher throughputs and better perfor-

mance [26].

2.3 Improving Garbage Collection Paging Behavior

We now discuss past work examining garbage collection’s paging performance or how

garbage collection interacts with virtual memory. We do this by characterizing and dis-

cussing algorithms by their level of involvement with virtual memory managers. We first

describe VM-sensitive garbage collectors, algorithms whose design indirectly limits pag-

ing. We then consider VM-cooperative garbage collectors, which interact with the virtual

memory manager or leverage virtual memory to improve their performance. We know of

no other algorithm that actively cooperates with the virtual memory manager to eliminate

page faults during garbage collection.

2.3.1 VM-Sensitive Garbage Collection

Soon after the development of virtual memory in the sixties, researchers saw the need

to improve garbage collectors’ virtual memory behavior. Section 3 of Cohen’s survey on

garbage collection describes these early efforts [45], and we discuss the most relevant work

here.

Initial work focused on using compaction to reduce an application’s working set [52].

Bobrow and Murphy developed an algorithm that improves virtual memory performance

and data locality by allocating and linearizing LISP lists onto individual pages [33, 34].

Baker presented a more general approach, based on the semispace copying collector pro-

posed by both the team of Fenichel and Yochelson and by Cheney [18, 40, 58]. Semispace

collection compacts the heap by copying the survivors of a collection into a separate mem-

ory region. While these algorithms reduce the application’s working set, they cannot avoid

paging during garbage collection. In particular, semispace collection’s looping behavior

can trigger the worst-case behavior for the LRU-based page replacement policies used in
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modern operating systems. The garbage collection algorithm we propose in this thesis not

only reduces the application’s working set size, but also does so without relying solely on

heap compaction. Unlike these previous algorithms, our proposed collector can prevent

touching non-resident pages.

Later work improved garbage collection’s paging performance by collecting separate

regions of memory independently. Bishop presented the first partitioned garbage collector

of which we are aware [24]. His collector divides the heap into many different regions,

each of which consists of two semispaces. In Bishop’s collector, hardware-supported write

barriers trap the creation of inter-region pointers and enable the maintenance of remem-

bered sets (lists of references into and out of a region). The system limited the lists’ size

by automatically copying and merging areas that contain a sufficient number of entries. By

collecting each area separately, Bishop sought to reduce page faults during garbage collec-

tion. While our proposed bookmarking collector, like Bishop’s system, organizes the heap

into independent regions, our collector manages these regions quite differently. Notably,

the system presented in this thesis does not impose any space or execution time overheads

except when heap pages are evicted. Once heap pages are written to disk, the collector

works with the virtual memory manager to avoid visiting evicted regions.

Ephemeral garbage collection was another approach to improve paging behavior of gar-

bage collection [83]. Ephemeral collection uses hardware-supported write barriers to scan

pages when they are evicted and record the “levels” to which the page contains pointers.

With this knowledge, the collector need only scan pages containing pointers to the levels

being collected. Lacking knowledge of the targets of these pointers, however, ephemeral

garbage collectors must reload evicted pages containing references into the level being

collected and so cannot avoid page faults during garbage collection.

Generational garbage collection achieves the same result as ephemeral collection with-

out hardware support [14, 79, 86, 103]. Generational collectors reclaim short-lived objects
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without performing whole-heap garbage collections. These collectors cannot avoid page

faults, however, especially when performing whole-heap garbage collections.

A number of researchers focus on improving reference locality by modifying object

layouts and groupings using the garbage collector [8, 29, 44, 51, 68, 77, 99, 101, 112].

Other work reduces the large amount of memory typically used by garbage collectors [30,

88, 89]. These studies demonstrate some reduction in the total number of page faults, but

do not address the paging problems caused by garbage collection itself, which we identify

as the primary culprit. These approaches are orthogonal and complementary to the work

presented in this thesis.

Kim and Hsu use the SpecJVM98 suite of benchmarks to examine metrics including

garbage collection’s memory usage [74]. They found paging causes garbage collection

performance to suffer significantly, but that there existed an optimal heap size for each

benchmark that minimized both the costs of garbage collection and paging. These optimal

heap sizes rely upon applications maintaining a fixed size of reachable data and being run

on a dedicated machine; it is unclear how to apply these results to the majority of situations

where the assumptions are not met.

2.3.2 VM-Cooperative Garbage Collection

Several garbage collection algorithms reduce paging by communicating with the vir-

tual memory manager. The closest work to that presented in this thesis is that of Cooper,

Nettles, and Subramanian [48]. That research uses external pagers in the Mach operating

system [81] to allow the garbage collector to direct the removal of discardable (empty)

pages from main memory and thereby limit the need to evict pages. This system imposes a

constant overhead as it is unable to limit the discarding of pages to only those times when

memory pressure is high. Additionally, this system does not prevent the garbage collector

from visiting evicted pages during collection.
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Alonso and Appel present a collector that may shrink the heap after each garbage collec-

tion depending upon the current level of available memory. The system uses an “advisor”

that calls vmstat to obtain the current amount of physical memory available [10]. Their

system cannot grow the heap nor can it eliminate paging when the reachable data exceeds

available memory. Similarly, Brecht et al. present a collector that adapts Alonso and Ap-

pel’s work by developing a mechanism of growing the heap to limit the amount of time

spent in garbage collection [37].

Several systems adjust their heap size depending on the current environment, primarily

to reduce paging costs. MMTk [27] and BEA JRockit [4] adjust their heap size from a pre-

defined set of ratios that use the percentage of the heap used by reachable data or garbage

collection pause times. HotSpot [1] has the ability to adjust the heap size based upon pause

times, throughput, and footprint limits. Novell Netware Server 6 [3] uses the current level

of memory pressure to adjust how often it should collect and compact the heap. All of

these systems rely on pre-defined parameters or command line arguments, which makes

adaptation slow and inaccurate, and does not eliminate garbage collection-induced paging.

Yang et al. report on an automatic heap sizing algorithm that uses information from a

simulated virtual memory manager and a model of GC behavior to choose a good heap

size [113]. Like these systems, BC can shrink its heap (by giving up discardable pages),

but it does not need to wait until a full heap garbage collection to do so. BC also eliminates

paging even when the size of live data exceeds available physical memory.
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CHAPTER 3

COMPUTING OBJECT REACHABILITY

languages lack the explicit calls to reclaim memory needed by our memory manage-

ment touchstone, explicit memory management, we could insert these calls whenever the

garbage collector could remove the object from the heap. That these object unreachable

times are already captured in program heap traces would seem to make this process more

attractive.

Unfortunately, the traditional brute force method of computing these object unreachable

times can take over 3 months to generate the trace of for a 60-second program. To limit

the trace generation time, researchers have resorted to computing object unreachable times

periodically [31, 64, 91, 92, 93]. While improving the time needed to compute object

reachability times, we have shown that this can yield inaccurate results [63].

In this chapter, we present a new, faster method of computing these times, which we

call Merlin. Unlike the brute force method, which must analyze the entire heap any time

it needs to determine if an object is unreachable, the Merlin algorithm analyzes each heap

object only once. Merlin therefore reduces the time needed to compute object reachability

information from months to hours.

Arthurian legend says Merlin began life as an old man. The wizard then lived back-

wards in time. Merlin’s great wisdom arose from his making decisions having already

experienced the outcome. Like its namesake, the Merlin algorithm starts its processing

at program termination and works in reverse chronological order. Working backwards

through time, the algorithm can compute object reachability quickly, because the first time

it encounters an object is when the object was last reachable.
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Figure 3.1. Objects A and B transition from reachable to unreachable when their last in-
coming references are removed. Object C becomes unreachable when it loses an incoming
reference, despite having another incoming reference. Objects D, E, and F become un-
reachable when the referring objects lose an incoming reference and become unreachable.

This chapter first presents the two phases of the Merlin algorithm and how they com-

pute object reachability. We next discuss algorithmic and implementation issues and on-

and off-line configurations. We also discuss methods of computing approximate reach-

ability information (when the data are accurate only periodically) and present a detailed

performance analysis of an on-line implementation of Merlin.

3.1 Objects Becoming Unreachable

Figure 3.1 illustrates different methods by which objects transition from reachable to

unreachable. In this figure, objects A and B become unreachable when they lose their final

incoming references. Object C also becomes unreachable when it loses an incoming ref-

erence, despite continuing to have more incoming references. Objects D and E, however,

transition from reachable to unreachable when their referring objects (B and C, respec-

tively) lose an incoming reference. Object C becoming unreachable also causes object F

to transition to unreachable. It is important to note that, in each of these cases, only the

object losing a reference and objects in the transitive closure set of their references become

unreachable.

While Merlin could process objects losing incoming references (and all those in the

transitive closure of its reachability) each time they lose an incoming reference, the algo-
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void PointerStoreInstrumentation(ADDRESS source, ADDRESS newTarget)
ADDRESS oldTarget = getMemoryWord(source);
if (oldTarget 6= null)

oldTarget.timeStamp = currentTime;

Figure 3.2. Pseudo-code to process pointer stores during Merlin’s forward phase

rithm only inserts into the trace the last time an object is reachable. Merlin computes these

last reachable times efficiently using a two phase approach.

3.2 Forward Phase

Merlin’s processing begins with the forward phase. During this phase, Merlin maintains

a timestamp for each object. The timestamp records the latest time the object may have

been last reachable. Whenever a pointer store removes an incoming reference to an object,

Merlin replaces the object’s timestamp with the current time. This timestamp therefore

records the last reachable time for objects that become unreachable when they lose an

incoming reference, e.g., objects A, B, and C in Figure 3.1.

3.2.1 Instrumented Pointer Stores

Most pointer stores can be instrumented by a write barrier. When a reference is updated,

Merlin timestamps the object losing an incoming reference (the old target of the pointer)

with the current time. Since time increases monotonically, writing the current time over

the previous timestamp guarantees that Merlin records the final time the object loses an

incoming reference. The code in Figure 3.2 illustrates the processing Merlin performs at

each pointer store.

3.2.2 Uninstrumented Pointer Stores

Because root references (especially those in registers or thread stacks) are updated fre-

quently, instrumenting root references would be prohibitively expensive. Merlin instead
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void ProcessRootPointer(ADDRESS rootAddr)
ADDRESS rootTarget = getMemoryWord(rootAddr);
if (rootTarget 6= null)

rootTarget.timeStamp = currentTime;

Figure 3.3. Pseudo-code to process root pointers during Merlin’s forward phase

scans the program roots at the start of each granule of time. During this root scan, Mer-

lin stamps the targets of the root references with the current time. While root-referenced,

objects are always stamped with the current time; if an object is reachable until losing an

incoming root reference, the object’s timestamp contains the last time the object was reach-

able. Figure 3.3 shows the Merlin pseudo-code that updates the targets of root pointers.

3.3 Forward Phase Limitations

Because the Merlin algorithm is concerned with when an object was last reachable and

cannot always determine how the object became unreachable, it is difficult to find a single

method that computes every object’s last reachable time. The timestamps from the forward

phase (e.g., generated by the pseudo-code in Figures 3.2 and 3.3) compute the last reachable

time for those objects that are last reachable when they lose an incoming reference (e.g.,

objects A, B, and C in Figure 3.1). However, the timestamps recorded for objects D, E, and

F may not be computed when these objects become unreachable. These latter three objects

become unreachable only when the object referring to them transitions to unreachable.

To handle reference chains during the forward phase, updating the last reachable times

for an object requires recomputing the last reachable times of the objects to which it points.

In Figure 3.1, this would require updating object D’s timestamp whenever Merlin updates

object B’s timestamp. Similarly, Merlin would need to update the timestamps for objects C,

E, and F together. Since each object could transitively refer to every heap object, updating

all of these timestamps during a forward phase would make this process too expensive to

be useful.
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3.4 Backward Phase

To avoid this cost, Merlin propagates timestamps along references during a second

phase. This second phase processes only provably unreachable objects, since they are the

only objects that Merlin knows cannot lose any further incoming references. Processing

these provably unreachable objects ensures that Merlin need only compute each object’s

transitive closure set once.

Computing full transitive closure sets is still a time consuming process, however. But

Merlin need not compute the full transitive closure. The algorithm must compute only

the last time each object was reachable. Therefore, only the latest timestamp reaching an

object — the last time the object was reachable from the program roots — is needed. To

speed processing, Merlin instead finds only this latest reaching timestamp for each object.

To compute only the latest last reachable time for each object, Merlin’s second phase

runs backward in time (e.g., begins determining the transitive closure set for the object with

the latest timestamp back to the object with the earliest timestamp). The algorithm sets up

this backward processing by first sorting all the unreachable objects by their timestamp.

Merlin then initializes a priority queue such that the object with the latest timestamp will

always be processed first.

We now describe how this backward phase works using the illustrations in Figure 3.4

as an example. Figure 3.4(a) shows the processing state after Merlin sorts unreachable

objects and initializes its worklist. Merlin then processes object A (the object with the latest

timestamp). In the backward phase, Merlin propagates timestamps by scanning objects for

references to other (target) objects. When a target object’s timestamp contains an earlier

time, Merlin replaces the target object’s timestamp with that of the source object. The target

object is also moved to the front of the priority queue, so the timestamp can continue to be

propagated. Figure 3.4(b) shows what happens after Merlin processes object A. Because it

had a later timestamp, Merlin copied object A’s timestamp into the target object (e.g., object

B) and added the target object onto the top of the worklist. Figure 3.4(c) shows how Merlin
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Figure 3.4. Computing object death times, where ti < ti+1. Since Object D has no incoming
references, Merlin’s computation will not change its timestamp. Because Object A was
last reachable at its timestamp, the algorithm will not update its last reachable time when
processing the object’s incoming reference. In (a), Object A is processed finding the pointer
to Object B. Object B’s timestamp is earlier, so Object B is added to the stack and last
reachable time set. We process Object B and find the pointer to Object C in (b). Object
C has an earlier timestamp, so it is added to the stack and timestamp updated. In (c), we
process Object C. Object A is pointed to, but it does not have an earlier timestamp and
is not added to the stack. In (d), the cycle has finished being processed. The remaining
objects in the stack will be examined, but no further processing is needed.

has continued propagating this time by processing object B. When processing object C (in

Figure 3.4(c)), Merlin ignores the target object, since the target’s timestamp (object A’s t3)

is equal to the timestamp being propagated. Merlin can safely ignore these objects because

they will already propagate the timestamp. While not shown in this example, Merlin also

ignores target objects with later timestamps, since it already computed that those targets

were last reachable after the time being propagated. Figure 3.5 shows the pseudo-code for

the backward phase.

Merlin’s backward phase works from the latest timestamp to the earliest; after a first

analysis, repeat visits to an object are propagating earlier last reachable times and can be
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void ComputeObjectDeathTimes()
Time lastTime = ∞
sort unreachable objects from earliest to latest timestamp
push each unreachable object onto a stack from earliest

timestamp to the latest
while (!stack.empty())

// pop obj w/ next earlier timestamp
Object obj = stack.pop();
Time objTime = obj.timeStamp;
// don’t reprocess relabelled objects
if (objTime <= lastTime)

lastTime = objTime;
for each (field in obj)

if (isPointer(field) && obj.field 6= null)
Object target = getMemoryWord(obj.field);
Time targetTime = target.timeStamp;
if (isUnreachable(target) && targetTime < lastTime)

target.timeStamp = lastTime;
stack.push(target);

Figure 3.5. Pseudo-code for Merlin’s backward phase. This phase uses the timestamps
generated during the forward phase to compute the time each object became unreachable.
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ignored. In Appendix A, we present a proof that this method of finding last reachable times

is asymptotically optimal requiring only Θ(n logn) time, where n is the number of objects

available for processing, and is limited only by the sorting of the objects.

3.5 Algorithmic Details

This section expands on the key insights and implementation issues for Merlin. It first

discusses algorithmic requirements and then presents several assumptions on which the

Merlin algorithm is based.

3.5.1 Algorithmic Requirements

The in-order brute-force method computes object reachability times as the program

executes. Merlin instead computes these times during its backward phase and so must

introduce timekeeping to correlate when each object is last reachable with events in the

program execution. Time is related to the granularity of the reachability information and

must advance whenever Merlin could determine an object was last reachable.1

3.5.2 Merlin Assumptions

This algorithm relies upon several assumptions. First, Merlin assumes that any object to

which a reachable object refers is also treated as reachable. Most garbage collection algo-

rithms also make this assumption. Second, we assume after an object becomes unreachable

its incoming and outgoing references do not change. Both of these preconditions are im-

portant for our timestamp propagation, and garbage-collected languages such as Java, C#,

and Smalltalk satisfy them.

Merlin also assumes that the order in which it outputs object reachability information is

unimportant. Because last reachable times are computed only during its backward phase,

1For many collectors, time need only advance at object allocations. To simulate collectors that can reclaim
objects more frequently, e.g., reference counting collectors, time would advance at each location where the
collector could scan the program roots and begin a collection.
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these times are not generated in any particular order. If order is important, the algorithm

reorders the records after program termination in a post-processing step. While this post-

processing adds another step, it adds very little overhead.

3.6 Implementing Merlin

We now shift the focus of this discussion from the algorithm to issues arising during

implementation. We present on-line and off-line implementations separately, because they

face very different challenges.

3.6.1 On-Line Implementations

Since Merlin periodically scans for root pointers and must process object reference

updates, it can be much easier to perform the entire analysis on-line. We now discuss the

technical hurdles that this implementation raises.

The pseudo-code in Figure 3.2 shows Merlin analyzing references during a pointer store

operation. On-line implementation can insert this processing into the write barrier already

defined in most garbage-collected systems. While this assumes that the write barrier is

executed prior to overwriting the reference, many reference counting collectors also make

this assumption about the write barrier and it usually holds.

