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Pretenuring can reduce copying costs in garbage collectors by allocating long-lived objects into re-
gions that the garbage collector will rarely, if ever, collect. We extend previous work on pretenuring
as follows: (1) We produce pretenuring advice that is neutral with respect to the garbage collec-
tor algorithm and configuration. We thus can and do combine advice from different applications.
We find for our benchmarks that predictions using object lifetimes at each allocation site in Java
programs are accurate, which simplifies the pretenuring implementation. (2) We gather and apply
advice to both applications and Jikes RVM , a compiler and runtime system for Java written in
Java. Our results demonstrate that building combined advice into Jikes RVM from different appli-
cation executions improves performance, regardless of the application Jikes RVM is compiling and
executing. This build-time advice thus gives user applications some benefits of pretenuring, with-
out any application profiling. No previous work uses profile feedback to pretenure in the runtime
system. (3) We find that application-only advice also consistently improves performance, but that
the combination of build-time and application-specific advice is almost always noticeably better.
(4) Our same advice improves the performance of generational, Older First, and Beltway collectors,
illustrating that it is collector neutral. (5) We include an immortal allocation space in addition
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to a nursery and older generation, and show that pretenuring to immortal space has substantial
benefit.
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1. INTRODUCTION

Garbage collection (GC) is a technique for storage management that auto-
matically reclaims unreachable program data. In addition to sparing the pro-
grammer the effort of explicit storage management, garbage collection re-
moves two sources of programming errors: memory leaks due to missing or
deferred reclamation; and memory corruption through dangling pointers be-
cause of premature reclamation. The growing use and popularity of Java and
C#, in which garbage collection is a required element, makes attaining good
collector performance key to good overall performance. Here our goal is to im-
prove collector performance by reducing GC costs for long-lived objects. We
focus on generational copying collection [Appel 1989; Lieberman and Hewitt
1983; Ungar 1984] and demonstrate the generality of our approach using
the Older First [Stefanović et al. 1999] and Beltway [Blackburn et al. 2002]
collectors.

Generational copying GC partitions the heap into age-based generations of
objects, where age is measured in the amount of allocation (the accepted practice
in the GC literature). Newly allocated objects go into the youngest generation,
the nursery. Collection consists of three phases: (1) identifying roots for col-
lection; (2) identifying and copying into a new space any objects transitively
reachable from these roots (called “live” objects); and (3) reclaiming the space
vacated by the live objects. Rather than collecting the entire heap and incurring
the cost of copying all live objects, generational collectors collect the nursery,
place survivors in the next older generation, and collect successively older gen-
erations only if necessary. Because the rate of death among the young objects
is typically high in object-oriented languages, generational collectors usually
offer performance advantages over full heap collectors (this property is called
the weak generational hypothesis).

Pretenuring allocates some objects directly into older generations. If pre-
tenured objects are indeed long-lived, then the pretenuring avoids copying the
objects from the nursery into the generation where they are allocated. An ideal
pretenuring algorithm would inform the allocator of the exact lifespan of a
new object, and then the allocator would select the ideal generation in which
to place this object. The collector would thus consider an object only after it
has sufficient time to die, avoiding ever copying it. If an object will die before
the next nursery collection, then the allocator will place it in the nursery (the
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default), whereas if the object lives until the termination of the program, then
the allocator places it into a permanent region.

We develop pretenuring advice from application profiling on a per allocation-
site basis. For our suite of Java programs, we show that allocation-site advice
results in accurate predictions, and that these predictions are robust over dif-
ferent input data. In contrast, languages such as C require calling context to
produce accurate predictions [Barrett and Zorn 1993; Seidl and Zorn 1998];
Section 8 discusses these alternative prediction mechanisms.

We extend the approach of Cheng, Harper, and Lee (CHL) [Cheng et al.
1998], whose work inspired our research. Firstly, our advice generation process
classifies each object as immortal—its time of death was close to the end of
the program, short lived—its lifetime was less than a threshold value, or long
lived—everything else. CHL instead classify objects (allocated at a particular
allocation site) that usually survive a nursery collection in a generational col-
lector as long lived, and those that do not as short lived. Secondly, CHL profile a
given application and generational collector configuration (including a specific
heap size) to generate pretenuring advice. We instead use precise object alloca-
tion traces, obtained using the Merlin precise trace generation tool [Hertz et al.
2002, 2005], to generate lifetime statistics from which we derive our advice,
a more costly, but offline, process. Because these statistics are collector- and
configuration-neutral, they are more general, which our experimental results
confirm. Finally, we normalize our statistics according to the application’s max-
imum volume of live objects and its total allocation, making our advice more
scale-invariant.

The generality of our pretenuring advice results in two key advantages over
previous work: (1) Since we normalize advice with respect to total allocation for
a specific execution, we can and do combine advice from different applications
that share allocation sites (e.g., classes internal to the JVM, and libraries). (2)
We can and do use the advice to improve three distinct collectors that segre-
gate objects based on their age: an Appel-style generational collector [Appel
1989], an Older First collector [Stefanović et al. 1999], and the Beltway collec-
tor [Blackburn et al. 2002], on ten benchmarks, eight from SPECjvm98.

In our experiments, we use Jikes RVM (formerly called Jalapeño ) [Alpern
et al. 1999, 2000], a compiler and runtime system for Java written in Java,
extended with the garbage collectors we investigate. We profile all our bench-
marks, and then combine their pretenuring advice to improve the performance
of Jikes RVM itself; we call this system build-time pretenuring. This advantage
is unique to the Java in Java implementation, whereas C JVMs instead must
manually manage their data structures. When measuring the effectiveness of
our build-time pretenuring, we omit the application itself from the combined
advice profile. Such advice is called true [Barrett and Zorn 1993].

We show that build-time pretenuring improves the performance of Jikes
RVM running our benchmarks an average of 30% for tight heaps, without any
application-specific pretenuring. As the heap size grows, the impact of garbage
collection time and pretenuring on total execution time decreases, but pretenur-
ing still improves collector performance. Because CHL profile advice is specific
to both the application and collector configuration, their system cannot readily
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combine advice for this purpose. Building pretenuring into the JVM before
distribution means users will benefit from pretenuring without profiling their
applications.