Merlin’s performance depends on processing only unreachable objects during the back-

ward phase, but the algorithm cannot differentiate reachable and unreachable objects. Most

on-line implementations can instead rely upon the host system’s garbage collector to per-

form this analysis for them. Immediately after a collection, but before memory is cleared,

all the heap objects and the garbage collector’s reachability analysis are accessible. While

Merlin’s piggybacking onto the garbage collector can save a lot of duplicative work, many

systems may not reclaim all unreachable objects (e.g., objects last reachable just before

program termination). In these cases, on-line implementations of Merlin stamp the tar-

get of root references with the current time and then propagate the last reachable times
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throughout the entire heap. Any object whose timestamp matches the current time is still

reachable from the program roots. All other objects are unreachable and the implementa-

tion can record their last reachable times. This combination limits the overhead of on-line

Merlin implementations, while allowing them to work with any garbage collector.

3.6.2 Using Merlin Off-line

Merlin can also compute object lifetime information from an otherwise complete pro-

gram heap trace [62, 65]. Off-line implementations of Merlin process the allocation, refer-

ence update, and root enumeration records included within a trace to perform the forward

pass. Because they cannot access the objects themselves, off-line implementations must

also build and maintain an exact copy of the heap during this processing. Once it has fin-

ished processing the records in the trace, the implementation can use its copy of the heap to

perform the backward processing pass. Especially when seeking reachability information

for a subset of the object (e.g., objects allocated during a particular phase or in the second

of two runs of a benchmark) or modifying the host system is difficult, off-line implemen-

tations of Merlin can be very useful.

3.7 Granularity of Object Reachability

We now consider how Merlin determines the granularity of the object reachability in-

formation it computes. Some research needs only coarse-grained object reachability, while

other research could consider generating very detailed information (e.g., computing object

reachability at the granularity of method boundaries for use in a dynamic “escape-analysis”

optimization).

Merlin’s timestamping of root-referenced objects, discussed in Section 3.2.2, must oc-

cur at the start of each new time granule. While this processing occurs at object allocations

when computing allocation-accurate reachability information, Merlin could perform these

actions at method exits to generate reachability information for an escape-analysis opti-
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mization.2 When computing different object reachability information at different granule

sizes, the only difference is when to trigger the root scan. No matter how fine- or coarse-

grained the reachability information desired, the algorithm behaves identically at pointer

stores and when processing root-referenced objects.

3.8 Evaluation of Merlin

We made several optimizations to the Merlin algorithm to limit the time it spends scan-

ning the program roots. Our first optimization inserted a write barrier into the code storing

references in fields marked static. This instrumentation allows our Merlin implementation

to treat static references as it does heap references and not as roots. Java allows meth-

ods to access only their own stack frame, so within a single method scanning lower stack

frames will always enumerate the same references. We implemented a stack barrier that is

called when frames are popped off the stack, enabling Merlin to scan less of the stack [42].

Because the static write barrier and stack barrier will only improve Merlin’s performance,

and not that of brute-force, our implementation of the brute-force method does not include

them.

3.8.1 Experimental Methodology

We implemented a trace generator in Jikes RVM version 2.0.3 that uses either the brute-

force method or the Merlin algorithm to compute object reachability. Whenever possible,

the two object reachability computation methods use identical code, including having the

Merlin-based trace generator use the same semispace collector as the brute-force-based

implementation. We time each implementation of the trace generator on a Macintosh Power

Mac G4, with two 533 MHz processors, 32KB on-chip L1 data and instruction caches,

256KB unified L2 cache, 1MB L3 off-chip cache and 384MB of memory, running PPC

2By perfoming the root scans less often, Merlin could similarly generate coarser-grained reachability
information.
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Linux 2.4.3. These experiments were run using only one processor and the system in

single-user mode with the network card disabled.

We examined performance across a range of granularities and benchmarks. We selected

granularities reflecting the range that has been used in experiments. Our benchmarks are

a subset of those available in the SPECjvm98 [97] and jOlden [39] suites. We chose these

benchmarks to explore a diverse set of program behavior and allocation sizes. We ran some

benchmarks for only the initial 4 or 8 megabytes of allocation because of the time required

for brute-force trace generation (despite this limitation, runs still needed as much as 34

hours to complete).

3.8.2 Computing Allocation-Accurate Results

Figure 3.6 shows the speedup when using Merlin to compute allocation-accurate object

reachability relative to the brute-force method computing lifetimes at various granularities.

As the graph shows, the allocation-accurate Merlin runs execute faster than brute-force

needs when computing reachability as coarse as 16KB to 1MB. When comparing only

allocation-accurate runs, Merlin always improves overall performance by several orders of

magnitude. For Health(5 256), the Merlin-based implementation offers a speedup factor

of 816.

While Merlin can reduce the time needed to generate a trace, Figure 3.6 shows that this

speedup decreases as granularity increases. The brute-force method acts only to determine

which objects are now unreachable. Within a benchmark its running time is largely a factor

of the number of garbage collections it triggers — the granularity of the object reachability

being computed. While the Merlin-based implementation performs fewer actual collec-

tions computing allocation-accurate lifetimes than brute-force at even large granularities,

Merlin’s performance also depends on the cost of updating timestamps. As the results from

the largest granularities in Figure 3.6 show, the additional actions at each pointer store and

allocation can exceed the cost of a few extra collections.
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Figure 3.6. Speedup of using Merlin-based allocation accurate trace generation. This
graph uses a log-log scale.

3.8.3 Computing Granulated Results

While the previous results show that Merlin is quicker when computing object reacha-

bility at a very fine-grain, it does not show if Merlin is faster when only large granularities

are needed. While we have shown that inaccurate object reachability can cause statistically

significant distortions for simulation results [63], Hirzel et al. show that using larger gran-

ularities of reachability information does not affect their analyses substantially [64]. Even

with the improvement that Merlin provides in computing object reachability, trace gener-

ation runs 70–300 times slower than when the program runs without tracing. Figure 3.7

shows that using granulated results can improve performance by over an order of magni-

tude and could be useful when this approximation will not distort results. Given a program

with a maximum live size of 10MB, for example, a 10KB granularity overestimates the

maximum live size by at most 0.1%.

Figure 3.7 shows that while introducing some granularity improves performance, there

is little gain in computing reachability at a granularity above 4096 bytes. However, Fig-

ure 3.6 shows that the performance of the brute-force based trace generator continues im-
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Figure 3.7. Slowdown from Merlin-based trace generation relative to running the program
normally. Merlin imposes a substantial slowdown when computing allocation-accurate ob-
ject reachability. If approximate object reachability is desired, generating a slightly granu-
lated trace requires 1

5 the time. This graph uses a log-log scale.

proving even at granularities as large as 1MB. It is therefore unclear whether Merlin or

brute-force is better when computing coarsely granulated reachability information.

Figure 3.8 compares the performance of generating granulated traces using brute-force

relative to generating a similarly granulated trace using Merlin. As the graph shows, the

Merlin-based approach dominates the brute-force-based approach at all tested granularities

and benchmarks. Some of Merlin’s workload (enumerating and scanning the root pointers)

is related to granularity and some work is constant (timestamping objects losing incoming

references via instrumented pointer stores). This constant overhead causes the improve-

ment from using Merlin to drop from a speedup factor of 817 for allocation-accurate reach-

ability to a factor of 5 at a granularity of 64KB and finally a factor of 1.14 at 1MB. Even

at this very high granularity, however, not needing to perform repeated garbage collec-

tions makes Merlin the clear winner. Combining Figures 3.7 and 3.8, we find a persuasive

argument for always using Merlin to compute object reachability information.
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Figure 3.8. Speedup of Merlin-based trace generation relative to brute force-based trace
generation at equal levels of granularity. Using Merlin to compute object reachability in-
formation is faster in every instance tested. This graph uses a log-log scale.

3.9 Conclusion

In this chapter, we present the Merlin algorithm and discuss how it can be implemented

either on-line or off-line. We then compare the time needed to generate traces when using

an on-line implementation of Merlin versus the brute force method of computing object

reachability times. We show that using the Merlin algorithm can improve the time needed to

generate an allocation-accurate trace by a factor of over 800. We also show that the Merlin

algorithm helps generate allocation-accurate traces faster than the brute force method can

generate traces that are only accurate at every 16KB of allocation. We next discuss how

to use the Merlin algorithm to generate traces at both finer and coarser granularities. The

Merlin algorithm thus makes computing object reachability times practical.

In this next chapter, we describe how we use Merlin to compare garbage collection’s

performance with that of the top explicit memory managers. Unlike past comparisons, the

accurate object reachability information Merlin computes enables us to perform this com-

parison using both the best performing garbage collection algorithms and explicit memory

managers running unaltered Java applications.
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CHAPTER 4

QUANTITATIVE ANALYSIS OF AUTOMATIC AND EXPLICIT
MEMORY MANAGEMENT

We now introduce a novel experimental methodology that uses program heap traces to

quantify precise garbage collection’s performance relative to explicit memory management.

Our system treats unaltered Java programs as if they used explicit memory management by

using information found in these traces as an oracle to direct us where to insert calls to

free. By executing inside an architecturally-detailed simulator, this “oracular” memory

manager eliminates the effects of consulting an oracle, while still including the costs of

calling malloc and free. We evaluate two different oracles: a liveness-based oracle that

aggressively frees objects immediately after their last use, and a reachability-based oracle

that uses the results of the Merlin algorithm to free objects just after they are last reachable.

Because these represent the most aggressive and conservative insertions of free calls, we

evaluate a range of possibilities.

We then compare explicit memory management with both copying and non-copying

garbage collectors across a range of benchmarks using the oracular memory manager. Non-

simulated runs of our oracular memory manager lend further validity to our results. Our

real and simulated results quantify the time-space trade-off of garbage collection: with a

heap size nearly four-and-a-half times larger, the best performing generational collector

improves average performance versus the reachability-based explicit memory management

by 4%. To match performance, the garbage collector needs a heap size two-and-three-

quarters or slightly more than five times that of the explicit memory manager using the

most conservative and more aggressive oracles, respectively. In the smallest heap size in

which it completes, the garbage collector not only has a heap size 11% or 28% larger
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Figure 4.1. Object lifetime. The lifetime-based oracle frees objects after their last use
(the earliest safe point), while the reachability-based oracle frees them after they become
unreachable (the last possible moment an explicit memory manager could free them).

than the explicit memory manager, but also degrades throughput by an average of 62% to

71%. We also show the difficulty paging causes garbage collection: when paging, garbage

collection runs orders-of-magnitude slower than explicit memory management.

4.1 Oracular Memory Management

Figure 4.2 presents an overview of the oracular memory management framework. As

this figure shows, the framework runs each benchmark twice. During the first run, shown

in Figure 4.2(a), the framework executes the Java program to calculate object lifetimes

and generate a garbage collection trace. The Merlin algorithm then processes the trace to

compute object reachability times. We can then use the object reachability times and object

lifetimes as the lifetime- and reachability-based oracles (see Figure 4.1). Figure 4.2(b)

illustrates how the oracular memory manager uses the oracles. During the second run, the

framework allocates objects using malloc and invokes free when directed by the oracle

to reclaim an object. As these figures show, trace and oracle generation occurs outside of

the simulated space; the system measures only the costs of allocation and deallocation.

We now describe our oracular memory manager framework in detail. We first discuss

our solutions to the challenges of generating the oracles. We then discuss how our frame-

work detects memory allocations and inserts free calls without modifying the program

state. We address the limitations of our approach in Section 4.2.
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(a) Step one: collection and derivation of object lifetime and reachability

(b) Step two: execution with explicit memory management.

Figure 4.2. The oracular memory management framework.
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4.1.1 Step One: Data Collection and Processing

For its Java platform, the oracular memory manager uses an extended version of Jikes

RVM version 2.3.2, configured to produce PowerPC Linux code [11, 12]. Jikes RVM

is a widely-used research platform written almost entirely in Java. A key advantage of

Jikes RVM and its accompanying Memory Management Toolkit (MMTk) is that it already

includes well-tuned implementations of a number of garbage collection algorithms [27]

for ready incorporation into these experiments. The oracular memory manager executes

inside Dynamic SimpleScalar (DSS) [67], an extension of the SimpleScalar superscalar

architectural simulator [38] that permits the use of dynamically-generated code.

4.1.1.1 Repeatable Runs

The oracular memory manager identifies objects based upon the order in which the

objects are allocated. The sequence of allocations must therefore be identical for both the

profiling and measurement runs. We now discuss the steps we take in Jikes RVM and the

simulator to ensure repeatable runs.

The Jikes RVM just-in-time compilation system provides a considerable source of non-

determinism. We enforce predictability of this system in two ways. First, we use the “fast”

configuration of Jikes RVM, which optimizes as much of the system as possible and com-

piles it into a prebuilt virtual machine. Second, we disable Jikes RVM’s “adaptive” system,

which uses timer-based sampling at runtime to find and optimize “hot” methods, and in-

stead use the Replay compilation methodology [68, 89, 113]. Our implementation of this

methodology records the hot methods and to what level each method was compiled for 5

runs. We then generate an advice file that stores the mean result of these 5 runs. Jikes RVM

uses this file to optimize the hot methods when they are first compiled. By using a single

advice file, we preserve both adaptive-like optimization and deterministic behavior.

Several other changes are required to provide the framework with repeatable runs. Jikes

RVM normally switches threads at regular time intervals. We instead employ deterministic
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thread switching, which switches threads after executing a specified number of methods.

We also modify DSS to update the simulated OS time and register clocks deterministically.

Rather than use cycle or instruction counts, which change when we add calls to free,

our modifications advance these clocks a fixed amount every time we make a system call.

Together, these changes ensure that all runs are repeatable.

4.1.1.2 Tracing for the Liveness-Based Oracle

The framework generates the liveness-based oracle by calculating object lifetimes dur-

ing the first (profiling) run. The per-object lifetime information is obtained by having the

simulator track where each object is allocated. The simulator then determines the object

being used at each memory access and records a new last-use time (in allocation time) for

the object. Unfortunately, this approach does not capture object lifetimes perfectly. For

example, while an equality test uses both argument objects, Java’s equality operation com-

pares addresses only and without examining memory locations. To capture these object

uses, we traverse the program roots at each allocation and record root-referenced objects

as being in use. This extended definition potentially overestimates object lifetimes, but

eliminates the risk of freeing an object too early.1

The oracular framework also preserves objects that we feel a programmer could not rea-

sonably free. For instance, while our framework detects the last use of a code block or type

information, in a real program, developers would not be able to deallocate these objects.

Similarly, our oracular framework does not free objects used to optimize class loading,

such as mappings of class members to their Jikes RVM internal representation. The oracu-

lar framework also extends the lifetime of objects that enable lazy method compilation or

reduce the time spent scanning jar files. The oracular framework prevents reclaiming these

1Agesen et al., present a more detailed discussion of the limitations of liveness analysis in Java and
propose several alternative solutions [9].
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objects (and the objects to which they refer) by having the simulator artificially record a

use for each of these objects at the end of the program run.

4.1.1.3 Tracing for the Reachability-Based Oracle

To generate the reachability-based oracle, the framework generates a garbage collection

trace during the profiling run. We then process the trace using the off-line implementation

of the Merlin lifetime analysis algorithm described in Section 3.6.2.

A key difficulty in generating the garbage collection trace is capturing the trace infor-

mation while maintaining perfectly repeatable runs. Since Jikes RVM allocates compiled

code onto the heap and our tracing runs must be identical to our execution runs, we require

the code executing during the first (profiling) run be the same as the code used in future

(simulation) runs. Jikes RVM does not, however, generate code that would enable the

framework to record all of the information the Merlin algorithm needs to compute object

reachability.

The key concept behind our approach obtaining the necessary heap events is to replace

normal opcodes with illegal ones. We introduce a new opcode to replace every instruc-

tion that stores an intra-heap reference or that calls the allocation code. These events are

uniquely identified by the illegal opcodes; because they cannot run on a real processor, the

new opcodes do not appear anywhere else in the program. When DSS encounters one of

the new opcodes, it outputs an appropriate record into the garbage collection trace. The

simulator then executes the illegal opcode just as it would execute the legal variant.

To enable generation of these illegal opcodes, we extend Jikes RVM’s compiler inter-

mediate representations. Jikes RVM’s IR nodes differentiate between method calls within

the VM and calls to the host system. This differentiation exists to minimize the modifica-

tions needed to support different OS calling conventions. We further extend this separation

to create a third set of nodes representing calls to malloc. This extension allows the com-

piler to treat object allocations like any other function call, but enables us to emit an illegal
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opcode rather than the usual branch instruction. We also modify the Jikes RVM to emit

intra-heap reference stores as illegal instructions. These opcodes allow us to generate the

garbage collection trace within the simulator without adding code that distorts instruction

cache behavior or makes program behavior less predictable.

4.1.2 Step Two: Simulating Explicit Memory Management

After completing step one, we can run the program using explicit memory manage-

ment within the oracular framework. During these runs, the simulator consults the oracle

before each allocation to determine if any objects should be freed. When freeing an ob-

ject, the simulator saves the parameter value (the size request for malloc) and instead

jumps to free, but sets the return address to again execute the malloc call rather than

the following instruction. Execution then continues as normal, with the program freeing

the object presented by the oracle. When the simulator returns from the free call, it will

again be at a call to malloc. The simulator again consults the oracle and continues in this

cycle until there are no objects left to be reclaimed. Once no further objects remain to be

reclaimed, the allocation and subsequent program execution continues as normal. When

malloc and free functions are implemented outside of the VM, they are called using

the Jikes RVM foreign function interface (VM SysCall); we discuss the impact of using

the foreign function interface in Section 4.2.2.

4.1.3 Validation: Live Oracular Memory Management

In addition to the simulation-based framework described above, we also implemented

a “live” version of the oracular memory manager. This live version uses oracles generated

as before, but executes on a real machine. Like the simulation-based oracular memory

manager, the live runs use unique IR nodes to track intra-heap references and object al-

locations, but emit legal instructions rather than the illegal instructions discussed above.