Using only our application-specific profile advice always improves perfor-
mance, as well: up to 10% on average for tight heaps. Our advice also yields on
average significantly better performance than CHL advice, giving more than
10% improvement in tight heaps and 5% in large heaps. Combining our build-
time and application-specific advice always yields the best performance: It de-
creases garbage collection time on average by 40% to 70% for most heap config-
urations. It improves total execution time on average by 36% for a tight heap.

We organize the remainder of the article as follows. Section 2 offers some
background on pretenuring and its expected benefits and costs. Section 3 dis-
cusses our approach to pretenuring and the collection and generation of pre-
tenuring advice. Section 4 analyzes the lifetime behaviors of objects in our
Java applications. We then describe our performance methodology and setting
in Section 5. Section 6 presents execution time and related measurement re-
sults for pretenuring with generational collection for Jikes RVM at build-time,
application-specific pretenuring with CHL and our advice, and the combination
of application-specific and build-time advice. We further demonstrate the gen-
erality of our advice by showing that the same advice improves an Older First
collector and a Beltway collector. We consider issues of using pretenuring in
practice (Section 7), compare related work with our approach (Section 8), and
conclude (Section 9).

2. THE PRETENURING COLLECTOR, EXPECTED BENEFITS AND COSTS

For this work, we built an Appel-style generational collector [Appel 1989] that
partitions the heap into a nursery and a second, older, generation. It also has
a separate, permanent space (which we call immortal) that is never collected.
The nursery size is flexible: This is the space not used by the older generation
and the permanent space. We fix the total heap size to make fair comparisons.
Some heap space is always reserved for copying (this space must be at least as
large as the sum of the nursery and the older generation in order to guarantee
that collecting the nursery and then the older generation will not fail). When
all but the reserved heap space is consumed, the collector collects the nursery,
promotes surviving objects into the older generation, and makes the freed space
the new nursery. After a nursery collection, if the old generation’s size is close to
that of the reserved space, it triggers collection of the older generation. We call
this collector Appel as a convenient shorthand and to emphasize its varying-
size nursery, but the reader should keep in mind that it is just in the general
style of Appel’s original collector.

—Expected benefit of immortal space. Long-lived objects allocated into immortal
space avoid all copying, both the first copy from the nursery into the older
generation, and the copy made each time we collect the older generation.
There is also a space benefit. Because we never collect the immortal space,
we need not reserve additional space into which to copy it, which frees space
for use by the nursery and older generation.
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—Expected cost of immortal space. We never reclaim objects allocated in the
immortal space, so if we pollute the space with objects that die quickly, we
effectively reduce the heap size (possibly running out of space entirely). How-
ever, we can tolerate some pollution because each object in immortal space
commits half the space it would take if allocated elsewhere. A more subtle
effect is that a short-lived object allocated in immortal space can cause reten-
tion of the objects reachable from it. This effect is known as nepotism [Ungar
and Jackson 1988]. It does not appear to occur very often, but suggests being
conservative in pretenuring.

—Expected benefit of old generation pretenuring. We save the work of copying
the object from the nursery if it survives nursery collection.

—Expected cost of old generation pretenuring. If the object is shorter lived and
would have been reclaimed by a nursery collection, we pollute the older gener-
ation and cause an old generation collection sooner than we otherwise would.
Nepotism may also occur.

It would appear that the space and time benefits of immortal space, when
it is a good choice, are much larger (on a per object basis) than those of old
generation pretenuring. The overall benefit depends, of course, on the relative
volume of short-, medium-, and long-lived objects, and whether their allocation
occurs in patterns we can exploit.

Although we use the Appel-style generational collector here to motivate and
describe pretenuring, our approach is general. We describe the application of
pretenuring to two other collectors, Older First and Beltway. Similar benefits
should accrue to parallel and concurrent collectors in terms of overall GC effort,
perhaps reflected in higher throughput, fewer rounds of GC, better memory
utilization, etc.

3. PRETENURING ADVICE METHODOLOGY

Two objectives are central to our approach: producing robust and general pre-
tenuring advice, and understanding and testing the premise of per site lifetime
homogeneity on which the success of profile-driven pretenuring rests.

3.1 Gathering Information and Generating Pretenuring Advice

Any algorithm for generating pretenuring advice must consider the two ma-
jor cost components: relative copying costs and relative space consumption. The
copying cost includes scanning and copying an object when it survives a col-
lection. Space cost has an indirect impact in that higher space overhead forces
more frequent GCs. One way to conceptualize space cost is in terms of space
rental: the space required by an object times the length of time it uses this
space. In the two extremes, pretenuring advice that recommends pretenuring
all objects into permanent space minimizes copying costs, but increases space
rental; and advice that recommends pretenuring no objects tends to minimize
space rental at the expense of higher copying costs.

One of our goals is to generate advice that is neutral with respect to any
particular collection algorithm or configuration. This goal precludes the use of
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the metric used by CHL [Cheng et al. 1998], which pretenures if the collector
usually copies objects allocated at a particular site in the context of a specific
generational collector configuration. Our approach is instead based on two fun-
damental object lifetime statistics: age and time of death. Object age indicates
how long an object lives, and time of death indicates the point in the allocation
history of the program at which the object becomes unreachable.

We normalize age with respect to max live size, following the garbage collec-
tion convention of equating time to bytes allocated. Max live size refers to the
maximum volume (bytes) of live objects in a program execution, which indicates
the theoretical minimum memory requirement of a program. This normaliza-
tion will reduce differences between different runs of the same program where
the size of the program’s heap data structures differs. Object age is expressed
as a fraction or multiple of the max live size. For example, an age of 0.25 means
that during the lifetime of the object, 0.25 × max live size bytes of allocation
occurred.

We normalize time of death with respect to total allocation.1 For example,
consider an object allocated toward the end of the program that dies after the
last allocation. It has a normalized time of death of 1.00. This normalization
has the same intent as the one we apply to object age: to reduce differences
in characterizing different runs of the same program, and thus to make our
characterizations and our advice more independent of scale.

We illustrate the relationships between object age, time of death, max live
size, and total allocation in Figure 1 for a Java version of health [Cahoon and
McKinley 2001; Rogers et al. 1995] running a small input set, where we plot
one point for each age and time of death combination that has a volume of
objects exceeding a chosen threshold.2 The bottom and right axes normalize
“time” with respect to total bytes allocated for that program, while the top and
left axes show time with respect to the program’s max live size, which relates
to a “heapfull” of allocation. Note that the scales on opposite sides (e.g., top and
bottom) are only showing normalization to different units. For the illustrated
run, a point at (7,2) in terms of max live size is at about (0.77,0.22) in terms
of total allocation. Such a point represents an object that died 77% of the way
through the run (in terms of bytes allocated) and whose age was 22% of total
allocation (and hence was allocated 55% of the way through the run).