The live oracular memory manager uses the reachability information stored on disk and

an array tracking object locations to fill a special “oracle buffer.” The live oracle memory
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manager fills this oracle buffer with the addresses of the objects the oracle specifies should

be reclaimed. To determine the program’s running time, we measure the total execution

time and then subtract the time spent consulting the oracle and refilling the oracle buffer

with the addresses of the objects to free.

Because oracle consultation and buffer usage affect the system state, we compared the

cost of running garbage collection as usual to running garbage collection with a null ora-

cle. The null oracle consults the oracle and loads the buffers like the real oracular memory

manager, but never frees any objects. Our results show that even the null oracle causes

unacceptably large and erratic distortions. For example, using the GenMS collector with the

null oracle to run 228 jack yields an adjusted runtime 12% to 33% greater than an iden-

tical configuration running without any oracle. By contrast, GenMS executes 213 javac

only 3% slower when using the null oracle. Other collectors also show distortions from the

null oracle, but not in any obvious or predictable pattern. We attribute these distortions to

pollution of both the L1 and L2 caches induced by processing the oracle buffers.

While the live oracular memory manager is too noisy to be reliable for precise mea-

surements, its results closely mirror the trends of the simulation results. Section 4.4.1.2

compares the trends exhibited by the live and simulation-based oracles and discusses their

similarities.

4.2 Discussion

In the preceding sections, we focused on the experimental methodology. In our method-

ology, we strive to eliminate measurement noise and distortion. Here we discuss some of

the key assumptions of our approach and address possible concerns. These include invok-

ing free on unreachable and dead objects, the cost of using foreign function calls for

memory operations, the effect of multithreaded environments, unmeasured costs of explicit

memory management, the role of custom memory allocators, and the effects of memory

managers on program structure. While our methodology may appear to hurt explicit mem-
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ory management (i.e., making garbage collection look better), we argue that the differences

are negligible.

4.2.1 Reachability versus Liveness

The oracular memory manager analyzes explicit memory management performance

using two very different oracles. The liveness-based oracle deallocates objects aggressively,

invoking free at the first possible opportunity it can safely do so. The reachability oracle

instead frees objects at the last possible moment in the program execution, since calls to

free require a reachable pointer as a parameter.

As described in Section 4.1.1, the liveness-based oracle preserves some objects beyond

their last use. While beyond their last use, all of these objects are root-reachable and so will

also be preserved by the reachability-based oracle. However, the liveness-based oracle does

reclaim a small number of objects the reachability-based oracle will not. These objects are

ones that a knowledgeable programmer, not knowing that the program will soon terminate,

would reclaim. The number of additional free calls needed to reclaim these objects is

quite small. Only for pseudoJBB at 3.8% and 201 compress at 4.4% are more than

0.8% of all objects involved.

Real program behavior likely falls between the two extremes represented by these or-

acles. We expect few programmers to be capable of reclaiming every object immediately

after its last use, and similarly, we do not expect programmers to wait until the last possi-

ble moment before freeing an object. These two oracles thus bracket the range of explicit

memory management options.

We show in Section 4.4.1.3 that the gap between the two oracles is small. Both or-

acles provide similar run-time performance, while the liveness-based oracle reduces the

reported heap size by at most 20% versus the reachability oracle for all but one bench-

mark (pseudoJBB sees a heap size reduction of 26%). These results generally coincide

with previous studies of both C and Java programs. In a comparison of seven C applica-
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tions, Hirzel et al. find that using an aggressive interprocedural liveness analysis improves

average object lifetime (measured in allocation time) over 2% for only 2 of their bench-

marks [66]. In a study including five of the benchmarks we examine here, Shaham et al.

measure the average impact of inserting null assignments in Java code, simulating nearly-

perfect placement of explicit deallocation calls [93]. They report space consumption gains

of only 15% for the aggressive reclamation of objects versus a reachability-based approach.

4.2.2 malloc Overhead

We examine an allocator that uses code within Jikes RVM to perform explicit memory

management. The oracular memory manager invokes allocation and deallocation methods

using the normal Jikes RVM method call interface. Because we need explicit method calls

to determine when an allocation occurs and, where appropriate, to insert calls to free

however, the oracular memory manager cannot inline the allocation fast path. While not

inlining the allocation fast path may prevent some potential optimizations, we are not aware

of any explicitly-managed programming language that implements memory management

operations without function call overhead.

We also use allocators implemented in C. With these allocators, the oracular memory

manager implements malloc and free calls using the Jikes RVM VM SysCall foreign

function call interface. While not free, these calls cost 11 instructions: six loads and stores,

three register-to-register moves, one load-immediate, and one jump. This cost is similar to

that of invoking memory operations in C and C++, where malloc and free are usually

functions defined in an external library (e.g., libc.so).

4.2.3 Multithreaded versus Single-threaded

In the experiments presented here, we assume a single-processor environment and dis-

able atomic operations both for the Jikes RVM and the Lea allocator. In a multithreaded

environment, most thread-safe memory allocators require at least one atomic operation

for every call to malloc and free: either a test-and-set operation for lock-based allo-

40



cators, or a compare-and-swap operation for non-blocking allocators [82]. These atomic

operations can be very costly. On the Pentium 4, for example, the atomic compare-and-

swap operation (CMPXCHG) requires around 124 cycles. Because garbage collection can

amortize the cost of atomic operations by performing batch allocations and deallocations,

Boehm observes that it can be much faster than explicit memory allocation [35].

The issue of multithreaded versus single-threaded environments is orthogonal to the

comparison of garbage collectors and explicit memory managers, however, because ex-

plicit memory allocators can also avoid atomic operations for most memory operations. In

particular, since version 3.2, Hoard [19, 21] maintains thread-local freelists and typically

uses atomic operations only when flushing or refilling them. Use of these thread-local

freelists is cheap, normally using a register reserved for accessing thread-local variables.

4.2.4 Smart Pointers

Explicit memory management can have other performance costs. For example, C++

programs may use smart pointers to help manage object ownership. Smart pointers trans-

parently implement reference counting, and therefore add expense to every pointer up-

date. For example, the performance of the Boost “intrusive pointer” that embeds reference-

counting within an existing class is up to twice as slow as the Boehm-Demers-Weiser col-

lector on the gc-bench benchmark [71].

Smart pointers do not appear to be in widespread use, at least in open source applica-

tions. We searched for programs using the standard auto ptr class or the Boost library’s

shared ptr [47] on the open-source website sourceforge.net and found only two

large programs using them. We attribute this lack of use both to smart pointers’ cost (C++

programmers tend to be particularly conscious of expensive operations) and inflexibility.

For example, the same smart pointer class cannot manage all objects, because C++ uses

different syntax to reclaim scalars (delete) and arrays (delete []).
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Instead, C and C++ programmers generally use one of the following conventions: a

function caller either allocates objects that it then passes to its callee, or the callee allocates

objects that it returns to its caller (as in strncpy). These conventions impose little to no

performance overhead in optimized code, but place the burden of preventing memory leaks

on the programmer.

Nonetheless, some patterns of memory usage are inherently difficult to manage with

malloc and free. For example, the allocation patterns of parsers make managing indi-

vidual objects an unacceptably-difficult burden. In these situations, C and C++ program-

mers often resort to custom memory allocators. Past research examined the performance

impact of custom memory allocators [23] and we consider evaluation of these issues be-

yond the scope of this thesis.

4.2.5 Program Structure

While the programs we examine in this chapter were written for a garbage-collected

environment, most were inspired by programs written for explicit memory management.

While this may affect how they are written, we unfortunately cannot see how to quantify

this effect. We could attempt to measure it by manually (re-)rewriting the benchmark ap-

plications to use explicit deallocation, but would somehow have to factor out the impact of

individual programmer style.

In fact, it may not always be possible to insert free calls statically such that all the

objects allocated by a garbage-collected program are reclaimed. In a study of the effec-

tiveness of escape analysis, Blanchet found that escape analysis could identify and stack

allocate only 13% of objects on average [32]. Using a different analysis, Guyer et al. found

that they could allocate only 21% of objects onto the stack. They further developed a static

analysis which could free an average of 32% and a maximum of 80% of allocated objects.

Adding three manually-placed calls to free increased the percentage of freed objects to

89% on one benchmark, but the researchers found another benchmark for which they were
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Benchmark statistics
Benchmark Total Bytes Alloc Max. Bytes Reach Bytes Alloc/Max. Reach

SPECjvm98
201 compress 125,334,848 13,682,720 9.16
202 jess 313,221,144 8,695,360 36.02
205 raytrace 151,529,148 10,631,656 14.25
209 db 92,545,592 15,889,492 5.82
213 javac 261,659,784 16,085,920 16.27
228 jack 351,633,288 8,873,460 39.63

DaCapo
ipsixql 214,494,468 8,996,136 23.84

SPECjbb2000
pseudoJBB 277,407,804 32,831,740 8.45

Table 4.1. Memory usage statistics for the benchmark suite used to compare explicit and
automatic memory management

never able to reclaim more than 27% of the object statically [60]. While not an issue for the

oracles in this thesis, which insert calls to free dynamically, this affects non-oracle-based

comparisons of explicit memory management and garbage collection.

Despite the apparent difference in program structure that one might expect, we observe

that Java programs often assign null to references that are no longer in use. In fact, there

are many locations in the SPEC suite of benchmarks where programmers have gone back

and added null assignments with the explicit goal of making objects unreachable. In this

sense, programming in a garbage-collected language is at least occasionally analogous to

explicit memory management. In particular, explicit null-ing of pointers resembles the

use of delete in C++, which can trigger a chain of class-specific object destructors.

4.3 Experimental Methodology

We quantify garbage collector performance versus that of explicit memory managers by

examining the performance of eight benchmarks across a range of algorithms and alloca-

tors. Table 4.1 presents the benchmarks used for these experiments. We include the relevant
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Simulated PowerPC G5 system Actual PowerPC G4 system
Memory hierarchy

L1, I-cache 64KB, direct-mapped, 3 cycle lat. 32KB, 8-way assoc., 3 cycle lat.
L1, D-cache 32KB, 2-way assoc., 3 cycle lat. 32KB, 8-way assoc., 3 cycle lat.
L2 (unified) 512KB, 8-way assoc., 11 cycle lat. 256KB, 8-way assoc., 8 cycle lat.
L3 (off-chip) N/A 2MB, 8-way assoc., 15 cycle lat.

all caches have 128 byte lines all caches have 32 byte lines
Main memory

RAM 270 cycles (135ns) 95 cycles (95ns)

Table 4.2. The memory timing parameters for the simulation-based and “live” experimen-
tal frameworks (see Section 4.1.3). The simulator is based upon a 2GHz PowerPC G5
microprocessor, while the actual system uses a 1GHz PowerPC G4 microprocessor.

SPECjvm98 benchmarks [97].2 ipsixql is a persistent XML database system from the Da-

Capo benchmark suite3 [28], and pseudoJBB is a fixed-workload variant of SPECjbb [96].

pseudoJBB executes a fixed number of transactions (70,000), which simplifies perfor-

mance comparisons. It is widely considered to be the most representative of a server work-

load [8] and has a significant memory footprint.

For each benchmark, we run each garbage collector with heap sizes ranging from the

smallest needed by that specific collector to complete, up to a heap size four times larger.

For our simulated runs, we use the memory and processor configuration of a PowerPC

G5 processor [5], and assume a 2 GHz clock. We use a 4KB page size, as used in Linux

and Windows. We run the “live” oracle on a 1GHz PowerPC G4 microprocessor and list

this memory and processor configuration for comparison [6]. Table 4.2 presents the exact

architectural parameters.

Table 4.3 lists the garbage collectors and explicit memory managers we examine in

these experiments. All of the garbage collectors are high-throughput “stop-the-world” col-

lectors included in the MMTk memory management toolkit [27]. They define a range

2We exclude only the multi-threaded raytracer and non-memory-intensive benchmarks.

3In Section 5 we also include jython. We do not include this benchmark in these experiments, because
jython cannot be run within DSS.
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Memory Managers Examined
Garbage collectors

GenCopy two generations with copying mature space
GenRC two generations with reference counting mature space
GenMS two generations with non-copying mature space
CopyMS whole-heap variant of GenMS
MarkSweep whole-heap non-relocating, non-copying
SemiSpace whole-heap two-space

Allocators
MSExplicit MMTk’s MarkSweep with explicit freeing
Lea combined quicklists and approximate best-fit
Kingsley segregated fits

Table 4.3. Allocators and collector examined in these experiments. Section 4.3 presents a
more detailed description of each memory manager.

algorithms, including copying, non-copying, and reference counting, whole-heap and gen-

erational collectors. The generational collectors (whose names start with “Gen”) use an

Appel-style variable-sized nursery [14]: the nursery shrinks as survivors fill the heap.4 We

also consider three allocators for use with the oracular memory manager. These include

the two allocators often cited as the “fastest” or “best” [20, 70, 111], the Kingsley [111]

and Lea (GNU libc, “DLMalloc”) [78] allocators. We now describe each of the memory

managers in more detail.

GenCopy: GenCopy also uses bump pointer allocation. It allocates into a nursery (young

space) and copies survivors into a SemiSpace mature space. The collector uses a

write barrier to record pointers from mature to nursery objects. GenCopy collects

when the nursery is full, and reduces the nursery size by the size of the survivors (an

Appel-style variable-sized nursery). When the mature space fills the heap, GenCopy

collects the entire heap.

4While we wish to examine MarkCopy [88], and MC2 [89] the implementations of these are not yet stable
on the version of Jikes we examined. We expect that MarkCopy and MC2 would perform faster and consume
less space than the collectors we test, but do not expect the differences would be large enough to alter our
conclusions.
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GenRC: GenRC is another generational collector that differs from GenCopy only in the

handling of the mature space. GenRC reclaims objects from the mature space using

deferred reference counting and a backup tracing collector for cycles. [30]

GenMS: This hybrid generational collector is similar to GenCopy except that GenMS uses

a MarkSweep mature space.

CopyMS: CopyMS is a collector that is similar to GenMS. CopyMS uses a bump pointer

to allocate into an Appel-style variable-sized nursery. Survivors from the nursery are

copied into a MarkSweep mature space. Unlike GenMS, CopyMS collects both the

nursery and mature space on every collection.

MarkSweep: MarkSweep organizes the heap into fixed-size chunks which are then sub-

divided into blocks. Blocks are assigned a size class and contain only objects of that

size class. Space on a block is managed using a freelist and the size classes each

maintain a list of their blocks. During collections, MarkSweep traces and marks the

reachable objects. Empty blocks are reclaimed and may be reassigned to any size

class. Otherwise, individual blocks are returned to their size class’s list and swept

lazily during allocation.

SemiSpace: SemiSpace maintains two semi-spaces into which it allocates using a bump

pointer. It allocates into one of the semi-spaces until full. SemiSpace then copies the

reachable objects into the other semi-space and swaps the semi-spaces.

MSExplicit: The MSExplicit allocator isolates the impact of explicit memory manage-

ment from other changes by adding individual object freeing to MMTk’s MarkSweep

collector and large object manager (“Treadmill”) [18]. Each block of memory main-

tains its own stack of free slots and reuses the slot that has been most recently freed.

MSExplicit uses the allocation routines already in MMTk.
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Lea: We used version 2.7.2 of the Lea allocator. It is a hybrid allocator whose behavior

depends on the object size, although objects of different sizes may be adjacent in

memory. Objects less than 64 bytes in size are allocated using exact-size quicklists

(one list exists for each multiple of 8 bytes). Lea coalesces objects in these lists in

response to several conditions, such as requests for medium-sized objects. Medium-

sized objects are managed with immediate coalescing and splitting of the memory on

the quicklists and thus approximates best-fit. Large objects are allocated and freed

using mmap.

Kingsley: The Kingsley allocator is a segregated fits allocator. Allocation requests are

normally rounded up to the nearest power of two, but we modified it slightly to use

exact size classes for every multiple of 4 bytes up to 64 bytes and powers-of-two only

afterward. We added these size classes to match the segregated size class behavior in

MMTk. Once space is allocated for a given size, it can never be reused for another

size: the allocator does not break large blocks into smaller ones (splitting) or combine

adjacent free blocks (coalescing).

4.4 Experimental Results

In this section, we explore the impact of garbage collection and explicit memory man-

agement on total execution time, memory consumption, and page-level locality.

4.4.1 Run-time and Memory Consumption

Figure 4.3 presents the geometric mean of garbage collection performance relative to

the MSExplicit allocator. Each point in these graphs represent the relative heap size (as

reported by MMTk) along the x-axis versus the relative number of simulated cycles needed

to execute the benchmark along the y-axis. We present the run-time versus reported heap

size results for individual benchmarks across the most commonly used garbage collectors
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Figure 4.3. Geometric mean of garbage collector performance relative to the MSExplicit
explicit memory allocator.
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in Figure 4.4. Table 4.4 summarizes the results for the relative performance of GenMS, the

best-performing garbage collector.

As the figures show, all of the garbage collectors exhibit similar trends. Initially, in

small heaps, the cost of frequent garbage collection dominates run-time. As heap sizes

increase, the number of garbage collections decreases correspondingly. Eventually, total

execution time asymptotically approaches a fixed value. For GenMS, this value is lower

than the cost of the Jikes RVM-based explicit memory manager. At its largest heap size,

GenMS averages 4% fewer cycles than MSExplicit using the reachability oracle. GenMS’s

best performance relative to MSExplicit on each benchmark ranges from executing ipsixql

up to 10% faster to running 209 db, a benchmark that is unusually sensitive to locality

effects, 5% slower.