This figure shows that a large number of objects have short lifetimes, and
the horizontal “lines” of points indicate that throughout the execution of the
program, objects are most likely to die when they reach one of a small number
of ages (e.g., about 0.2 and 0.45 × max live size).3 There are also times of death
at which many objects die simultaneously, which appear as vertical “lines” in
the figure.

1The relationship between max live size and total allocation is a function of allocation behavior. In
our Java programs, total allocation ranges from 9 to 91 times max live size.
2Plotting a point for every object obscures where the scatter plot is more and less dense.
3This effect is particularly evident in health: It places objects in a queue and processes and discards
them in FIFO order (or requeues them). Thus these objects tend to have uniform lifetimes. For
many other programs, it would be more common to see clustering of time of death: Data structures
built over time and then discarded at a particular point in execution.
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Fig. 1. Object age and death distributions for health (6–128).

The figure also illustrates how our object classification, discussed in detail
in Section 3.1.2, puts objects into short-lived, long-lived, and immortal “bins.”

3.1.1 Object Lifetime Profiling. We analyze age and lifetime statistics us-
ing an execution profile for each application. We obtain the profile by producing
a precise object allocation and death trace. We produce these traces using the
Merlin tool [Hertz et al. 2002, 2005]. Merlin produces precise traces at much
lower cost than previous approaches, making precise traces possible where in
the past, they had been infeasible.4 In an earlier version of this work [Blackburn
et al. 2001], we instead did full heap collections after every 64KB of allocation,
overestimating lifetimes by around 32KB on average. Although this approach
leads to few classification errors, it requires us to adjust our pretenuring advice
strategy a little because it distorts the space rental calculations that indicate
candidate sites for pretenuring. We ended up abandoning space rental as our
primary measure of site importance and now use allocation volume.

An object lifetime trace gives a sequence of object allocation and object death
records, including the time of allocation, time of death, size of the object (partic-
ularly relevant for arrays, since the size may not be known until run time), and
the allocation site. An allocation site corresponds to a particular new bytecode,

4The slowdown factor to produce perfectly accurate traces with Merlin is about 75–500x; for traces
at a granularity of 4K bytes, which we believe sufficient for pretenuring judgments, the factor is
20–80x. We must also analyze the traces, which at present is slow because we have not invested in
building fast analysis programs.
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that is, Java class, method, and bytecode offset within the method. Since in-
lining can vary from run to run in an adaptive and dynamically compiled
system, if inlining induces cloning of allocation sites, we group their statis-
tics together (i.e., it is as if the method were not inlined). This combining im-
proves advice across different applications, but may conflate distinct behaviors
(though our results suggest that this issue is not significant for the programs we
investigate).

From the trace we compute max live size, total allocation, and the normalized
birth and death times for each object.

3.1.2 Object Classification. For each object allocated at a given site, we
classify it into one of three bins: short, long, or immortal. We use the following
algorithm:

(1) If an object dies later than halfway between its time of birth and the end of
the program, we classify it as immortal.

(2) Otherwise, if an object’s age is less than Ta × max live size bytes, then we
classify it as short. We use Ta = 0.45 in our experiments to follow.5

(3) In all other cases, we classify an object as long.

Our immortal classification criterion is based on our previously noted observa-
tion that objects which will never be copied have a lower space requirement than
objects that may be copied: The latter must have space reserved into which to
copy them. Because in an Appel-style generational collector, the reserved space
overhead is 100% (half the heap), it is reasonable to classify an object as im-
mortal if dead time ≤ lifetime for this object, where dead time is the time from
when the object dies to the end of the program.6 Figure 1 illustrates this catego-
rization. Note that we could use a different threshold value, but this threshold
has a good intuitive motivation, and it also turns out that varying the threshold
has little impact because few objects have values lying close to the threshold.7

Of course, our immortal category is heuristic. The following scenario is possi-
ble. We allocate object A near the start of the run and it dies a little while after
the middle of the run, so is classified immortal. Shortly before A dies, we make
it point to some large recently allocated data structure B, which dies when A
does (or shortly thereafter). Classifying A as immortal causes B to be effectively
immortal as well, an extreme case of nepotism. Such scenarios appear to be ex-
ceedingly rare. Section 7 considers ways to ameliorate this potential problem. If
we increase the threshold for designating objects immortal, we tend to reduce

5Previously [Blackburn et al. 2001], we used Ta = 0.2. However, we have found that 0.45 works
better, since 0.2 corresponds to a very modest nursery, while 0.45 is more realistic. 0.2 is overly
aggressive for pretenuring.
6The same principle applies to any collector with a noncopied immortal space and a need to reserve
copying space for one or more younger generations. In particular, it applies to the Older First and
Beltway collectors with which we compare later.
7Previously, we first separated out the short category and then discriminated long versus immor-
tal [Blackburn et al. 2001]. We found that the new order works better because objects living until
near the end of the program tend to be allocated at sites that allocate immortal objects. Classifying
these objects as short caused us to miss sites we should treat as immortal.
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the magnitude of this problem (should it occur), but we also reduce the benefit
of pretenuring.

3.1.3 Allocation Site Classification. Having classified each object, we then
classify each site. Given an allocation site s that allocates a fraction Ss of short-
lived objects, Ls of long-lived objects, and Is of immortal objects, where Ss, Ls,
and Is are in terms of volume, that is, bytes allocated (not number of objects),8

we classify the site using the homogeneity thresholds Hif and Hlf, as follows:

(1) If Is > Ss + Ls + Hif, we classify the site as immortal.
(2) Otherwise, if Is + Ls > Ss + Hlf, we classify the site as long.
(3) In all other cases, we classify the site as short.

The homogeneity thresholds control the “aggressiveness” of the classifica-
tion. For example, if Hif = 0, then we will classify a site as immortal if the
majority of the objects allocated there are immortal. If Hif = 0.99, then we
require virtually all objects to be immortal (Is > 0.995).