The performance gap between the collectors is smallest for benchmarks with a low

allocation intensity (the ratio of total bytes allocated over maximum reachable bytes). For

these benchmarks, MarkSweep tends to provide the best performance, especially at smaller

heap multiples. Unlike the other collectors, MarkSweep does not need a copy reserve, and

so makes more effective use of the heap. As allocation intensity grows, the generational

garbage collectors generally exhibit better performance, although MarkSweep provides the

best performance for ipsixql until the heap sizes become twice as large as that needed by

MSExplicit. The generational collectors (GenMS, GenCopy, and GenRC) exhibit similar

performance trends throughout, although GenMS is normally faster. GenMS’s MarkSweep

mature space also enables the collector to be more space-efficient than both GenCopy (with

its SemiSpace mature space) and GenRC’s deferring of reference counts.

4.4.1.1 Reported Heap Size Versus Heap Footprint

The results reported above use the heap sizes reported by MMTk. While this space

metric is useful for comparisons with the MSExplicit allocator, MMTk’s reported heap size

has three limitations. First, since neither the Kingsley nor Lea allocators record the number
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Figure 4.4. Run-time of garbage collectors relative to the MSExplicit allocator using the
reachability oracle. These graphs are presented in increasing allocation intensity (alloca-
tion/max reachable, given in parentheses); allocation intensity increases going right and
down.
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Figure 4.4. (continued)
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GenMS
vs. MSExplicit w/ Reachability vs. MSExplicit w/ Liveness

Heap size Rel. Heap Size Execution time Rel. Heap Size Execution time
1.00 1.11 1.62 1.28 1.71
1.25 1.36 1.25 1.57 1.31
1.50 1.65 1.12 1.91 1.18
1.75 1.93 1.06 2.23 1.12
2.00 2.23 1.03 2.57 1.09
2.25 2.47 1.02 2.85 1.07
2.50 2.77 1.00 3.19 1.06
2.75 3.05 0.99 3.52 1.04
3.00 3.34 0.98 3.85 1.03
3.25 3.59 0.97 4.14 1.02
3.50 3.88 0.97 4.48 1.02
3.75 4.16 0.97 4.80 1.02
4.00 4.45 0.96 5.14 1.01

Table 4.4. Geometric mean of reported heap size and execution times for GenMS relative
to MSExplicit. Along the side, we list the GenMS heap sizes in terms of multiples of the
minimum heap size required for GenMS to run.

of heap pages they use, we cannot rely on self-reports to measure memory usage. Another

problem is that while the Lea and Kingsley allocators include memory Jikes RVM allocates

with malloc (used for JNI), MMTk does not include these pages in its own accounting.

Finally, MMTk does not account for every page used, making comparisons with Kingsley

and Lea difficult. When accounting for space consumed, MMTk excludes metadata pages

allocated during garbage collection, pages being used for double-buddy allocation that are

not holding heap objects, and pages of memory and pages that previously held heap objects

but are not currently in use.

We therefore need a more general way of measuring space consumption that compares

memory demands more fairly. While difficult to measure within a system, within the simu-

lator we can measure heap footprints for each run of an application. A heap footprint is the

high watermark of heap pages in use. Pages are in use only if they have been both allocated

from the kernel and touched (allocated in memory). The heap footprint therefore measures

the pages that are either in RAM or are stored on disk. Besides serving as a useful metric
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of space consumption, heap footprints consider the memory demands actually placed on

the system.

Unlike MMTk’s reported heap size, heap footprints measure exactly the number of

pages needed to hold the entire heap. Copying collectors maintain copy reserves that are

included in the heap size, but may not ever be used. Because these pages are not included in

the heap footprint, reported heap sizes can be greater than the footprint. Another problem

arises when using MarkSweep spaces. The current implementation of MarkSweep makes

reusing heap pages difficult. Thus, runs of MarkSweep exhibit heap footprints up to twice

as large as their heap size. Table 4.5 shows both the heap footprint and reported heap size

for runs of GenMS. The additional memory demands caused by previously used pages is

most noticeable at the smallest heap sizes which perform more collections and therefore

have a larger relative turnover of heap pages. Heap footprints thus include exactly (and

only) the pages holding the heap and can are especially useful when comparing different

memory managers.

Figure 4.5 compactly summarizes the run-time results and presents the time-space

tradeoff involved when comparing garbage collection with the Kingsley and Lea explicit

memory managers. Because these graphs use heap footprints when measuring space con-

sumption, the will graphs occasionally exhibit a “zig-zag” effect. This effect is surprising

as increasing the heap size normally increases the heap footprint. Because of fragmenta-

tion and alignment restrictions, however, a larger heap size may prevent an object from

straddling two pages and thereby may reduce the footprint. MarkSweep, which cannot

reduce fragmentation by compacting the heap, is most susceptible to this zig-zag effect.

Figures 4.6 and 4.7 present results from individual benchmarks.

Finally, Table 4.6 compares the footprints and run-times of the MSExplicit and the Lea

allocators when using the same oracle. This table shows that some of the collectors’ space

inefficiencies are not due to garbage collection: even the explicitly-managed MSExplicit

requires between 38% and 52% more space than Lea. The two allocators perform similarly
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Figure 4.5. Geometric mean of garbage collector performance relative to the Kingsley and
Lea explicit memory allocators using the reachability oracle
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Figure 4.6. Run-time of garbage collectors relative to the Lea allocator using the reach-
ability oracle. The “zig-zag” results from fragmentation’s causing the maximum number
of heap pages in use to vary (see Section 4.4.1). These graphs are presented in increasing
allocation intensity (allocation/max reachable, given in parentheses); allocation intensity
increases going right and down.
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Figure 4.6. (continued)
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Figure 4.7. Run-time of garbage collectors relative to the Kingsley allocator using the
reachability oracle. The zig-zag results from fragmentation’s causing the maximum number
of heap pages in use to vary (see Section 4.4.1). These graphs are presented in increasing
allocation intensity (allocation/max reachable, given in parentheses); allocation intensity
increases going right and down.
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Figure 4.7. (continued)
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Heap Footprint v. Reported Heap Size Relative to MSExplicit
pseudoJBB Geo. Mean

Heap Multiplier Footprint Heap Size Footprint Heap Size
1.00 1.64 1.13 1.53 1.11
1.25 2.02 1.39 1.83 1.36
1.50 2.48 1.68 2.09 1.65
1.75 2.86 1.97 2.52 1.93
2.00 2.79 2.16 2.62 2.23
2.25 2.86 2.53 2.95 2.47
2.50 2.98 2.82 3.05 2.77
2.75 3.18 3.11 3.35 3.05
3.00 3.35 3.40 3.46 3.34
3.25 3.47 3.66 3.62 3.59
3.50 3.00 3.95 3.70 3.88
3.75 3.16 4.24 3.90 4.16
4.00 3.27 4.53 4.03 4.45

Table 4.5. Comparison of the space impact of GenMS relative to MSExplicit using the
reachability oracle. We show results when comparing footprints and heap sizes. Along the
side we list the GenMS heap size in terms of multiples of the minimum heap size required
for GenMS to run.

when comparing run-times, however. With the reachability oracle, MSExplicit runs an av-

erage of 4% slower than Lea; with the liveness-based oracle, it runs 2% faster. Segregated

size classes cause MSExplicit to run the locality-sensitive 209 db 18% slower when us-

ing the reachability oracle. MSExplicit runs 5% faster than Lea on 213 javac, however,

because this benchmark stresses raw allocation speed.

With the notable exception of 209 db, the two allocators are roughly comparable in

performance, confirming the good performance characteristics both of the generated Java

code and of the MMTk infrastructure. Figure 4.6(h) is especially revealing. While the

run-time performance of MSExplicit is just 3% slower than Lea, MarkSweep, which uses

the same allocation infrastructure, runs at least 50% slower. These experiments demon-

strate that the performance differences between explicit memory management and garbage

collection are due to garbage collection itself and not underlying differences in allocator

infrastructure.
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MSExplicit vs. Lea
w/ Reachability w/ Liveness

Benchmark Footprint Run-time Footprint Run-time
201 compress 1.62 1.06 2.51 1.01
202 jess 1.54 1.04 1.65 1.03
205 raytrace 1.31 1.02 1.47 1.00
209 db 1.12 1.18 1.18 0.96
213 javac 1.33 0.95 1.24 0.93
228 jack 1.58 1.03 1.68 1.05

ipsixql 1.49 1.00 1.63 0.97
pseudoJBB 1.12 1.06 1.16 0.87
Geo. Mean 1.38 1.04 1.52 0.98

Table 4.6. Relative memory footprints and run-times for MSExplicit versus Lea. In this
table, we present results comparing results when run with similar oracles.

4.4.1.2 Comparing Simulation to the Live Oracle

We also compare the run-time performance of our garbage collectors with the live ora-

cle described in Section 4.1.3. For these experiments, we use a PowerPC G4 with 512MB

of RAM running Linux in single-user mode and report the mean value of 5 runs. The

architectural details of our experimental machine are listed in Table 4.2.

A comparison of the results of our live oracle experiments and simulations can be seen

in Figure 4.8. These graphs compare the geometric means of executing all but three of the

benchmarks. Because of the memory demands of the garbage collection trace generation

process and difficulty in duplicating time-based operating system calls, we are currently

unable to run pseudoJBB, ipsixql, and raytrace with the live oracle.

Despite their different environments, the live and simulated oracular memory managers

achieve strikingly similar results. Differences between the graphs could be accounted for

by the G4’s L3 cache and smaller main memory latency compared to our simulator. While

the null oracle adds too much noise to our data to justify its use over our simulator, the

similarity of the results is strong evidence for the validity of the simulation runs.
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(b) Simulated oracular results

Figure 4.8. Comparison of the results using the “live” oracular memory manager and the
simulated oracular memory manager: geometric mean of execution time relative to Lea
using the reachability oracle across identical sets of benchmarks.
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Figure 4.9. Geometric mean of the explicit memory managers relative to the Lea allocator
using the reachability oracle. While using the liveness oracle substantially reduces the heap
footprint, it has little impact on execution time.
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4.4.1.3 Comparing the Liveness and Reachability Oracles

Figure 4.9 shows the effect of using the liveness and reachability-based oracles. This

graph presents the mean relative execution time and space consumption of the explicit

memory managers using both the liveness- and reachability-based oracles. As usual, the

results are normalized to the Lea allocator using the reachability-based oracle. The x-axis

shows relative execution time; note the compressed scale, ranging from just 0.98 to 1.04.

The y-axis shows the relative heap footprint, and here the scale ranges from 0.8 to 1.7. The

summary and individual run-time graphs (Figures 4.5 and 4.6) also include a data point for

the Lea allocator with the liveness oracle.

We find that the choice of oracle has little impact on execution time. We had expected

the liveness-based oracle to improve performance by recycling memory as soon as possible

and thereby improving locality. This recycling, however, has at best a mixed effect on run-

time. The liveness oracle actually degrades performance by 1% for the Lea allocator while

improving it by up to 5% for MSExplicit.

When the liveness-based oracle does improve runtime performance, it does so by re-

ducing the number of L1 data cache misses. Figure 4.6(f) shows Lea executes ipsixql 18%

faster when using the liveness-based oracle. This improvement is due to a halving of the

L1 data cache miss rate. But the liveness-based oracle significantly degrades cache locality

in both 209 db and pseudoJBB, running them 23% and 13% slower, respectively. While

we have already seen that 209 db is highly susceptible to cache effects, the pseudoJBB

result is surprising. For pseudoJBB, the lifetime-based oracle results in poor object place-

ment and increases the L2 cache miss rate by nearly 50%. These two benchmarks are

outliers. Figure 4.5 shows that, on average, the Lea allocator with the liveness-based oracle

runs only 1% slower than with the reachability oracle.

The liveness-based oracle has a much more pronounced impact on space consumption,

reducing heap footprints by up to 15%. Using the liveness-based oracle reduces Lea’s mean

heap footprint by 17% and MSExplicit’s mean footprint by 12%. While 201 compress’s
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reliance on several large objects limits the amount the liveness-based oracle can improve

its space utilization, all of the other benchmarks see their memory usage drop by at least

10%.

4.4.2 Page-level locality

For virtual memory systems, page-level locality can be more important for performance

than total memory consumption. We present the results of our page-level locality experi-

ments in the form of augmented miss curves [94, 113]. Assuming that the virtual memory

manager observes an LRU discipline, these graphs show the time taken (y-axis) at each

number of pages allocated to the process (x-axis). We assume a fixed 5-millisecond page

fault service time. These graphs are generated by multiplying the number of page faults

by the page fault service time to compute the total time a run spent handling page faults.

We then added this time to the simulated time needed to run the benchmark shown earlier.

In each of these graphs, we present results for each garbage collector assuming we select

the heap size that performs best for the given amount of available memory. Note that these

graphs use a log-scale for the y-axis.

Figure 4.11 presents the total execution times for the Lea and MSExplicit allocators and

each garbage collector across all benchmarks. For each garbage collector, we show only

the fastest-performing heap size.

As these graphs show, both explicit memory managers substantially outperform all of

the garbage collectors for reasonable ranges of available memory. For instance, the Lea

allocator using the reachability oracle with 63MB of available memory executes pseudo-

JBB in 25 seconds. Given the same amount of available memory, GenMS requires an order

of magnitude longer (255 seconds) to complete. This pattern is even more pronounced for

213 javac: at 36MB of available memory, the Lea allocator using the reachability oracle

provides a 15-fold decrease in total execution time versus GenMS (14 seconds versus 211

seconds).
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Figure 4.10. Total number of page faults (note that the y-axis is log-scale). For the gar-
bage collectors, each point presents the total number of page faults for the heap size that
minimizes the total execution time (including page fault service times) for the collector at
each available memory size. Because the best performing heap size changes depending on
the available memory size, these curves are not monotonic at small numbers of page faults.
These graphs are presented in increasing allocation intensity.
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Figure 4.10. (continued)
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Figure 4.11. Estimated execution times, including page fault service time (note that the y-
axis is log-scale). For the garbage collectors, these curves present the estimated execution
time for the heap size that minimizes this time for the collector at each available memory
size. These graphs are presented in increasing allocation intensity.
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Figure 4.11. (continued)
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The culprit here is garbage collection activity. During a collection, the garbage collector

visits far more pages than the application itself [113]. As allocation intensity increases, the

number of collections (and for generational collectors, major collections) increases. Since

each collection is likely to visit evicted pages, the performance gap between the garbage

collectors and explicit memory managers grows with each collection.

4.5 Conclusion

This chapter presents the oracular memory manager with which we perform the first

apples-to-apples quantification of garbage collection performance relative to that of an-

other memory manager of which we are aware. This process begins with our system gener-

ating traces and computing the lifetime and reachability information for all of the objects.

Using this information as an oracle specifying when to insert calls to free, our exper-

imental methodology executes unaltered Java programs as if they used explicit memory

management. Executing within a cycle-accurate simulator, the oracular memory manager

eliminates the cost of consulting these oracles while including the costs of object allocation

and reclamation.

We then use this framework to quantify the time and space performance of garbage

collection relative to of explicit memory management. The results in this chapter show

that when memory is plentiful, garbage collection performance can be slightly better than

that of explicit memory management. With a heap size nearly four-and-a-half times larger,

GenMS provides a 4% improvement in execution time versus a similarly implemented

explicit memory manager using the reachability oracle. At a heap size between nearly three

and slightly above five times as large, the best performing collector matches the explicit

memory manager’s performance with the reachability and liveness oracles, respectively. In

the smallest heap size in which it can complete, the garbage collector not only continues to

have a heap size 11% larger than the explicit memory manager using the most conservative

oracle, but also degrades throughput by an average of nearly 62%. While using the lifetime
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oracle does allow the explicit memory manager to report heaps that are 20% smaller, on

average, we also show that it has little impact on execution times. We also show that this

good performance relies upon the system having sufficient physical memory to hold the

entire heap. When insufficient available memory causes paging, garbage collection runs

orders-of-magnitude slower than explicit memory management.

We use these results to improve garbage collection’s performance where it is most brit-

tle – its paging performance. The next chapter presents a new garbage collection algorithm

that works to avoid touching evicted pages and therefore provides good performance in a

variety of situations.
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CHAPTER 5

BOOKMARKING COLLECTOR

Our results show that garbage collection performance can match, if not exceed, explicit

memory management performance when the heap fits in available memory. When memory

is scarce, the situation is quite different. Garbage collectors visit many more pages than the

application itself [113]. This increased memory pressure is compounded by the garbage

collector accessing pages regardless of whether they reside in memory. As we show in

the simulation results in Section 4.4.2 and in real-world experiments in Section 5.7.3, this

behavior induces paging. Because of this paging, throughput plummets and pause times

spike up to seconds or even minutes.

In this chapter, we present a garbage collector that avoids paging. The bookmarking

collector cooperates with the virtual memory manager to guide eviction decisions. The

bookmarking collector records summary information (the bookmarks for which the col-

lector is named) from evicted pages. Using these bookmarks, the collector can perform

whole-heap in-memory collections. In this chapter, we first present an overview of the

bookmarking collector. We then discuss key implementation details, including necessary

extensions to the Linux virtual memory manager. Next, we compare the new collector’s

performance with that of a variety of existing collectors. We finally use the oracular mem-

ory manager to examine the relative performance of the bookmarking collector and several

explicit memory managers.
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5.1 Bookmarking Collector Overview

The bookmarking collector (BC) was designed to achieve three goals: low space con-

sumption, high throughput, and the elimination of garbage collection-induced page faults.

It accomplishes these goals through a number of mechanisms. BC provides high through-

put by using a nursery generation to manage short-lived objects. While BC normally uses

mark-sweep collection for the mature space, it minimizes space consumption by compact-

ing the heap when memory pressure rises. Finally, and most importantly, it reacts to signals

sent by the virtual memory manager whenever the virtual memory manager schedules a

page for eviction to disk or reloads a page from disk into main memory.