In our previous work, we used a single homogeneity factor, Hf , but (as we
shall show) the cost/benefit factors are quite different for classifying immortal
versus classifying long. If an object does live a very long time, we save significant
CPU time when we classify it immortal because we avoid copying it not only in
the initial nursery collection, but also in all later full heap collections. Further,
the space savings from having no copy reserve for the immortal region stave off
future GCs (i.e., in effect, it increases the heap size). On the other hand, if we
classify a site as long, all we save is one copying of the object out of the nursery,
and we actually reduce effective available space because we cannot reclaim the
object except through a full heap GC.

We now consider how to pick a good value for Hif. If Hif is too low, then too
many sites will be classified immortal, causing too many nonimmortal objects
to be allocated in immortal space; if Hif is too high, then too few sites will be
classified immortal, causing too little immortal allocation in immortal space to
gain benefit. In Figure 2, we vary Hif from −0.33 to 1.00 (it is possible for Is to
be larger than Ss and Ls in the region [−0.33, 0], even though Is < 0.50; see the
labels on the top x-axis). The figure includes three curves. Consider first the
curve labeled “Vol. of Immortal Objs in Imm. Space,” whose scale is on the left
y-axis. This curve gives the geometric mean (across benchmarks) of the ratio:
volume of immortal objects that would be allocated into immortal space for a
given value of Hif / total allocation. We see that this volume is very insensitive
to Hif for values from 0.0 to 0.9. Going farther to the right will reduce the
volume (and thus the potential benefit). Now consider the curve labeled “Vol.
of Short+Long+Immortal Objs in Imm. Space,” whose scale is also on the left
y-axis. It shows the ratio: total volume of objects allocated into the immortal
space for each value of Hif / total allocation. We see that it stays close to the first
curve, except for Hif < 0. The third curve shows the accuracy of the pretenuring,

8This approach refines our previous work [Blackburn et al. 2001] and is more accurate for arrays
whose sizes at the same allocation site can differ. We also tried space rental (size times lifetime) as
a way to weight objects, but this overemphasizes long-lived objects.
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Fig. 2. Immortal classification accuracy by volume—geometric mean for all benchmarks.

that is, the ratio: total volume of immortal objects allocated in immortal space/
total allocation in immortal space (the ratio of the two previous curves). Its
scale is on the right y-axis. This shows quite clearly that accuracy drops off
rapidly for Hif < 0.

We desire maximum benefit (greatest volume, hence smallest Hif) consistent
with adequate accuracy (low accuracy “pollutes” immortal space and is risky,
since we never reclaim the “polluting” objects). We use Hif = 0.0 from here on,
and it seems to make this trade off well, although values between 0.0 and 0.9
should all work about as well.

Now that we have fixed Hif, we consider the effect of Hlf. Figure 3 is similar
to Figure 2 in structure (but note the difference in vertical scales). However, it
ignores sites already classified as immortal using Hif = 0.0, and considers only
the short/long trade-off for the remainder of sites (and objects). The first curve
shows the fraction of long-lived objects (long+immortal) actually allocated into
long space for each value of Hlf (again, we plot the geometric mean of this
value across the benchmarks). As with Hif, we find that there is a long flat
region. In terms of accuracy, any value of Hlf greater than 0.25 should be alright,
but since the benefit of long pretenuring is small, we demand high accuracy.
We use Hlf = 0.60 in the remainder of the article. We observe that compared
with immortal sites, the homogeneity of the (remaining) sites where long-lived
objects dominate is not as good.

3.1.4 Pruning Allocation Sites. Finally, we drop sites whose total alloca-
tion is small, that is, less than v times the total allocation of the program.9 We

9In our previous work, we ranked sites according to their total space rental, that is, sum of (ob-
ject size) × (object lifetime) across all objects allocated at the site [Blackburn et al. 2001]. This
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Fig. 3. Long classification accuracy by volume—geometric mean for all benchmarks (Hif = 0.00).

used v = 0.000002. Our primary reason for doing this is that the allocation
advice for a site takes a certain amount of dynamically allocated table space
in the JVM, effectively reducing the heap size, so we should drop sites whose
pretenuring will have very little total effect. We can also claim that when the
volume of a site is relatively low, we do not have adequate evidence to pretenure
that site’s objects.

3.1.5 Combining Classifications from Different Program Executions. We
also combine data from different program executions to generate pretenuring
advice. Our trace combining algorithm works as follows. For each site s, we
generate new combined bins Sc,s, Lc,s, and Ic,s. For each trace t, we first com-
pute a weight wt for each site: wt = vs/vt , where vs is the volume allocated at
the site, and vt is the total volume of allocation in the trace. We then compute
the combined bins using weighted averages for all sites with trace information.
Let wc = ∑n

t=1 wt . We use Ss(t) to mean the value of Ss for trace t, etc. We show
only the formula for Sc,s; Lc,s and Ic,s are computed analogously:

Sc,s =
(

n∑
t=1

Ss(t) ∗ wt

) /
wc

With these bins, we then use the same classification algorithm as previously,
but with a different homogeneity factor. Unlike the case of Hif and Hlf, when

mechanism includes some low-volume (but high space-rental) sites, particularly with perfect traces
(because they dramatically reduce the reported lifetimes of most short-lived objects). Using volume
is thus a better choice.
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combining information across traces (programs), we found it important to be
conservative for both immortal and long advice. Therefore, we use a single
homogeneity factor, called Hcf , which we set to 0.9.

3.2 Jikes RVM Builds and Compilation Strategies

In our previous work [Blackburn et al. 2001], we used an optimization strategy
in Jikes RVM that optimizes every method to the highest available optimiza-
tion level. We call this “build” of the system Opt. Optimizing every method is
not realistic for modern JVMs because it performs much optimization of “cold”
methods that does not pay back. In Jikes RVM (because it is written in Java),
it also induces much additional heap allocation and increases GC load. Thus,
using Opt will tend to bias towards pretenuring for the compiler, which per-
forms well but may miss opportunities in individual applications. We always
optimize to the highest level the methods included in the system image, but
treat application methods differently, since they are compiled at run time in
this methodology.

In contrast to Opt, the typical compilation strategy today is Adaptive. For
example, in Jikes RVM, the Adaptive Optimization System (AOS) [Arnold et al.
2000] detects, as the program runs, which methods the application uses most
frequently, and compiles these at progressively higher levels of optimization. It
determines highly used methods via sampling triggered by timers. Thus, the
AOS is nondeterministic (because it is timing-dependent), making it somewhat
problematic for experimentation where we wish to vary only one factor at a
time.

Hence we developed a new Replay approach.10 Here we run an application
a number of times (say, seven) and determine, for each method, the highest
optimization level to which the method is optimized in a majority of the runs.
We put this information in an advice file. The replay system reads the advice
file, and when it first compiles a listed method, optimizes it directly to the
advised level (if there is no advice, it compiles using the simple, nonoptimizing
compiler). It suppresses all adaptive recompilation. The effect is that the total
compilation load is very similar to a typical adaptive run, but the system is
deterministic.

We present the bulk of our results using the replay methodology, but also
present the effects of pretenuring using the adaptive and opt compilation strate-
gies in Section 6.8. As expected, adaptive and replay builds behave quite sim-
ilarly, with and without pretenuring, but opt builds allocate much more in the
heap, and more often the compilation work, both in time and space, outweighs
the application work.

By default, we profile an opt build to produce the pretenuring advice, but Sec-
tion 6.8 shows that using replay builds for advice instead produces comparable
accuracy.

10Xianglong Huang and Narendran Sachindran jointly implemented the replay compilation mech-
anism. This technique was previously termed “pseudo-adaptive” [Huang et al. 2004], but “replay”
is more suggestive of its function.
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Table I. Benchmark Characteristics

Opt runs Replay runs
Max Live Alloc Alloc / Max Live Alloc Alloc /

Benchmark (bytes) (bytes) Max Live (bytes) (bytes) Max Live
compress 8,826,084 199,944,756 22 8,819,296 116,641,428 13
jess 5,485,280 482,996,388 88 4,508,272 299,788,860 66
raytrace 6,839,684 233,821,460 34 6,863,452 124,286,536 18
db 10,709,640 178,830,988 16 10,732,380 86,687,156 8
javac 12,068,700 618,946,020 53 12,146,436 298,486,240 24
mpegaudio 4,410,732 134,921,104 30 3,599,032 27,684,656 7
mtrt 9,923,760 247,688,648 24 2,570,348 39,690,456 15
jack 5,810,536 533,734,388 91 3,947,152 346,126,536 87
pseudojbb 29,913,388 636,525,664 20 30,254,784 365,554,384 12
health (6–128) 4,349,588 40,283,616 9 4,163,776 29,013,560 6

Max Live is the maximum live size and Alloc is the total allocation.

4. PRETENURING ADVICE RESULTS

Profile-driven pretenuring is premised on homogeneous object lifetimes at each
allocation site. Previous work shows that ML programs are amenable to a clas-
sification of sites as short and long, where long means “usually survives one
nursery collection” (for a specific system configuration) [Cheng et al. 1998]. C
programs are not homogeneous at each call site, but require the dynamic call
chain to predict similar classes of lifetimes [Barrett and Zorn 1993; Seidl and
Zorn 1998]. We show in this section that the allocation sites in our set of Java
programs have adequately homogeneous lifetimes, with respect to our classifi-
cation scheme, for pretenuring to work reliably.

4.1 Benchmark Programs

For evaluating both classification (here) and performance (Section 6), we use
all eight programs from the SPEC JVM98 suite: 210 compress, 202 jess,
205 raytrace, 209 db, 213 javac, 222 mpegaudio, 227 mtrt, and 228 jack,

plus pseudojbb11 and health, the Olden C program that models a health care
system [Cahoon and McKinley 2001; Rogers et al. 1995] rewritten in object-
oriented Java. We run all benchmarks single-threaded.

Table I shows the total allocation in bytes, maximum live size in bytes, and
the ratio between the two, for each benchmark, under the opt and replay con-
figurations. The maximum live sizes are mostly similar, but the total allocation
volume often differs a lot.

4.2 Homogeneity of Applications

The homogeneity of an allocation site can be defined using the information-
theoretic notion of entropy. Using bits as the unit, the entropy of a set of discrete

11SPECjbb runs for a fixed period of time and reports the number of iterations it executes, a
throughput measure. We changed it to run for a fixed number of transactions (70,000) and call the
resulting program pseudojbb. It thus produces the same allocation load, regardless of heap size,
collector, etc. Its execution times are on the order of 10 seconds on our platform.
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Fig. 4. Homogeneity before pretenuring.

probabilities Pj is:

entropy = −
(∑

j

Pj ∗ log2 Pj

)
, where

∑
j

Pj = 1.

Smaller entropy implies higher homogeneity, that is, fewer bits needed to en-
code the labels (immortal, long, short) on a set of objects drawn in random
order with these probabilities. If an allocation site is completely homogeneous,
100% with one label and 0% in others, its entropy is 0.00. If an allocation site
is completely heterogeneous, 50% and 50% (in two categories), its entropy is
1.00. Here is how we calculate site entropy when we consider short, long, and
immortal labels:

short : −(Ss ∗ log2 Ss) − (Ls + Is) ∗ log2(Ls + Is)
long : −(Ls ∗ log2 Ls) − (Ss + Is) ∗ log2(Ss + Is)

immortal : −(Is ∗ log2 Is) − (Ls + Ss) ∗ log2(Ls + Ss)

Figure 4 shows the homogeneity curves of the geometric mean over all bench-
marks before pretenuring, varying entropy from 0 to 1. We call those sites
for which Is > Ls and Is > Ss immortal dom sites (i.e., where immortal ob-
jects dominate the other two categories), and similarly, we have long dom and
short dom sites. For each entropy value, we calculate the total allocation vol-
ume of sites whose entropy is less than or equal to this value. There are three
curves in the graph: one for immortal dom sites, one for immortal dom plus
long dom sites, and one for all sites. We normalize all volumes to the total
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Fig. 5. Homogeneity after pretenuring: Hif = 0.00 Hlf = 0.60.

allocation of the application. We use the right y-axis for the scale of the top
curve (for all sites), and the left y-axis for the other two curves. The bottom x-
axis is the value of entropy, and the top x-axis shows the corresponding fraction
of the dominating category. The flatness of the immortal dom curve in Figure 4
shows us that immortal dom sites have extremely high homogeneity, most pos-
sessing entropy of less than 0.2: Immortal objects make up at least 96.9% of the
volume of these sites. On the other hand, the steep increase at the right end of
the immortal dom plus long dom curve tells us that a good portion of long dom
sites are not homogeneous. We should definitely not pretenure these sites. The
homogeneity of all sites is pretty high more than 90% have more than 85% of
one kind, whether short, long, or immortal.