Unlike existing garbage collectors, BC avoids paging in several ways. This process

starts with the virtual memory manager alerting BC that it scheduled one of the virtual

machine’s pages for eviction. When notified of the impending eviction, BC first attempts

to avoid the eviction by providing the virtual memory manager with an alternate physical

page that is not currently being used. If BC cannot find such a discardable page, it collects

the heap. After this garbage collection, BC looks to see if it now has an empty page to

discard. When there are still not any empty pages, so a page must be evicted, BC works to

ensure that only appropriate pages are evicted. Prior to the page’s eviction, BC scans each

of its objects and bookmarks the target of any references. BC also increments the counter

of referring evicted page for all pages containing a target object. After processing all the

page’s objects, BC informs the virtual memory manager that this page is a good page to

evict. In later collections, BC can use the bookmarks to remember the evicted references

without reloading the objects. Thus, BC can collect the heap without touching the evicted

pages.

Figure 5.1 shows the mature space of an idealized heap after a collection using book-

marks. Objects are presented as the small rectangles inside the larger rectangles, which

represent heap pages. Slots available for allocation (provably unreachable objects) are in

white, while other objects are black. The light gray (middle) page in this figure has been
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Figure 5.1. An example of bookmarking collection. In this illustration, provably unreach-
able objects are white and all other objects are black. Bookmarks are shown as a letter “B”
in the bookmarked object’s top-left corner. The 0 or 1 in each page’s top-corner is the value
of the counter of evicted pages containing references to it. Because nursery pages cannot
be evicted or contain bookmarked objects, it is not shown here.

evicted to disk. We use lines to represent intra-heap references. Dotted lines refer to objects

on pages processed for eviction; BC will ignore these references during collection, because

it first checks the reference target against its record of evicted pages. The dashed lines

denote references from the non-resident page: these references induce bookmarks, which

are represented by the letter “B”. As Figure 5.1 shows, BC conservatively bookmarks the

objects on a page before nominating the page for eviction. This conservative bookmarking

enables BC to find the empty slots should the page be reloaded and is discussed in more

detail in Section 5.4. This figure also shows a number in the upper-left hand corner of each

page. This number records how many evicted pages contain references to objects on the

page. Thus the first two pages contain a count of “0” and the last page contains a count of

“1.” Section 5.4.2 details these counters in more detail. BC treats all bookmarked objects

as reachable, even if all references to an object have been evicted.
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5.2 Bookmarking Collector Details

The bookmarking collector is a generational collector with a bump-pointer nursery,

compacting mature space, and page-based large object space. BC divides the mature space

into superpages, page-aligned groupings of four contiguous pages. In Linux, each super-

page is 16KB. BC manages mature objects using segregated size classes [15, 16, 21, 78,

80, 87, 111]: objects of different sizes are allocated onto different superpages. Once empty,

a superpage can be reassigned to any size class [21, 80].

When evicting or reloading a page, it is important that BC identify all of its objects.

BC can do this quickly, because each superpage holds objects of a single size class. Given

a page, BC uses a bitmask to determine its superpage. The start of each superpage then

contains a small amount of metadata (the superpage header) including the superpage’s

size class. BC uses this size class to compute where objects on the page may lie. While

MMTk already includes a segregated- size-class-based allocator, this allocator uses a range

of block sizes and would not be able to do this object scanning. BC therefore uses its own

allocator.1

BC uses own size classes designed to minimize fragmentation for its superpage-based

allocation. We begin with a hard 25% bound for external fragmentation and then select size

classes. Each allocation size up to 64 bytes has its own size class. Larger object sizes fall

into a range of 37 size classes; all but the largest five have a worst-case combined internal

and page-internal fragmentation of 15%. The five largest classes have between 16% and

33% worst-case combined internal and page-internal fragmentation; we cannot do better

without violating our bound on external fragmentation. BC allocates objects that are larger

than half the usable space of a superpage (8180 bytes) into the page-based large object

space.

1Earlier comparisons of the two allocators, performed using Jikes RVM 2.2.2, showed little time or space
performance differences. As the primary design focus of the MMTk allocator is reducing fragmentation [25],
we expect this still holds.
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When the mature space fills, BC typically performs mark-sweep garbage collection. We

use mark-sweep for two reasons. First, it provides good program throughput and short GC

pauses. More importantly, mark-sweep does not need a copy reserve of pages that would

increase memory pressure.2

5.2.1 Managing Remembered Sets

Like all generational collectors, BC must remember references from the older gen-

eration to the nursery. It normally stores these references in page-sized sequential store

buffers. Sequential store buffers provide fast storage and processing, but BC cannot limit

the amount of space they require. To reduce this space overhead, BC processes each buffer

when it fills. During this processing, BC removes from the buffer references from objects

in the mature space and instead marks the card for the source object in the card table BC

uses during the marking phase. BC does keep references from objects in the large object

space, because of the time that could be required scanning these object. BC also preserves

references from objects in Jikes RVM’s boot image, because they are not included in any

card tables. After pruning all possible references and compacting the remaining entries

in the buffer, BC makes the removed slots available for future storage. When a nursery

collection begins, BC processes both the sequential store buffers and objects whose cards

are marked. By filtering the remembered sets, the bookmarking collector gains the fast

processing of sequential store buffers while often fitting the buffer onto a single page.

5.2.2 Compacting Collection

Using mark-sweep, the mature collector cannot reclaim a superpage if it contains a

single reachable object. This external fragmentation can lead mark-sweep collection to

increase memory pressure. BC avoids this increased memory pressure by performing a two-

2Usually this copy reserve is half the mature space size, but Sachindran et al. present copying collectors
that allow the use of smaller copy reserves [88, 89]. As we show in Section 5.2.2, BC performs compaction
without any copy reserve.
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pass compacting collection whenever a mark-sweep collection does not recover enough

pages to preserve the allocation reserve MMTk requires.

BC begins the compacting collection with a marking phase. Each time it marks an

object, BC also increments a counter for the object’s size class. After it has marked the

mature space, BC computes the minimum number of superpages needed to hold the marked

objects for each size class and then selects a minimum set of superpages. BC performs

this selection by setting a bit in the headers of these target superpages onto which BC will

compact all of the marked objects (Section 5.4.1 discusses the selection of target superpages

when the heap contains bookmarked objects).

BC then begins a second pass. This pass also uses a Cheney scan to find the reachable

objects. When processing an object in this pass, BC first checks if the object is on a target

superpage. If the object is already on a target superpage, BC only scans it for references.

BC copies all other objects (e.g., objects not on a target superpage) onto the next available

slot on a target superpage of the same size class. When this pass completes, BC will have

compacted the reachable objects onto the target superpages. BC therefore unsets the bit

marking the target superpages and frees the remaining (garbage) superpages.

5.3 Cooperation with the Virtual Memory Manager

The approach described so far allows BC to avoid increasing memory pressure dur-

ing garbage collection. BC further cooperates with the virtual memory manager to reduce

memory pressure in the face of paging. The bookmarking collector first reduces memory

pressure by shrinking the heap and then using its knowledge of the heap to help the virtual

memory manager make good eviction decisions. This cooperation requires an extended vir-

tual memory manager that can communicate with the garbage collector. Table 5.1 lists the

interfaces that drive this communication. We describe the kernel changes these extensions

require in Section 5.6.1.
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BC ⇔ Virtual Memory Manager Interface
int vm register(1)

Call to register a process with the virtual memory manager. This causes the
virtual memory manager to send the process a signal whenever the process
has a page scheduled for eviction.

int madvise(void *start, size t length, MADV DONTNEED)
Previously existing call in Linux to advise the virtual memory manager that
the pages listed in start are discardable and can be reclaimed.

int vm relinquish(void *start, size t length)
System call informing the virtual memory manager that the pages in start are
good eviction candidates and should be moved to the end of the LRU queue.

Table 5.1. Interface through which the bookmarking collector communicates with the
extended virtual memory manager.

5.3.1 Reducing System Call Overhead

Communication with the virtual memory manager imposes its own overhead on BC. We

therefore designed the collector to limit this overhead. BC maintains a bit array that records

whether pages are memory resident; it also tracks the current heap footprint. Whenever it

assigns a superpage to a size class and makes the superpage available for allocation, BC

checks in the bit array if the superpage is already memory-resident (e.g., from a previous

use in the heap). When the superpage is not resident, BC updates its current heap footprint

size and marks the pages of the superpage as in-core (memory-resident). BC also uses the

bit array during garbage collection. When determining whether a page has been evicted,

BC need only check the bit array and does not need to make more expensive calls into the

virtual memory manager.

5.3.2 Discarding Empty Pages

We further reduce the overhead by initiating communication when the virtual memory

manager sends a signal that it has scheduled a page for eviction. Upon receiving this signal,

BC scans a bit array for a memory-resident but empty page. If found, BC directs the virtual

memory manager to reclaim this discardable page. Otherwise, BC triggers a collection and

directs the virtual memory manager to discard a newly-emptied page (if one exists). Most
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operating systems (e.g., Linux and Solaris) already include the capability for a process to

direct the reclamation of a page by the madvise system call using the MADV DONTNEED

flag; the Windows virtual memory manager offers similar functionality.

5.3.3 Keeping the Heap Memory-Resident

When notified of a pending eviction, BC is also alerted that the current heap footprint

cannot fit within the memory available to the application. Unlike previous collectors, BC

will not to grow at the expense of paging, but instead uses that footprint as an upper bound.

If an allocation request would require that BC increase the heap footprint, BC will do so

only if it has sufficient discardable pages to return to the virtual memory manager. Other-

wise, BC collects to try and make space for the allocation. Thus heap footprint acts as a

new smaller limit to heap growth. If memory pressure continues to increase (e.g., if BC

continues to receive further notifications), BC discards more empty pages and replaces its

previous heap footprint bound with the new, lower estimate. BC thus shrinks the heap

to keep it entirely in-core and avoid evicting a page and the possibility of incurring page

faults.

Unfortunately, it may be possible that the program requires a larger heap than will fit

into available memory. If after a collection there is still not enough available memory

to fulfill an allocation, BC allows this allocation to continue even at the potential cost of

having to evict pages. Barring this limiting possibility, however, BC will not allow the

footprint to grow beyond what is available in memory.

5.3.4 Utilizing Available Memory

BC may need to discard empty pages, only later to have the memory become avail-

able again. While growing the heap can cause paging, it is important that a brief drop in

available memory not limit program throughput throughout the entire execution. Rather

than simply grow the heap blindly, BC occasionally ends a collection by polling the vir-

tual memory manager to determine how much memory is currently available. Using the
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amount of memory available, BC increases its heap memory footprint bound to use all of

the available memory that will not induce paging. BC uses the Linux /proc/meminfo device

file to compute the amount of available memory; similar functionality is available in most

operating systems.

5.4 Bookmarking

When it cannot find a discardable page, BC needs an appropriate victim page. The

page the virtual memory manager schedules for eviction is usually a good victim, since

the virtual memory manager approximates LRU order and we can expect that this page is

unlikely to be used soon. Not all pages are appropriate victims, however. Despite their

usage patterns, BC often touches nursery pages and pages containing needed metadata

(such as superpage headers, which we discuss below). Therefore, BC will not nominate

these pages even if they are scheduled for eviction.

Upon receiving a signal that the virtual memory manager scheduled a page for eviction,

BC touches the page to prevent its eviction. This touching also raises the page in the virtual

memory manager’s LRU ordering and thereby leads to a new victim page being scheduled

for eviction. By touching pages, BC generates alternate victims when inappropriate pages

are scheduled for eviction. Additionally, touching these pages moves to the top of the LRU

queue and thus provides BC time to collect the heap and, hopefully, obviate the need for

this eviction by discarding pages emptied during the collection.

If collecting the heap does not yield enough discardable pages, BC scans the pages that

had been scheduled for eviction and are appropriate victims. BC processes each object

on this page in turn. In examining each object, BC looks for any references to objects

on other superpages. If it finds such a reference, BC marks the superpage in a on which

it found the target object in a bit array and then sets the bookmark in the target object.

These bookmarks (a single bit in the status word in the target object’s header) serve as a
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secondary set of root references, recording a conservative set of references from the evicted

pages without needing to fault the page into memory.

BC also sets a bookmark in each reachable object on the page being processed for

eviction. Setting these bookmarks serves two purposes. If the page is eventually reloaded,

BC uses these bookmarks to determine where the reachable objects exist on the page. After

this page has been nominated for eviction, we may evict other pages containing references

to objects on the current page. Without BC bookmarking the reachable objects prior to their

eviction, we would then have to reload the page simply to set this bookmark. By instead

setting these bookmarks when we process each the object, BC will not need to reload the

page.

Once BC finishes scanning all of the page’s objects, it goes through the bit array record-

ing the superpages in which it just set a bookmark. For each of these superpages, BC in-

crements their incoming bookmark counter. As we discuss in Section 5.4.2, BC uses this

counter (which records the number of evicted pages containing one or more references to

an object on the superpage) to release a superpage’s bookmarks.

BC stores superpage metadata in each superpage’s header. This placement permits

accessing this metadata in constant-time by bit-masking an address. This access time is

important, because the metadata is needed for both allocation and collection. While this

metadata could be stored off to the side instead, we would similarly be unable to evict

this large pool of metadata pages, including information for superpages that have not been

allocated. While storing this metadata in the superpage header prevents BC from evicting

the first page in each superpage, it also reduces memory overhead and simplifies memory

layout, along with the corresponding page eviction and page reloading code.

Keeping the superpage headers resident means that incrementing the incoming book-

mark counters cannot trigger a page fault. Setting the bookmarks could trigger a page fault,

however, if BC bookmarks an object residing on an evicted page. BC therefore avoids set-

ting bookmarks for evicted objects by conservatively bookmarking all objects on a page
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before it is evicted. This solution ensures that bookmarks recreate all of the evicted refer-

ences without triggering any page faults.

After setting these bookmarks the victim page can be evicted. Having just been touched,

however, it is no longer scheduled for eviction. BC thus communicates with the virtual

memory manager one more time, informing the virtual memory manager that the page

should be evicted next. While the stock Linux virtual memory manager does not provide

support for this operation, BC uses a new system call provided by our extended kernel,

vm relinquish. This call allows user processes to surrender a list of pages voluntarily.

The virtual memory manager places these relinquished pages at the end of the inactive

queue where it selects pages to swap out to disk.

A race condition could arise if the relinquished pages are touched before the virtual

memory manager evicts them. While BC would have processed these pages for bookmarks,

they would not be evicted and BC would not be informed that they are memory-resident.

To eliminate this possibility, BC ends each scan by disabling access to the page via the

mprotect system call. When the page is next accessed, the virtual memory manager

notifies BC. Once notified, BC can not only re-enable access to the page, but also remove

the bookmarks as we discuss in Section 5.4.2.

5.4.1 Collection After Bookmarking

When the heap is not entirely resident in memory, BC starts the marking phase of

each whole-heap collection by scanning the heap for memory-resident bookmarked objects.

While this scan is expensive, the orders of magnitude difference in the cost of accessing

main memory versus the hard disk makes this tradeoff worthwhile. BC reduces this cost

further by scanning for bookmarked objects only on superpages with a nonzero incoming

bookmark count. During this scan, BC marks and processes bookmarked objects as if they

were root-referenced. BC thus reconstructs all the references from evicted objects during

this scan. BC now follows its usual marking phase, except that it can now safely ignore
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references to evicted objects. After marking completes, all reachable objects are either

marked or evicted. A sweep of the memory-resident pages completes this collection.

When BC compacts the heap, slightly more processing is required. During marking, BC

updates the object counts for each size class to reserve space for every object that may re-

side on an evicted page. BC then preferentially selects superpages containing bookmarked

objects or evicted pages as compaction targets and selects other superpages only as needed.

While this would not work if there exists a bookmarked object on every superpage, we

have not seen this happen in practice. BC scans the heap to process bookmarked objects

once more at the start of compaction. Because the bookmarked objects reside on target

superpages, BC will not move them and does not need to update the (evicted) reference to

these bookmarked objects.

5.4.2 Clearing Bookmarks

While BC largely eliminates page faults caused by the garbage collector, it cannot pre-

vent mutator page faults. As described in Section 5.4, the virtual memory manager notifies

BC whenever the mutator accesses an evicted (and protected) page. Upon receiving this

notification, BC processes the page again, but this time looks to clear bookmarks. BC scans

a reloaded page’s objects and decrements the incoming bookmark counter of the referenced

objects’ superpages. When a superpage’s counter drops to zero, its objects are referenced

only by objects in main memory. BC therefore clears the now-unnecessary bookmarks on

that superpage. If the reloaded page’s superpage also has a zero incoming bookmark count,

BC clears the bookmarks conservatively set when the page was evicted. If the reloaded

page’s superpage does not have a zero incoming bookmark count, then objects on evicted

pages contain references to objects on the reloaded page and the bookmarks must be pre-

served.
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5.4.3 Complications

Previously, we described the virtual memory manager as if it schedules evictions on

a page-by-page basis to maintain a set number of pages in memory. In fact, the virtual

memory manager schedules page eviction in large batches to hide disk latency. As a result,

the size of available memory fluctuates wildly. The virtual memory manager also operates

asynchronously from the collector, meaning that it can run ahead and evict a page before

BC can process it or even before BC gets scheduled to run.

BC avoids this problem using two complementary techniques. First, it maintains a

store of discardable pages and triggers a collection when the only empty pages in the heap

are the pages in this store. When pages are scheduled for eviction during a collection,

BC keeps the useful page in memory by discarding a page from this reserve. Once the

collection completes, BC replenishes the reserve from the newly emptied pages. If the

collection does not empty enough pages, however, BC makes space in physical memory

by preventively evicting pages. For this preventive bookmarking, BC examines, processes,

and evicts pages that had been scheduled for eviction and are appropriate pages to evict. In

particular, BC evicts enough of these pages to create sufficient space in available memory

for BC to refill its page reserve.

BC employs a second technique to insure that it processes pages before the virtual

memory manager evicts them. When BC tries finding a discardable page, it may discard

more than one page. BC discards all contiguous empty pages recorded on the same word

in BC’s bit arrays as the first discardable page BC finds. While this can reduce the actual

footprint quickly, BC reduces its footprint bound by only the single page. This aggressive-

ness prevents BC from being swamped by eviction notifications. By often discarding extra

pages, the virtual memory manager will not need to schedule as many pages for eviction

and BC will not need to process as many of these notifications.