Figure 5 shows the homogeneity curves of the geometric mean over all
benchmarks after pretenuring. Note that “before pretenuring” data concerns
sites that are classified by which lifetime dominates (immortal, long, or short),
whereas “after pretenuring” data have to do with how we have labeled the sites,
not which lifetime dominates by allocation volume. Our hope is that we choose
only very homogeneous sites to pretenure. We plot this graph (Figure 5) ac-
cording to our site classification, using Hif = 0.00 and Hlf = 0.60. It also has
three curves: immortal, immortal plus long, and all sites. This graph is almost
the same as Figure 4, except that the jump in the right end of the immortal
plus long curve nearly disappears, indicating that our pretenuring method is
effective in filtering out the heterogeneous sites, and chooses to pretenure only
those sites with high homogeneity.

We present two types of results in the remainder of this section. For the
javac benchmark and for our combined advice, we illustrate our binning and
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Table II. Per Site Object Binning and Classification

Bin % Classi-
Site # Objects Volume Vol % Short Long Immortal fication

javac
1676 145492 60421512 9.761 99.59 0.04 0.37 s
1064 1496486 47887552 7.739 100.00 0.00 0.00 s

13 759989 32802440 5.300 92.84 0.04 2.98 s
1501 654754 20952128 3.385 100.00 0.00 0.00 s

692 602886 19588556 3.141 97.13 2.46 0.40 s
3269 145636 4077808 0.659 6.87 75.38 17.75 l
3278 49812 1793232 0.290 4.07 62.94 32.98 l
3296 40156 1766864 0.285 5.45 61.81 32.74 l
4126 45372 1633392 0.264 11.04 74.65 14.30 l
3326 96696 1547136 0.250 6.47 84.76 8.77 l
1747 5523 829228 0.133 0.83 2.34 96.84 i

551 157 590276 0.095 0.00 0.00 100.00 i
662 5 327740 0.055 0.00 0.00 100.00 i
529 1617 174636 0.028 0.00 0.00 100.00 i

1780 1 163852 0.027 0.00 0.00 100.00 i
combined

1070 7044399 225420768 15.764 100.00 0.00 0.00 s
1513 3096079 99074528 6.928 100.00 0.00 0.00 s

693 2773149 89818452 6.281 92.08 6.86 1.06 s
848 2033521 65075872 4.551 89.25 9.41 1.34 s
747 956207 45897936 3.210 87.72 10.63 1.65 s
565 972 11664 0.001 4.83 1.77 93.40 l

25 10 380 0.000 2.52 2.52 94.95 l
454 10 360 0.000 2.63 2.63 94.74 l
324 20 320 0.000 2.94 2.94 94.12 l
353 20 320 0.000 2.94 2.94 94.12 l

1765 17118 4260740 0.298 1.05 0.53 98.43 i
664 52 3408496 0.238 0.00 0.00 100.00 i
555 638 2248540 0.157 0.00 0.00 100.00 i
726 10 1638520 0.115 0.00 0.00 100.00 i
727 10 1638520 0.115 0.00 0.00 100.00 i

classifications for a number of call sites in each. We then present aggregate
advice summaries for each benchmark and the actual behavior of the sites to
demonstrate the quality of our advice.

4.3 Detailed Classification Results

Table II shows some of our per site object classifications both for javac and our
combined advice for the Jikes RVM build-time system. We include the top five
sites classified as immortal, the top five long, and top five short. We rank these
by their allocation volume.

We include the number and volume of objects the site allocates, and show
the percentage of objects that are binned as short, long, or immortal. Using
Ta = 0.45, Hif = 0.00, Hlf = 0.60, and Hcf = 0.90, we show our resulting
classification. Notice that many allocation sites are homogeneous: The majority
of objects at a site are in a single bin. For some sites, especially in the combined
trace, objects are well-distributed among bins. For javac, we classify many sites
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Table III. Per Program Pretenuring Decision Accuracy (Percent, Weighted by Volume)

Immortal Space % Long Space % Overall

Program vol% io∧is
is

lo∧is
is

so∧is
is

vol% io∧ls
ls

lo∧ls
ls

so∧ls
ls

accuracy

compress 0.97 96.06 0.07 3.87 0.034 1.76 78.48 19.76 95.52
jess 0.68 98.23 0.40 1.37 0.001 3.58 96.42 0.00 98.23
raytrace 2.11 99.66 0.05 0.29 0.002 38.66 59.09 2.25 99.65
db 5.49 93.61 0.97 5.42 0.656 0.11 99.89 0.00 94.29
javac 0.65 98.41 0.49 1.10 4.468 24.31 69.75 5.94 94.61
mpegaudio 2.31 96.05 0.08 3.87 0.051 1.73 84.02 14.24 94.82
mtrt 0.95 99.29 0.09 0.62 2.074 47.88 52.12 0.00 99.78
jack 0.46 99.33 0.11 0.56 1.948 5.63 81.12 13.25 89.16
health 12.84 79.67 3.53 16.80 0.002 40.64 59.36 0.00 79.67
pseudojbb 0.56 96.96 2.30 2.74 3.417 49.76 50.00 0.24 99.37
Geo Mean 97.82 0.24 1.94 9.05 85.22 5.73 97.39

as long (l), and in the combined trace, several sites as immortal (i). Thus, we
find sites to pretenure into the long-lived and immortal space.

To consider the issue of binning in summary form across all sites of a bench-
mark, we consider the fraction of short, long, and immortal objects that end up
being allocated in short, long, and immortal space (as determined by our labels
for the allocation sites). Where x and y range over s, l , and i (for short, long, and
immortal, respectively), we define xo ∧ ys to be the volume of x category objects
allocated in y space. Thus io ∧ ss is the volume of immortal objects allocated in
short space. Similarly, we define xo∧ ys

ys
to be the ratio of the volume of objects of

category x allocated into space y to the total volume of objects allocated into
space y . For example, io∧is

is
denotes the volume of immortal space allocation

used for immortal objects (an accurate classification), while so∧is
is

denotes the
volume of immortal space allocation used for short objects (an inaccurate clas-
sification). We change the denominator when we wish to indicate disposition
according to the labeling of objects, rather than by space; thus io∧ss

io
is the frac-

tion of immortal object volume that is in short space, distinct from io∧ss
ss

, which
is the portion of short space consumed by immortal objects.