82



5.5 Preserving Completeness

The key principle behind bookmarking collection is that the garbage collector must

avoid touching evicted pages. A natural question is whether complete garbage collection,

which is guaranteed to reclaim all garbage objects is possible without touching any evicted

pages.

In general, it is impossible to perform complete garbage collection without traversing

non-resident objects. Consider the case when we must evict a page full of one-word objects

that all refer to objects on other pages. A lossless summary of reachability information for

this page requires as much memory as the objects themselves, for which we no longer have

room.

This limitation means that, in the absence of other information about reachability, we

must rely on conservative summaries of object connectivity. Possible summaries include

summarizing references on a page-by-page basis, compressing references in memory, or

maintaining reference counts. Note that we already use the smallest summarization heuris-

tic: a single bit previously available in the object’s header. When the bookmark bit is set,

BC treats the object as the target of at least one reference from an evicted page.

While this summary information is “free”, bookmarking imposes a potential space cost.

BC must select all superpages containing bookmarked objects or evicted pages as targets

and so cannot always minimize the size of the heap through its compacting collection.

Because BC treats all bookmarked objects as reachable (even ones that may be garbage),

BC is further limited in how far it can shrink the heap.

Despite these apparent costs, bookmarking does not substantially increase the minimum

heap size that BC requires. Section 5.7.3 shows that, even in the face of megabytes of

evicted pages, BC continues running in very tight heap sizes. Such tight heaps mean that

BC collects the heap more frequently, but the time needed for these collections is still much

less than the cost of the page faults that would otherwise occur.
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In the event that the heap is exhausted, BC preserves completeness by performing a

whole heap garbage collection (including evicted pages). BC performs this collection in

a virtual memory oblivious manner and does not check for bookmarks nor does it ignore

references to evicted objects. BC then removes bookmarks lazily when pages are swept

following the collection. Note that this worst-case situation for bookmarking collection

(which we have yet to observe) is the common case for many garbage collectors. We show

in Section 5.7 that BC’s approach effectively eliminates collector-induced paging.

5.6 BC Implementation Details

We implemented the bookmarking collector using MMTk [26] and Jikes RVM ver-

sion 2.3.2 [11, 12]. When implementing the BC algorithm within MMTk and Jikes RVM,

we make three minor modifications. One optimization allows Jikes RVM to compute an

object’s hash code based upon its address. While address-based hashing provides many

benefits, it also requires that an object which has used this hash code grow by one word

to remember this hash code the first time the object is copied. This ultimately means the

object counts BC uses to compute the number of target superpages depends on the super-

pages selected as targets. This address-based hashing complicates BC’s selecting target

superpages and must be disabled.

Two other optimizations within Jikes RVM concern the placement of object headers.

While Jikes RVM places object headers for scalars at the end of the object, it places ob-

ject headers for arrays at the start of an object.3 This placement is useful for optimizing

null pointer checks [12], but to find an object’s header, BC must first determine whether

the object is a scalar or an array. Since this information is normally stored in the object

header, BC would be unable to perform its object processing. We solve this problem by

further segmenting our allocation to allow superpages to hold either only scalars or only

3More recent releases of Jikes RVM places all headers at the beginning of the object.
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arrays. BC then stores the type of objects contained on the superpage within each super-

page header. Using the type and size class information in the superpage header, BC can

quickly locate all objects on a page. Jikes RVM also aligns objects containing longs or

doubles differently than it aligns other objects. While these different alignments improve

performance, it would also require BC to know the type of an object to find the object’s

header. BC therefore aligns all objects as if they contain a long or double.

While we needed to remove these optimizations from BC builds, we did not want to

bias our results by removing them from builds that would benefit from their presence.

Therefore, all builds but BC include these optimizations.

5.6.1 Kernel Support

The bookmarking collector improves garbage collection paging performance primarily

by cooperating with the virtual memory manager. We extended the Linux kernel to en-

able this cooperative garbage collection. This extension consists of changes or additions

to approximately six hundred lines of code (excluding comments), as measured by SLOC-

count [108].

The modifications are on top of the 2.4.20 Linux kernel. This kernel uses an approx-

imate global LRU replacement algorithm. User pages are kept in either the active list

(managed by the clock algorithm) or the inactive list (a FIFO queue). Pages are evicted

from the end of the inactive list.

When the application begins, it registers itself with the operating system so that it will

receive notification of paging events. The virtual memory manager then notifies the run-

time system just before any page is scheduled for eviction from the inactive list (specifi-

cally, whenever the page table entry is unmapped). The signal sent includes the address of

the relevant page.

To maintain information about process ownership of pages, we applied Scott Kaplan’s

lightweight version of Rik van Riel’s reverse mapping patch [73, 104]. This patch allows
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Benchmark statistics
Benchmark Total Bytes Alloc Min. Heap Bytes Alloc/Min. Heap

SPECjvm98
201 compress 109,190,172 16,777,216 6.51
202 jess 267,602,628 12,582,912 21.27
205 raytrace 92,381,448 14,680,064 6.29
209 db 61,216,580 19,922,944 3.07
213 javac 181,468,984 19,922,944 9.11
228 jack 250,486,124 11,534,336 21.72

DaCapo
ipsixql 350,889,840 11,534,336 30.42
jython 770,632,824 11,534,336 66.81

SPECjbb2000
pseudoJBB 233,172,290 35,651,584 6.54

Table 5.2. Memory usage statistics for the benchmarks used to evaluate bookmarking
collection. Because of differences in the processor used and compiler methodology, these
values differ from those in Table 4.1

the kernel to determine the owning process of pages currently in physical memory. We

extended this reverse mapping to include pages on the swap partition (evicted to disk).

While BC does not use this feature, the kernel also extends the mincore call, which

returns if a page is in physical memory. While not needed for BC, these extensions account

for almost one-third of the lines of code that we added to the kernel.

BC needs timely updates of changing memory pressure from the virtual memory man-

ager. To ensure the timeliness of this communication, our notifications use Linux real-time

signals. Real-time signals in the Linux kernel are queueable [2]. Unlike other notifica-

tion methods, these signals cannot be lost due to other process activity and will always be

delivered.
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5.7 BC Results

We first evaluated BC by comparing it to five garbage collectors included with MMTk

and Jikes RVM: MarkSweep, SemiSpace, GenCopy, GenMS, and CopyMS.4 More detailed

descriptions of these collectors can be found in Section 4.3.

Table 5.2 describes the benchmarks we use for these analyses. Because these exper-

iments are run on a different processor and use a different methodology, the total bytes

allocated and minimum heap size in this table differ from those in Table 4.1. In addition to

the benchmarks described in Section 4.3, we use jython, an additional benchmark from the

DaCapo suite. It is the unfortunate situation that few publicly-available benchmarks are of a

size sufficient to provide a good test of paging [84]. For analysis of paging performance, we

compare execution and pause time results for runs of pseudoJBB on our extended Linux

kernel. Besides being of a size sufficient to adequately test paging performance, pseudo-

JBB is widely considered to be the most representative of a server workload [8, 56, 84].

After these analyses, we compare BC with several explicit memory managers using the

oracular memory management system described in Chapter 4. More detailed descriptions

of the explicit memory managers and benchmarks we used can be found in Section 4.3.

5.7.1 Methodology

We perform all measurements on a 1.6GHz Pentium M Linux machine with 1GB of

RAM and 2GB of local swap space. This processor includes a 32KB L1 data cache and a

1MB L2 cache. We report the mean and variance of five runs with the system in single-user

mode and the network disabled. A detailed listing of the architecture of our experimental

platform can be in Table 5.3.

4We also wish to examine MarkCopy and MC2 in these experiments, but could not find stable implemen-
tations for the version of Jikes RVM we are using. We did include measurements of GenRC within our paging
experiments, but were unable to get reliable results from these runs. While this behavior was repeatable, we
could not find a reason explaining it.
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Pentium M system
Memory hierarchy

L1, I-cache 32KB, 8-way associative, 3 cycle latency
L1, D-cache 32KB, 8-way associative, 3 cycle latency
L2 (unified) 1024KB, 8-way associative, 5 cycle latency

All caches have 64 byte lines
Main memory

RAM 12+ cycles (7.5ns)

Table 5.3. The memory timing parameters for the machine used to test the bookmarking
collector. This machine contains a 1.6GHz Pentium M processor.

Our experimental methodology differs from that in Section 4.3. We run two iterations

of each benchmark, but report results only from the second iteration. This two iteration

process is useful as Eeckhout et al. have shown that compilation can have a more significant

impact than is found in real systems [57]. Following Bacon et al. [16], and duplicating

the environment typically found in servers, the first iteration optimizes all of the code.

Because compilation allocates into the heap, we allow the heap size to change during this

iteration. Once the first iteration completes, Jikes RVM performs a whole heap collection

and removes compilation objects and any data remaining from the first run. We then turn

off Jikes RVM’s adaptive system to prevent any further code from being compiled and

measure the second iteration of the benchmark. Using this methodology, we compare the

performance of collectors in an environment similar to that found in a large server.

To examine the effects of memory pressure on garbage collection paging behavior, we

simulate increasing memory pressure caused by another application starting up or increas-

ing its working set size. We begin these experiments by making available only enough

memory for Jikes RVM to complete the compilation phase without any memory pressure.

We then use an external process that we call signalmem to generate memory pressure.

Jikes RVM notifies signalmem after completing the first iteration of a benchmark. Once

alerted, signalmem uses mmap to allocate a large array, touches these pages, and then

pins them in memory using mlock. The initial amount of memory pinned, total memory
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pinned, and rate of growth of pinned memory are specified via command-line parameters.

With signalmem we perform repeatable measurements under memory pressure while lim-

iting the disruption to the CPU load. This approach also allows us to compare the effects

of different levels of memory pressure and a variety of page eviction rates.

5.7.2 Performance Without Memory Pressure

While the key goal of bookmarking collection is to avoid paging, BC would not be

practical if it did not provide competitive throughput in the absence of memory pressure.

We therefore first compare the performance of BC with that of the other collectors when

there is no memory pressure. Figure 5.2 summarizes the results when there is sufficient

memory to run the benchmarks without any external memory pressure. This graph presents

the geometric mean increase in execution time relative to BC across of heap sizes relative

to the smallest heap size needed by BC. Figure 5.2 includes all the garbage collectors we

tested and results for “BC w/o Compaction” which differs from the normal bookmarking

collector only in being unable to perform compactions. BC without compaction is therefore

like GenMS in being unable to compact the heap, but BC without compaction uses BC’s

superpages, size classes, and collection routines rather than those included with MMTk.

As expected, BC is closest in performance to GenMS, although BC occasionally runs

in a smaller heap size. Both collectors perform nursery collection and have a segregated-fit

mark-sweep mature space, and so both show similar behavior at large heap sizes without

external memory pressure. At the largest heap size (where heap compaction is rarely used),

the two collectors provide nearly identical throughput. At smaller heap sizes, BC is able

to outperform GenMS slightly. More importantly, BC’s compaction allows it to complete

executing some benchmarks in heaps to small for GenMS.

Table 5.4 shows the average number of collections and compactions BC performs. The

results are shown at each heap size relative to the minimum needed to run the benchmark.

BC only performs compactions at the smallest heap size and then only needs to compact the
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Figure 5.2. Geometric mean of execution time across all benchmarks relative to BC and
absent any external memory pressure. All of the generational collectors use the Appel-style
flexible nursery that Jikes RVM enables by default. At the smaller heap sizes, heap com-
paction allows BC to require less space while providing the best performance. Compaction
is not needed at larger heap sizes, but BC continues to provide high performance.

Geo. Mean of Number of Compactions and Collections for BC
Relative Heap Size Mean Compactions Mean Collections

1.00 32.89 305.01
1.25 0.00 112.37
1.50 0.00 58.66
1.75 0.00 45.16
2.00 0.00 30.29
2.25 0.00 25.87
2.50 0.00 20.28
2.75 0.00 17.52
3.00 0.00 14.70
3.25 0.00 11.50
3.50 0.00 9.72
3.75 0.00 8.45
4.00 0.00 7.29

Table 5.4. Mean number of compactions and collections across all benchmarks that BC
performs at each heap size relative to the collector minimum. While it rarely compacts the
heap, this compaction can improve BC’s performance.
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heap for one-half of the benchmarks ( 213 javac, 228 jack, ipsixql, jython, and pseu-

doJBB). When it does compact the heap, the number of compactions ranges from a single

compaction for 228 jack, but an average of 205.5 compactions when executing ipsixql at

the smallest possible heap size. While not critical in most heaps, compacting the heap can

have a substantial impact in the tightest heap sizes.

The next best collector is GenCopy, which runs as fast as BC at the largest heap sizes

but averages 7% slower at heaps as large as twice the minimum needed heap size. The fact

that GenCopy generally does not exceed BC’s performance suggests that BC’s segregated

size classes do not significantly impact locality. Unsurprisingly, BC performs better than

the single-generation collectors. At the largest heap size, MarkSweep averages a 20% and

CopyMS a 29% slowdown. No collector at any heap size performs better on average than

BC, demonstrating that BC provides good throughput when memory pressure is low.

5.7.3 Performance Under Memory Pressure

We evaluate the impact of memory pressure using three sets of experiments. We first

measure the effect of steady memory pressure. Next we examine how dynamically grow-

ing memory pressure, such as that created by the creation of another process or a rapid

increase in demand effects the collectors. Finally, we run multiple JVMs simultaneously.

As discussed above, we use the pseudoJBB benchmark for all these experiments.

5.7.3.1 Steady Memory Pressure

To examine the effects of running under steady memory pressure, we run the first it-

eration of the benchmark with enough memory to allow all collectors to run without ex-

periencing any memory pressure. We then use signalmem to decrease available memory

to 60% the heap size and perform the timed benchmark iteration. Results of these ex-

periments are shown in Figure 5.3. Note that we do not show results for MarkSweep or

SemiSpace in these graphs, because runs with these collectors take orders of magnitude

longer to complete.
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(b) Average GC pause time running pseudoJBB
under steady memory pressure

Figure 5.3. Steady memory pressure (increasing from left to right), where available mem-
ory is sufficient to hold only 40% of the heap. As the heap becomes tighter, BC runs 7 to
8 times faster than GenMS and in less than half the time needed by CopyMS. Comparing
BC and the BC variant that discards empty pages and shrinks the heap but cannot set or use
bookmarks shows that bookmarking can yield higher throughputs and shorter pause times
than simply resizing the heap.

Figure 5.3 shows that under steady memory pressure, BC consistently outperforms all

other generational collectors and most of the whole-heap collectors. While SemiSpace

performs very poorly at the largest heap sizes, it does exhibit better throughput at the 80-

95MB heap sizes. In this range of smaller heap sizes CopyMS outperforms BC also, but

CopyMS ultimately runs twice as slow as BC at the 130MB heap size. At this larger heap

size, GenMS has an average pause time of 3 seconds or 30 times longer of the bookmarking

collector. To test CopyMS’s behavior under greater memory pressure, we also measure

the effect of removing memory equal to 70% of the heap size. While BC’s performance

remains largely unchanged under these more stressful conditions, CopyMS now takes over

an hour to execute pseudoJBB. These results are shown in Figure 5.4.

5.7.3.2 Dynamic Memory Pressure

When evaluating the impact of a spike in memory pressure, we again run the first bench-

mark iteration with memory sufficient to run each of the collectors without memory pres-
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Figure 5.4. Steady memory pressure (increasing from left to right), where available mem-
ory is sufficient to hold only 30% of the heap. Unlike other collectors, BC’s throughput
and pause times stay relatively constant at all heap sizes.

sure. signalmem allocates 30MB at the start of the second iteration of pseudoJBB and

then locks up an additional 1MB of available memory every 100ms until reaching the target

memory size. The results of these experiments can be seen in Figure 5.5.

These figures again show that under memory pressure BC significantly outperforms all

of the other collectors both in throughput and pause time. Note that, as with the previous

paging experiments, we do not present SemiSpace and MarkSweep because of the dramatic

time dilation it suffers.

Because the mark-sweep based collectors do not perform compaction, objects become

spread out over a range of pages. After heap pages are evicted, collectors will need to visit

these pages. This triggers a cascade of page faults and orders-of-magnitude increases in

execution time. For instance, at the highest level of dynamic memory pressure in Figure 5.5

and Figure 5.6, GenMS’s average garbage collection pause takes nearly 10 seconds —

longer than the collector executes pseudoJBB when there is no memory pressure. Even

when collections are relatively rare, spreading objects across a large number of pages can

decrease throughput by increasing the number of mutator faults.

93



Compacting objects onto fewer pages can reduce faults, but both Figures 5.5 and 5.6

shows that the copying collectors also suffering from paging effects. For example, Fig-

ure 5.5(b) shows that increasing memory pressure causes an order-of-magnitude increase

in GenCopy’s execution time. Paging also increases GenCopy’s average GC pause to sev-

eral seconds, while BC’s pause times remain largely unchanged.

The collector that is closest in execution time to BC in Figure 5.6 is CopyMS. While

this collector performs well at low to moderate memory pressure, it performs far worse

under both no memory pressure and severe memory pressure. This effect is due to pseu-

doJBB’s allocation behavior. pseudoJBB initially allocates a few immortal objects and

then allocates short-lived objects. While CopyMS reserves heap space into which it copies

the survivors of a collection, little of this space is used. Between collections, LRU ordering

causes nursery pages filled with dead object to be evicted. CopyMS’s mark-sweep ma-

ture object space allows good heap utilization and few collections. But, while this heap

organization delays paging, it cannot prevent it.

To tease apart the impact that various strategies have on paging, we also analyzed vari-

ants of the bookmarking collector and other generational collectors.