The nine decision pairs fall into three categories, neutral, bad, and good, with
respect to the nonpretenured status quo. Neutral pretenuring advice allocates
objects into the nursery (so ∧ ss, lo ∧ ss, and io ∧ ss). Bad pretenuring advice
allocates objects into a more longer-lived region than appropriate (so ∧ ls, lo ∧ is,
and so ∧is). Following bad advice tends to waste space and induce more frequent
collection. Good pretenuring advice allocates objects into longer-lived regions,
but not too long lived (io ∧ is, lo ∧ ls, and io ∧ ls). Following good advice reduces
copying, without wasting space.

Table III gives these summary statistics for each benchmark and overall,
stated as percentages. It also indicates the percent of total allocation volume
that goes to the immortal and long spaces, and the percentage (by volume) of
pretenured objects coming from the “good” categories. Put another way, of the
volume of objects pretenured, it tells how much is “correct.” We see that, with
the exception of health, where we allocate a significant volume of short objects
into immortal space, our accuracy is quite high.
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Table IV. Per Program Pretenuring Decision Coverage (Percent, Weighted by Volume)

Immortal Objects % Long Objects % Overall %

Program vol% io∧(is∨ls)
io

io∧ss
io

vol% lo∧ls
lo

lo∧ss
lo

lo∧is
lo

good neut bad

compress 1.26 74.13 25.87 18.02 0.15 99.85 0.00 4.99 95.01 0.00
jess 0.99 66.89 33.11 1.75 0.04 99.80 0.16 24.23 75.67 0.10
raytrace 2.71 77.66 22.34 2.24 0.06 99.90 0.04 42.51 57.47 0.02
db 5.62 91.42 8.58 1.75 37.42 59.54 3.04 78.59 20.69 0.72
javac 2.31 74.73 24.27 5.22 59.69 40.25 0.06 64.30 35.66 0.04
mpegaudio 2.75 80.66 19.34 5.77 0.75 99.22 0.03 26.55 73.43 0.02
mtrt 2.52 76.85 23.15 2.60 41.65 58.32 0.03 58.99 40.99 0.02
jack 0.82 79.70 30.30 4.85 32.59 67.40 0.01 27.94 62.05 0.01
health 10.89 93.94 6.06 1.08 0.10 57.96 41.94 85.48 10.74 3.78
pseudojbb 4.26 52.65 47.35 3.62 47.23 52.72 0.05 50.16 49.82 0.02
Geo Mean 78.18 21.82 3.18 96.68 0.14 46.16 53.78 0.06

A converse question is this: Of the total volume of immortal (long) objects,
that is, allocated across all sites, what percentage do we pretenure? This we
call the coverage, and show it in Table IV. Phrased differently, this indicates
how much of the volume of immortal and long objects ended up appropriately
pretenured. The table uses the notation io∧(is∨ls)

io
, which means the fraction of im-

mortal objects that are pretenured into either immortal or long space (expressed
as a percentage). While there is noticeable variation across benchmarks, on av-
erage we pretenure the bulk of immortal objects, around 80%. Because we are
much more conservative about classifying sites as long, we do not pretenure a
large fraction of long objects, only a few percent. Overall, we give mostly good
and neutral advice and very little bad advice (even for health, at less than 4%).

Figure 6 shows how Hif affects accuracy and coverage by fixing Hlf at 0.60
and varying Hif from −0.33 to 1.00. We use the left y-axis for the accuracy curve
and the right y-axis for the coverage curve. This graph shows the geometric
mean of all benchmarks. We see that the accuracy increases quickly to 98%
as Hif rises to 0.00, and then grows much more slowly. Although Hif has little
impact on the coverage, we reach a maximum at around Hif = 0.00. This is
because we classify immortal sites before long sites: When Hif is small, we pull
more long objects into immortal space.

Figure 7 shows the impact of Hlf by fixing Hif at 0.00 and varying Hlf from
−0.33 to 1.00. Clearly, Hlf has much larger impact on the coverage than does
Hif. If Hlf is too large (meaning we are very conservative), the coverage drops
rapidly, and if Hlf is too small, the accuracy drops to an unacceptable level,
although we have much better coverage. Both graphs confirm that we have
chosen good Hif and Hlf values for our experiments.

5. PERFORMANCE EVALUATION METHODOLOGY

We first describe how we modify memory allocation to use pretenuring advice,
then overview additional relevant aspects of Jikes RVM and GCTk (the garbage
collection toolkit we built to work with Jikes RVM ), and finally discuss how we
measure and configure our system.
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Fig. 6. Impact of Hif on accuracy and coverage (Hlf = 0.60).

Fig. 7. Impact of Hlf on accuracy and coverage (Hif = 0.00).

5.1 Using Pretenuring Advice

The generational, Older First, and Beltway collectors have three object inser-
tion points: a primary allocation point (the nursery), a primary copy point (the
second generation, copy zone, and second belt, respectively), and an allocation
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point in permanent (immortal) object space. Our advice classifications map al-
locations to these insertion points in the obvious way.

We modified the Jikes RVM compilers to generate an appropriate alloca-
tion sequence when compiling each new bytecode if the compiler has pretenur-
ing advice for this bytecode. We provide advice to the compiler as a file of
〈site string, advice〉 pairs, where the site string identifies a particular new byte-
code within a class. By providing advice to the compiler at build time (when
building the Jikes RVM boot image [Alpern et al. 2000]), allocation sites com-
piled into the boot image, including the Jikes RVM runtime system and key
Java libraries, can pretenure. If advice is provided to the compiler at runtime,
allocation sites compiled at runtime, including those in the application, can
pretenure.

The advice part of a pair indicates which of the three insertion points to
use. Since the nursery is the default, we provide advice only for long-lived and
immortal sites.

In application-specific pretenuring, we use self advice [Barrett and Zorn
1993], that is, the benchmark executions use the same input when generating
and using advice. In build-time pretenuring, we use combined advice, omitting
information from the application to be measured, which is called true advice.

Using an advice file is not the only way we might communicate pretenuring
advice to a JVM; bytecode rewriting is another possibility when we do not have
access to the JVM internals. BIT is a bytecode modification tool that facilitates
annotation of arbitrary bytecodes [Lee and Zorn 1997]. Similarly, IBM’s Jikes
Bytecode Toolkit12 allows bytecode manipulation. Since our pretenuring advice
is implemented inside Jikes RVM , we manipulate the intermediate represen-
tation directly. Also, for build-time pretenuring, we avoid modifying a large
number of Jikes RVM class files by using just one simple text file for all pre-
tenuring advice.