Bounded nurseries: Fixed-size nurseries can achieve the same throughput as variable-

sized nurseries, but are believed to incur lower paging costs [67]. Figure 5.5(c)

presents execution times for variants of the generational collectors using bounded

(4MB) nurseries. The graph shows that bounded nursery variants of the other col-

lectors can reduce the overall heap memory footprint, but perform as poorly as the

variable-sized generational collectors once paging.

Bookmarking vs. resizing the heap: Tables 5.5 and 5.6 show the average count of pages

BC discards, relinquishes, and reloads at each available memory size for both the

77MB and 94MB heap sizes. When memory pressure is low, BC’s strategy of dis-

carding empty pages is sufficient to avoid paging. As memory pressure increases,

BC becomes unable to keep the entire heap in physical memory and must relinquish
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BC with a 77MB Heap
Available Memory Discarded Relinquished Reloaded
212 0 0.0 0.0
163 4110.4 45.0 2.4
153 7529.4 0.0 0.0
143 11357.2 0.0 0.0
133 14025.4 0.8 0.2
123 17115.2 76.4 5.4
113 18619.6 129.6 4.6
103 2006.0 295.2 72.8
93 20273.4 338.4 70.6

Table 5.5. Average number of heap pages discarded, relinquished, and reloaded by BC
running with a 77MB heap at different levels of available memory. As this table shows,
BC’s use of LRU ordering to select pages for eviction prevents the reloading of pages.

BC with a 94MB Heap
Available Memory Discarded Relinquished Reloaded
212 0 0 0
163 21004.4 133.0 20.2
153 21694.0 149.8 8.2
143 22571.4 180.0 19.4
133 24885.6 286.2 12.2
123 27085.6 231.4 18.4
113 30665.2 500.8 29.0
103 35582.5 648.8 229.0

Table 5.6. Average number of heap pages discarded, relinquished, and reloaded by BC
running with a 94MB heap at different levels of available memory.

pages. When this happens, the variant of BC that only discards pages (shown as in

these graphs as “BC w/resizing only”) takes up to 10 times longer to run than when

BC can both discard pages and set bookmarks. The results shown in Figures 5.3 and

5.5(a) demonstrate the importance of bookmarking in achieving high throughput and

low pause times under moderate or severe memory pressure.

We next present mutator utilization curves [41]. Mutator utilization is the proportion of

time that the mutator runs during a given time window. In other words, it is the amount of

time spent running the application rather than collecting the heap. We adopt the methodol-
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ogy of Sachindran et al. and present bounded mutator utilization, or BMU [89]. The BMU

for a given window size is the minimum mutator utilization for all windows of that size or

greater.

Figure 5.7 shows BMU curves for the dynamic memory pressure experiments discussed

above. While MarkSweep and both variants of BC perform very well with moderate mem-

ory pressure (runs ending with 143MB of available memory, Figure 5.7(b)), all of the other

collectors exhibit poor mutator utilization. In particular, GenMS requires window sizes

orders of magnitude larger than BC’s running time before the mutator makes any progress.

Figure 5.7(c) shows that under severe memory pressure, the full bookmarking collector

far outstrips all other collectors, with the mutator running almost 90% of the time. In fact,

this figure shows that every other collector has at least one collection that takes longer

than it takes BC to execute the entire program. The two next best collectors, the non-

bookmarking variant of BC (labeled “BC w/resizing only”) and CopyMS, need over 40

seconds to execute pseudoJBB half of which is spent collecting the heap. Interestingly,

MarkSweep now exhibits the worst utilization, spending 7.5 minutes in garbage collection

and another 2.5 minutes running the program.

5.7.3.3 Multiple JVMs

Finally, we examine a scenario with two JVMs executing simultaneously. For this

experiment, we start two instances of Jikes RVM running pseudoJBB and measure the

garbage collection pause times and total elapsed time from when the jobs are started until

the later instance completes. These experiments cannot employ the “compile-and-reset”

methodology because compiling the entire application generates too much paging traffic

and we cannot “reset” the virtual memory manager’s history. Instead, we employ the Re-

play compilation methodology [68, 89, 113] discussed in Section 4.1.1.1.

Figure 5.8 shows the results of executing two instances of pseudoJBB, each with a

77MB heap. While BC performs the best, total elapsed time can be misleading: for all
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of the other collectors, paging effectively serializes the benchmark runs. This serializa-

tion means that the first instance of pseudoJBB begins and runs to completion before

the second instance is able to start. The average pause time numbers are thus more re-

vealing. As available memory shrinks, bookmarking shows a gradual increase in average

pause times. At the lowest amount of available memory, BC exhibits pause times averaging

about 380ms, while average pause times for CopyMS, the next best collector, show a nearly

eightfold increase.

5.8 Related Work

There are certain garbage collectors and garbage collection algorithms that are directly

related to the bookmarking collector and we discuss them here.

Like bookmarking collection, distributed garbage collection algorithms also treat cer-

tain references (those from remote systems) as secondary roots.5 Distributed GC algo-

rithms typically employ either reference counting or listing. Unlike bookmarking, both of

these require substantial additional memory and updates on every pointer store, while BC

only updates bookmarks when pages are evicted or made resident (relatively rare events).

Bookmarking collection’s use of segregated size classes for compaction is similar to the

organization used by Bacon et al.’s Metronome collector [15, 16]. Unlike the Metronome,

BC uses segregated size classes for mature objects only. BC’s copying pass is also quite

different. The Metronome sorts pages by occupancy, forwards objects by marching linearly

through the pages and continues until reaching a pre-determined size, forwarding pointers

later. BC instead copies objects by first marking target pages and then forwarding objects

as they are discovered in a Cheney scan. This approach obviates the need for further passes

and immediately brings memory consumption to the minimum level.

5See Abdullahi and Ringwood [7] and Plainfossé and Shapiro [85] for excellent recent surveys
of this area.
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5.9 Conclusion

In this chapter, we present bookmarking collection, an algorithm that leverages coop-

eration between the garbage collector and virtual memory manager to eliminate nearly all

paging caused by the garbage collector. When memory pressure is low, the bookmarking

collector provides performance that generally matches or slightly exceeds that of the high-

est throughput collector we tested (GenMS). In the face of memory pressure, BC improves

program performance by up to 5x over the next best garbage collector and reduces pause

times by 45x. These results are even more dramatic when compared with GenMS. BC thus

provides greater memory utilization and more robust performance than previous garbage

collectors.
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Figure 5.5. Dynamic memory pressure (increasing from left to right), where the avail-
able memory shown is the amount ultimately left available. These results are for runs of
pseudoJBB using a 77MB heap size. BC has a throughput up to 4x higher than the next
best collector and up to 41x better than GenMS. BC’s average GC pause time also remains
unaffected as memory pressure was increased. While shrinking the heap improves both
throughput and pause times, these graphs show that bookmarks are vital for good perfor-
mance.
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Figure 5.6. Dynamic memory pressure (increasing from left to right), where the available
memory shown is the amount ultimately left available. These results are for runs of pseu-
doJBB using a 94MB heap size. BC has a throughput up to 2x higher than the next best
collector and up to 29x better than GenMS.
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(c) 93MB available: under heavy memory pressure,
bookmarks become increasingly important

Figure 5.7. Bounded mutator utilization curves (curves to the left and higher are better) for
runs applying dynamic memory pressure. BC consistently provides high mutator utilization
over time. As memory pressure increases (available memory shrinks), the importance of
bookmarks in limiting garbage collection pause times becomes apparent.
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Figure 5.8. Execution time and pause times when running two simultaneous instances
of pseudoJBB. The execution times can be somewhat misleading, because paging can
effectively deactivates one of the instances for some collectors. Under heavy memory
pressure, BC exhibits pause times around 7.5x lower than the next best collector.
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CHAPTER 6

CONCLUSION

While garbage collection provides important software engineering benefits, such as

reducing and eliminating memory leaks and dangling pointers, garbage collection’s perfor-

mance has been a hotly debated topic. This dissertation first demonstrates how to quantify

garbage collection’s performance. We use this performance analysis to improve garbage

collection’s paging performance, where our analysis shows its performance suffers most.

This chapter summarizes the contributions of this thesis and discusses future directions to

expand this work.

6.1 Contributions

This thesis begins by presenting the Merlin algorithm, which computes object reach-

ability information in asymptotically optimal time. We show that the Merlin algorithm

can reduce the time needed to generate program heap traces by orders-of-magnitude. We

then discuss oracular memory management, which uses program heap traces to compare

the performance of automatic and explicit memory managers. This thesis finds that, while

the best garbage collector can match the top allocator’s performance, garbage collection’s

good performance requires several times the physical memory to hold the heap. This the-

sis presents the bookmarking collector to reduce this performance brittleness. Our results

show the cooperative bookmarking collector matches or exceeds the best collector’s perfor-

mance when not paging and improves both throughput and pause times substantially while

paging.
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At the outset, this thesis considers how well garbage collection performs currently and

where opportunities for improvement remain. In answering this vital question, we highlight

the brittleness of garbage collection’s good performance and develop a new collector that

makes this performance more robust.

6.2 Future Work

There are several directions in which researchers could expand this thesis in the future.

We are interested in expanding this work to consider alternative strategies for selecting

victim pages. While BC used pages’ LRU order to select victim pages, it may be preferable

to select, for example, pages that do not contain pointers and therefore could not create false

garbage. By developing more sophisticated algorithms to select victim pages, we may be

able to limit the number of garbage objects that remain bookmarked while not increasing

the number of page faults substantially.

The metrics considered in our analysis of garbage collection performance are not ex-

haustive. We did not evaluate, for example, the often discussed question of what each

memory manager’s impact on cache locality is [44, 50, 60, 68, 77, 102, 112]. Another

metric we plan on analyzing is to compare explicit memory managers’ pause times and

mutator utility (resulting from coalescing and reallocating memory) with those of garbage

collection. Analyzing additional metrics such as these provides more data by which we can

understand memory manager performance and a deeper analysis of the true costs associated

with each memory manager.

This thesis considers allocating and freeing only individual objects. Custom allocation

schemes that manage multiple objects, such as regions and reaps, can improve the mem-

ory performance of explicitly-managed applications dramatically [23, 61]. Expanding the

oracular framework to evaluate these additional memory managers may suggest methods

of improving garbage collection performance by grouping objects into pools which can be

automatically reclaimed.
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Another question this thesis raises is the effects other oracles would have on explicit

memory management. One could investigate more moderate reclamation decisions, such

as an oracle that combines trace-based and static analyses to find code points where the

system can always reclaim objects. Moderate oracles provide more realistic simulations of

what a programmer could accomplish and may suggest further memory manager improve-

ments. By evaluating the potential improvements from using static analyses to explicitly

free objects [43, 60], this work could also prevent researchers from considering compiler

analyses that take longer than any possible improvement.

Finally while we limited our analysis to quantitative measures, garbage collection also

has important qualitative effects. Another extension to this thesis would be to compare the

software engineering impact of the various methods of memory management. Investigating

how practitioners approach and write programs when using different memory managers

could improve the methods educators use to teach novice programmers and enable language

designers to select features that best match the desired memory manager.
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APPENDIX

PROOF OF THE OPTIMALITY OF THE MERLIN ALGORITHM

While we discuss the design and execution of the Merlin algorithm in Chapter 3, we

did not discuss or prove the algorithm’s running time. We also left open the question of

whether it would be possible to develop an algorithm with a faster asymptotic complexity.

In this appendix, we first present a theoretical model of garbage collection that enables

us to examine garbage collection abstractly. Using this theoretical foundation, we prove

that the Merlin object reachability time algorithm requires time linearly proportional to the

execution time of the program and, finally, show that the Merlin algorithm is asymptotically

optimal.

Structures Used

It has long been understood that a program’s heap memory can be viewed as a graph.

Thus, our framework presents the analyses as graph theoretic problems. We first explain

how our framework handles dynamically allocated objects and then propose a series of

graphs that model the heap and capture the execution of the program and garbage collector.

The Heap and Program Roots

Our structures model objects dynamically allocated into the program’s heap as the

memory manager’s reserving space in the heap for each field, and generating a map from

the object’s keys to the locations in memory in which they are stored. Memory for an object

is typically contiguous and a field’s mapping key is the offset from the start of the object to

that field.
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The program accesses objects in the heap through its root set. The framework models

the root set as a mapping of keys (each representing a unique root with a referring type) to

reference values. Unlike object mappings, the root set is neither bounded nor fixed. The

program uses dynamically allocated objects only through the root set; objects not reachable

from the root set cannot be used by the program and can be reclaimed by the system. For

convenience, we do not consider oracular collectors or other garbage collection algorithms

that rely upon external knowledge.

Heap State

The current state of the heap is defined by the objects and references within the heap

and the program’s root set. To allow for further analyses, we also include the set of objects

that have been identified by the collector as unreachable. We represent the heap state (the

current state of the heap) as a rooted, directed multi-graph. We call this multi-graph the

heap state multi-graph, and express it as H = (L,D,r,E).1

The set of vertices of H, V = L∪D, includes a vertex for each object allocated in the

heap, and a special vertex, called the root vertex and designated as r, representing the root

set. The set D (for dead) contains the unreachable vertices, while L (for live) includes the

remaining vertices (L =V−D, so L∩D = /0). Since roots are always reachable, r must be in

L. Vertices represent only the existence of an object. This representation makes modeling

garbage collectors easier by abstracting away implementation details such as objects’ actual

locations in the address space.

References to heap objects are represented at edges in the multi-graph. The edge mul-

tiset, E, contains an edge (〈v,n〉,o) if and only if object v at the field mapped to by key n

contains a reference to object o. Notice that v may be r, in which case n is the key to a root

that refers to o.

1Other elements could exist within the heap state multi-graph; we include only those elements used in this
analysis.
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Just as a garbage collector analyzes the heap using the root set and objects, this multi-

graph can be analyzed for the relationships between the root vertex and other vertices.

Reachability

Given H = (L,D,r,E), we say v refers to o (in H), written refersH(v,o), if and only if v

has at least one field that refers to object o: refersH(v,o) = (∃n)((〈v,n〉,o) ∈ E).

Extending this definition, we say v reaches o (in H), written reachesH(v,o), if and

only if v and o are equal or o is in the transitive closure of objects to which v refers:

reachesH(v,o) = (v = o∨ (∃p)(refersH(v, p)∧ reachesH(p,o)).

Given the importance of objects that the program can access from the root set, an object

o is reachable (in H) if and only if r reaches o (reachableH(o) = reachesH(r,o)). Reachable

objects may be used in the future by the program. Objects not reachable in the heap state

(e.g., objects not in the transitive closure of the root set) cannot be accessed by the program

and could not be reclaimed by the garbage collectors we consider at present.

A heap state multi-graph H = (L,D,r,E) is well-formed if and only if all reachable

objects are in L: L ⊇ {o|reachableH(o)}. From here on we are concerned only with well-

formed heap state multi-graphs.

Program Actions

The heap state and its corresponding graph are useful for analyzing snapshots of a pro-

gram. But programs and their heaps are dynamic entities: the program mutates its heap as

it runs. These changes include objects being dynamically allocated, fields of objects being

updated, and objects being passed to and from functions. These changes occur throughout

program execution and a dynamic memory manager must be capable of handling all of

them.
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Action Name Effect Precondition
Object Allocation Lt+1 = Lt ∪{o}; o 6∈ Lt ∪Dt∧

Et+1 = Et ∪{(〈r,n〉,o)} ¬(∃o′)((〈r,n〉,o′) ∈ Et
Root Creation Et+1 = Et ∪{(〈r,n〉,o)} reachableHt (o)∧

¬(∃o′)((〈r,n〉,o′) ∈ Et)
Root Deletion Et+1 = Et −{(〈r,n〉,o)} (〈r,n〉,o) ∈ Et
Heap Reference Et+1 = Et ∪{(〈v,n〉,o)} reachableHt (v)∧ reachableHt (o)∧

Creation ¬(∃o′)((〈v,n〉,o′) ∈ Et)
Heap Reference Et+1 = Et −{(〈v,n〉,o)} reachableHt (v)∧ (〈v,n〉,o) ∈ Et

Deletion
Program Et+1 = Et− None

Termination {(〈r,n〉,o)|(〈r,n〉,o) ∈ Et}

Table A.1. Definition of action at . Only changes from Ht to Ht+1 are listed.

Interesting Program Actions

The framework is interested only in those actions that affect the heap. Though the

causes of these mutations are language-specific, we group actions by their effect on the

heap: object allocation, root creation, root deletion, field reference creation, field reference

deletion, and program termination.2

We describe that the effect each action has on the heap state with respect to the heap

state multi-graph at time t, Ht = (Lt ,Dt ,r,Et), and the multi-graph following the action,

Ht+1 = (Lt+1,Dt+1,r,Et+1).3 We additionally describe the preconditions necessary within

Ht for the possible actions at . A precise mathematical definition of these effects and limi-

tations can be found in Table A.1. The following paragraphs provide a simple description

of each of the actions:

Object Allocation actions occur when an object is allocated in the heap. An object

allocation action defines a new vertex to be added to the set of reachable vertices and the

key value of the root that references the newly allocated vertex.

2Other actions could be included; these primitives are quite general and can be combined. We distinguish
root and heap reference actions because many algorithms treat them differently. We specifically exclude GC
behavior from program actions.

3Actions may also be considered functions producing Ht+1 from Ht ; we do this when it is convenient.
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Root Creation actions occur when a root reference to an object is created. The root

creation action defines a new edge to be added to the edge set from the root vertex to a

reachable vertex.

Root Deletion actions remove an existing edge from the root vertex to a vertex in the

set of reachable vertices. This action is equivalent to deleting a root reference or making a

root reference null.

Heap Reference Creation actions occur when the program updates a heap object’s un-

used field updated to reference another object. These actions add an edge to the edge set

from the source vertex to the target vertex.

Heap Reference Deletion actions specify an edge in the edge set that is removed. Heap

reference deletion actions occur whenever an object in the heap has a non-null field made

null.

Program Termination actions occur when the program execution ends. Program termi-

nation may occur at any time and deletes the root set (removes any edge whose source is

the root vertex).

In the framework, as in program execution, only existing references may be removed,

each object field contains at most one reference, and only reachable objects may be involved

in actions. Since the heap state multi-graph reflects the heap, the program actions mirror the

changes in the heap. By construction programs cannot attempt actions whose preconditions

are not met, so we need not consider the possibility. Further, it is easy to see that program

actions preserve well-formedness of heap state multi-graphs (since they cannot remove

vertices nor cause unreachable objects to become reachable).

Program History

Every program begins with the same heap. This initial heap state is represented by the

multi-graph H0 = (L0,D0,r,E0). This graph has only one vertex (the root vertex) and an

empty edge multiset (L0 = {r},DO = /0,E0 = /0).
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Figure A.1. Illustration of the program history, showing how the heap-state multigraph
mutates over the program execution

We also consider a program’s heap state following program termination. Final heap

state multi-graphs, designated HT = (LT ,DT ,r,ET ), have a vertex (in LT ∪DT ) for each

object allocated into the heap, plus the root vertex. Final heap state multi-graphs cannot

contain edges from the root vertex, so only the root vertex is reachable in these multi-

graphs.

The initial and final heap states do not contain much information about the program

execution, but the entire run is necessary to analyze GC algorithms and optimizations. To

record this information, the framework uses a program history. The program history begins

with the initial heap state multi-graph, H0, and the first program action, a1. From this multi-

graph and action, we build the successor heap state multi-graph, H1, then add action, a2,

and so on. The program history continues up to the program termination action (aT ) and

final heap state multi-graph, HT . Figure A.1 illustrates a program history.

Since all programs start from the initial heap state, and each program action is deter-

ministic, the actions alone are sufficient to recreate the program history. Since the program

history works in a manner similar to heap traces, it is intuitive to use.

Null and Reachable Multi-Graphs

Using the program history, the framework can compute the null heap state multi-graph

for each time step. The null heap state multi-graph at time t, H /0
t = (L /0

t ,D
/0
t ,r,Et), is the heap

state multi-graph where no objects have been determined to be unreachable (e.g., D /0
t = /0).

Using the program history, the time when each object becomes unreachable can be

determined. Given Ht = (Lt ,Dt ,r,Et), then the reachable heap state multi-graph is H∗
t =

Live(Ht) = (L∗t ,D∗
t ,r,Et). The reachable multi-graph specially defines L and D : L∗t = {v ∈

Lt |reachableHt (v)}; D∗
t = Vt−L∗t , that is, L∗t is exactly the set of reachable vertices, and D∗

t
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the remainder (the ∗ superscript is intended to suggest the optimal, i.e., smallest possible,

Lt set.)

Given a heap state multi-graph Ht , we define the reduced heap state multi-graph, HR
t =

Reduce(Ht), as the heap state multi-graph (LR
t ,DR

t ,r,ER
t ), where: LR

t = Lt , DR
t = /0, ER

t =

{(〈v,n〉,o) ∈ Et |v ∈ Lt}. This reduction removes those vertices identified as unreachable,

and any edges from these vertices, from the multi-graph. By removing edges and vertices

that are known to be unnecessary, the reduced heap state multi-graph resembles the physical

heap following GC.

Finally, given a heap state multi-graph Ht , we define the reduced reachable heap state

multi-graph, H−
t , as the heap state multi-graph Reduce(Live(Ht)).

The null, reachable, and reduced reachable heap state multi-graphs are similar: their

reductions via Reduce ◦Live are the same. Further, since program actions can manipulate

only reachable objects, if we apply at+1 to H /0
t , H∗

t , and H−
t , we get analogous results, a

fact we state precisely and prove in a moment. First we argue that if we have a well-formed

heap state H /0
t and corresponding action at+1, then at+1 is legal for H∗

t and H−
t .

Lemma 1 If H /0
t fulfills the preconditions of at+1, then so do H∗

t and H−
t .

Proof Assume Ht satisfies the preconditions of at+1. First, we note that all vertices reach-

able in H /0
t are in L∗t and thus in L−t , and that L−t ∪D−

t ⊆ L∗t ∪D∗
t = Lt ∪Dt . Thus if at+1

is an object allocation, its precondition is satisfied in H∗
t and H−

t . Reference creation and

deletion preconditions are trivially satisfied because they mention only reachable objects

and edges between reachable objects.

Now we state and prove a stronger relationship for program histories and their corre-

sponding reachable and reduced reachable heap states:

Theorem 2 If at+1 takes Ht to Ht+1, then at+1 ◦Live takes H∗
t to H∗

t+1 and at+1 ◦Live ◦
Reduce takes H−

t to H−
t+1.
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Proof Assume Ht = at(Ht−1) (interpreting at as a function, and implying that Ht−1 is well-

formed and meets the preconditions of at). H∗
t−1 differs from Ht−1 only in the partitioning

of the vertices into L and D sets, and both are well-formed. The same is true of Ht =

at(Ht−1) and at(H∗
t−1). Since the edges are the same between these two graphs, their sets

of reachable objects are the same, so applying Live to each of them gives the same result.

Hence Live(Ht) = Live(at(H∗
t−1)). But Live(Ht) = H∗

t by definition, proving the first part

of the theorem.

The second part of the theorem follows if

Reduce(Live(at(H∗
t−1))) = Reduce(Live(at(Reduce(H∗

t−1))))

Let Lx and Dx be the L and D sets of H∗
t−1. Since Reduce does not affect L sets, and

program actions do not add to D sets, the L sets of at(H∗
t−1) and at(Reduce(H∗

t−1)) are the

same. Since at applies and preserves well-formedness, the L sets of Live(at(H∗
t−1)) and

Live(at(Reduce(H∗
t−1))) are also the same, and consist of exactly those objects reachable

in H∗
t . Finally, applying Reduce gives heap states with the same L set and an empty D set.

Thus the L and D components of the two heap states are the same. Their r component is

trivially the same (none of the functions changes r). Their E component is the same for

reachable nodes, but after applying Live then Reduce, those are the only nodes in the graph.

Modeling Collector Behavior

We model garbage collector behavior by following each program action at with a gar-

bage collector action gt . Thus, we form Ht by first applying program action at to Ht−1, and

then applying collector action gt . A collector action potentially identifies some unreachable

objects. In fact, we will equate gt with the set of objects it identifies as unreachable, and de-

fine its effect on the heap state as mapping heap state H = (L,D,r,E) to (L−gt ,D∪gt ,r,E),

113



- - -
H /0

0
(L /0

0,D
/0
0,r,E

/0
0)

a1,g /0
1

H /0
1

(L /0
1,D

/0
1,r,E

/0
1)

a2,g /0
2

. . .
aT ,g /0

T
H /0

T
(L /0

T ,D /0
T ,r,E /0

T )

- - -
H∗

0
(L∗0,D

∗
0,r,E

∗
0)

a1,g∗1 H∗
1

(L∗1,D
∗
1,r,E

∗
1)

a2,g∗2
. . .

aT ,g∗T H∗
T

(L∗T ,D∗
T ,r,E∗T )

?Live() ?Live() ?Live()

Figure A.2. Illustration of the Expanded Program History, including the null (H /0) and
reachable (H∗) heap states.

with the precondition that gt ⊆ L−{o ∈ L|reachableH(o)}. When convenient, we will also

use the notation gt for the function that the collector action induces on heap states.

The simplest collector, which we call the null collector, never identifies any objects as

unreachable. We write its actions as g /0
t ; it induces the identity function on heap states.

The most “aggressive” collector, called a comprehensive collector, immediately identi-

fies unreachable objects. We write it as g∗t and the function it induces is complementary to

Live (i.e., it identifies the unreachable objects).

Figure A.2 shows how the null (H /0) and reachable (H∗) heap state multi-graphs relate

to null and comprehensive collector actions.

Real collectors are bounded (in what they reclaim) by the null and comprehensive col-

lectors. Further, many collectors identify unreachable objects only occasionally. For ex-

ample, they may allow a portion of the heap to fill, and identify unreachable objects in a

batch only after the space is full. While we model only the end result (e.g., the set of ob-

jects identified as unreachable), in applying the framework it is easy to associate costs with

collector action gt and derive the effort taken by the collector at each time step.

Object Death Time Multi-Graph

We add to the framework the object death time multi-graph. This multi-graph differs

from the others because it concerns only the efficiency of a collector. It is not related

to the heap at any moment of the program history; rather it exists to prove the minimum

information and work needed to determine the earliest time each object could be reclaimed.

This multi-graph can also compare the efficiency of comprehensive collectors by analyzing
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the relative work needed to populate and analyze this multi-graph. Before describing the

new graph, we discuss a concept upon which it relies: final reference deletion time.

An object’s final reference deletion time is the last time at which the object has an in-

coming reference deleted (by a root or heap reference deletion action or at program termi-

nation). Because each object is allocated with a reference from the root set, and the program

termination action removes any root references that exist, each object has a final reference

deletion time. This time occurs between the object’s allocation and program termination.

We define the function f to map each vertex to its final reference deletion time. Given a

vertex v, f is defined as: f (v) = maxi<T ((∃o,n)((〈o,n〉,v) ∈ Ei∧ (〈o,n〉,v) 6∈ Ei+1)). An

object may have incoming references at its final reference deletion time, provided that the

remaining incoming references are not deleted by a program action; in the name, “final”

modifies “deletion”, not “reference”.

With this definition, we present our last graph structure. The object death time multi-

graph is also a directed, rooted multi-graph, F = (V,ET , f ), where f is the final reference

deletion time function from above. The multi-graph’s set of vertices V contains a vertex

for each object allocated in the heap, i.e., V = VT −{r}. The multi-graph’s edge multiset,

ET , is the edge multiset of the final heap state.

As the name implies, the multi-graph determines the death time for each object. An

object’s death time is the time at which it becomes unreachable—the time the correspond-

ing vertex would be included in a g∗ action. As the following theorem shows, this time

can be computed in the object death time multi-graph as each vertex’s latest reaching final

reference deletion time, the latest final reference deletion time among the vertices that reach

each vertex.

Theorem 3 The latest reaching final reference deletion time to a vertex in F is the time the

corresponding object in the heap became unreachable.

Proof Objects become unreachable only when references are removed; thus object death

times occur only at actions that remove references. Since unreachable vertices cannot be
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involved in program actions, only final reference deletions cause objects to become un-

reachable: if an earlier reference deletion left an object unreachable, the object could not

be involved in the later action. Therefore, object deaths occur only at final reference dele-

tions.

Not all final reference deletions leave a vertex unreachable, however. From the defini-

tion of reachable, reachable(v) is true when v is in the transitive closure of the root vertex,

regardless of final reference deletion times. If v is the target of an edge from a reachable

vertex, reachable(v) is true. If v’s final reference deletion time has passed, v becomes un-

reachable at the latest time that a referring vertex becomes unreachable. By this logic, each

vertex becomes unreachable at the latest final reference deletion time for it or any vertex

that reaches it (since the vertices reaching it may be reachable only because they are re-

ferred to by still other vertices). Thus, any object in the transitive closure set of an object

at its final reference deletion time may become unreachable at that time. These transitive

closure sets are defined by the final pointers—the object death time multi-graph’s edge

multiset.

Therefore, vertices become unreachable at the latest reaching final reference deletion

time. As reachability in the heap state reflects reachability in the heap, this time is the

corresponding object’s death time.

We note that this multi-graph is similar to H∗
T (V = D∗

T and ET = E∗T ) as one would

expect, given its function. Using this multi-graph, we can compute object death times in

asymptotically optimal time, as we show in the next section.

Merlin Algorithm Analysis

The Merlin algorithm presented in Chapter 3 computes last reachable times by perform-

ing a small amount of work at (some) program actions and delaying performing the more

costly analyses. It computes each object’s final reference deletion time in conjunction with
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program actions and analyzes the object death time multi-graph that it constructs with this

information.

We now prove the asymptotic running time for the Merlin algorithm and then prove that

this running time is optimal.

Merlin’s Running Time

Computing which objects are reachable in the heap state is equivalent to solving the

single-source/multi-sink reachability problem from the root vertex, which requires O(LR
t +

ER
t ) time.

To compute object reachability times, Merlin builds and analyzes the object death time

multi-graph as the program runs. Using the object death time multi-graph, finding when

objects become unreachable requires comparing the reaching final reference deletion times

for each vertex; this processing seems analogous to computing all of the transitive closures

sets, requiring O(VT ·ET ) time [49, p. 766].

Solving the transitive closures determines when each object can be reclaimed, but re-

quires more work than is needed. Object death times are the latest reaching final reference

deletion times; to find death times, Merlin requires a single depth-first search from each

vertex in reverse order of vertex final reference deletion times.

Lemma 4 When computing object death times, every vertex and edge needs to be pro-

cessed only once.

Proof With the depth-first search, Merlin needs to process each vertex only once, because

repeat visits to a vertex are computing equal or earlier reaching final reference deletion

times. As only the latest time matters, processing these repeat visits will not change any

object reachability times. Assume that by not processing subsequent visits, an incorrect

last reachable time is computed for a vertex. For this to hold, a repeat visit must compute a

later reaching final reference deletion time. But the depth-first search from the vertex with

the later final reference deletion time must begin before, not after, the initial last reachable
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time was found. This contradiction invalidates the assumption; processing each vertex once

correctly computes object reachability times.

With the framework, we can now prove Merlin’s asymptotic running time.

Theorem 5 Merlin requires O(T ) time to create the Object Death Time Multi-Graph and

an additional O(VT +ET ) time to compute the last reachable times.

Proof The Merlin algorithm takes constant time at each program action to build the object

death time multi-graph. For T actions, this clearly takes O(T ) total time.

Given the object death time multi-graph, the time required to find all last reachable

times is O(VT + ET ). The Merlin algorithm begins by sorting the vertices by their final

reference deletion time. As these times must lie between 1 and T , we may use a radix

sort to order the vertices; this sorting therefore taking O(VT ) time. Since each vertex and

edge needs to be processed only once, the depth-first searches also take O(VT + ET ) total

time.4 Therefore, the Merlin algorithm computes object reachability times in total time

O(VT +ET )+O(T ) = O(T ), since O(VT +ET )≤O(T ) (there were only T actions, so one

cannot have created more than O(T ) vertices or edges).

This leads to an additional theorem.

Theorem 6 The Merlin algorithm computes object reachability times in asymptotically

optimal time.

Proof Each program action during a program’s execution may define an action that is nec-

essary in order to compute object reachability times (e.g., object allocations and program

termination). Therefore any algorithm computing object reachability times requires at least

Ω(T ) time. Since the Merlin algorithm completes in this time, its Θ(VT +ET +T ) = Θ(T )

time is optimal. To build the object death time multi-graph, the vertices, final pointers, and

final reference deletion times are needed. To find the vertices, each object allocation action

4In practice, systems must first examine each field to determine if the contents are a reference or null.
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must be handled. Since knowing which references are final pointers and which reference

deletions are final is not computable until termination, all reference creations and deletions

must be processed. This takes Ω(T ) time.

Consider an object death time multi-graph where no two vertices share a final reference

deletion time and an edge exists between two vertices if and only if the source vertex has an

earlier final reference deletion time than the target vertex. As the reaching final reference

deletion times to the vertices are the consecutive subsequences of final reference deletion

times that begin with the earliest time, computing the object reachability times within this

multi-graph requires completely ordering the last reachable times. This ordering requires

as much time as sorting the vertices, which a radix sort accomplishes in Ω(VT ) time.

Without knowing the target of an edge, we cannot determine if the edge is on the path of

the target’s latest reaching final reference deletion time. If the edge is on this path, it must

be processed; this cannot be determined, however, without examining the edge source and

target. Therefore, every algorithm also requires Ω(ET ) time to compute last reachable

times.

Combining the arguments of the previous three paragraphs, we conclude that Ω(T )

time is required to build the object death multi-graph and Ω(VT + ET ) time is needed to

compute object reachability times. As the Merlin algorithm completes in this time, its

Θ(VT +ET )+Θ(T ) time is optimal.
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and Stefanović, Darko. Error free garbage collection traces: How to cheat and not get
caught. In Proceedings of the 2002 Joint International Conference on Measurement
and Modeling of Computer Systems (Marina Del Rey, CA, June 2002), pp. 140–151.

[64] Hirzel, Martin, Diwan, Amer, and Henkel, Johannes. On the usefulness of type and
liveness accuracy for garbage collection and leak detection. ACM Transactions on
Programming Languages and Systems 24, 6 (Nov. 2002), 593–624.

[65] Hirzel, Martin, Diwan, Amer, and Hertz, Matthew. Connectivity-based garbage col-
lection. In Proceedings of the 18th ACM Conference on Object-Oriented Program-
ming, Systems, Languages, & Applications (Anaheim, CA, Oct. 2003), pp. 359–373.

[66] Hirzel, Martin, Diwan, Amer, and Hosking, Tony. On the usefulness of liveness for
garbage collection and leak detection. In Proceedings of the 19th European Confer-
ence on Object-Oriented Programming (Budapest, Hungary, June 2001), pp. 593–
624.

[67] Huang, Xianglong, Moss, J. Eliot B., McKinley, Kathryn S., Blackburn, Stephen M.,
and Burger, Doug. Dynamic SimpleScalar: Simulating Java virtual machines. Tech.
Rep. TR-03-03, University of Texas at Austin, Feb. 2003.

[68] Huang, Xianlong, Blackburn, Stephen M., McKinley, Kathryn S., Moss, J. Eliot B.,
Wang, Zhenlin, and Cheng, Perry. The garbage collection advantage: Improving
program locality. In Proceedings of the 19th ACM Conference on Object-Oriented
Programming, Systems, Languages, & Applications (Vancouver, BC, Canada, Oct.
2004), pp. 69–80.

125
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