5.2 Jikes RVM and GCTk

Jikes RVM is a high-performance JVM written in Java; its performance is
comparable to commercial JVMs on the same (PowerPC) platform [Alpern et al.
2000]. Because Jikes RVM uses its own compiler to build itself, a simple change
to the compiler gave us pretenuring capability with respect to both the JVM run-
time and user applications. The clean design of Jikes RVM means that adding
pretenuring to it (beyond the garbage collectors and allocators themselves) is
limited to writing a simple advice file parser and making the aforementioned
minor change to the compiler. These changes totaled only a few hundred lines
of code.

We developed GCTk, a new garbage collection toolkit for Jikes RVM and the
precursor to its current toolkit, MMTk [Blackburn et al. 2004a, 2004b]. GCTk
is an efficient and flexible platform for GC experimentation, which exploits
the object-orientation of Java and the JVM-in-Java property of Jikes RVM .
GCTk implements a number of copying GC algorithms, and their performance
is similar to prior monolithic Jikes RVM GC implementations. Our Appel-style

12Available at http://www.alphaworks.ibm.com/tech/jikesbt.
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Table V. Minimum Heap Size at which Programs
Run (NonPretenuring)

Benchmark program Minimum heap size (MB)
201 compress 18
202 jess 10
205 raytrace 14
209 db 21
213 javac 24
222 mpegaudio 8
227 mtrt 20
228 jack 9

health 6 128 9
pseudojbb 56

generational collector, which we call Appel simply as a convenient shorthand
name, is well-tuned and uses a fast address-order write barrier [Stefanović
et al. 1999] to detect and remember references from the old generation to the
nursery.13 When performing a full heap collection, it traces through boot image
objects, which are never themselves collected, rather than applying a write
barrier to this region.14 We extend the algorithm in a straightforward way to
include an uncollected region for immortal objects. Since the immortal region is
generally small, we scan it for references to younger objects, rather than apply
a write barrier and maintain a remembered set. We implemented the Older
First GC algorithm [Stefanović et al. 1999, 2002] and Beltway [Blackburn et al.
2002] using the GCTk, and added an immortal region to them as well.

5.3 Experimental Setting and GC Configuration

We performed our experimental timing runs on a Macintosh Power Mac 4e. It
has one 733 MHz PowerPC 7450 processor, 32KB on-chip L1 data and instruc-
tion caches, 256KB unified L2 cache, and 512MB of memory, and runs PPC
Linux 2.4.

As indicated in Section 3.1, a time-space tradeoff is at the heart of each
pretenuring decision. In order to understand better how this trade-off plays
out and to make fair comparisons, we conduct all of our experiments with a
range of fixed heap sizes. We express heap size as a function of the minimum
heap size for the benchmark in question. We define the minimum heap size for
a benchmark to be the smallest heap in which the benchmark can run when
using an Appel-style generational collector without pretenuring. This amount
is at least twice the max live size. We determine it experimentally, and show
this size for each benchmark in Table V.

For the generational algorithm, we collect when the sum of space consumed
by the three allocation regions (nursery, older generation, and permanent ob-
ject space) plus the reserved region reaches the heap size. We collect the older

13It records the exact address of the older-to-younger pointer and thus is fast for both the mutator
and collector.
14This is a tradeoff between a more complex write barrier, incurring overhead on every pointer
store, and a faster write barrier with more GC time overhead.
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generation, as per the Appel algorithm, when it approaches the size of the re-
served region. In this scheme, the nursery varies from being as large as (half
of) the heap, down to a small minimum size.

5.4 Second-Iteration Experimental Methodology

An ordinary run of a benchmark program performs one iteration of the pro-
gram, inducing loading and compilation of application classes as needed. As
soon as a method is needed, we use the replay system to optimize it to the
same optimization level it acquired in a majority of adaptive runs. Thus, the
run of the program includes compilation time. Further, Jikes RVM ’s compil-
ers, being written in Java, allocate their data structures into the application
heap. Hence, the run includes compiler allocation as well, placing additional
load on the collector. We measure this first iteration including compilation time.
Eeckhout et al. [2003] results show that Jikes RVM ’s behavior can still domi-
nate the application in this measurement. We therefore run the application for
two iterations, and use the replay technique. In the first iteration, because of
replay, we attain high code-quality for frequently executed methods. We then
perform a full heap collection, disable further optimization, and iterate the ap-
plication. This second-iteration measurement includes no compile time, only
application and collection time, and does not include the full heap collection
that we inserted between the iterations.

This methodology is also closer to the many JVMs that use a compiler written
in C, and which allocate “on the side,” not in the Java heap. The second-iteration
measurements also approximate applying our profile-directed pretenuring only
to the Java libraries in other systems.

6. PERFORMANCE EVALUATION RESULTS

We now present execution time and other results using generational collection
for build-time pretenuring, application-specific pretenuring with our advice and
CHL advice (as used by [Cheng et al. 1998]), and the combination of build-time
and application-specific pretenuring. We present single- and second-iteration
results.

We demonstrate that our advice is collector-neutral by showing that it im-
proves very different collectors, the Older First and Beltway collectors, equally
well. In all of the experiments, we use the pretenuring advice parameters
Ta = 0.45, Hlf = 0.60, Hif = 0.00, and Hcf = 0.90, as described in Section 3.1.1.

We generally report times normalized with respect to the nonpretenured
case. We report measurements for a range of heap sizes, normalized with respect
to the minimum size at which the program will run in the nonpretenuring
collectors (as shown in Table V). The range we used was from that minimum
size to three times this size. We stopped there because most curves have reached
or nearly reached their asymptotes by this point. We also report cache and
translation look-aside buffer (TLB) misses using performance counters.

We begin with some basic measurements of the benchmarks, and also ex-
amine the nonpretenuring case to see what room for improvement there may
be.
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6.1 Nonpretenuring Measurements

To help interpret the magnitude of improvement we obtain, we present in
Figures 8 and 9 the percent of total execution time spent in GC for the nonpre-
tenuring case. Assuming there is minimal impact on mutator execution time,
these results give an upper bound on the improvement we can obtain by speed-
ing up GC. The x-axis of the graphs gives the normalized heap size. The y-axis
is the percent of total execution time spent in GC. Since later we will be present-
ing results from both first and second iterations of each benchmark program,
the graphs include two curves, one for the first iteration of the benchmark and
one for the second. Note that the percentages are computed from the ratio of
GC time to the execution time of each iteration separately.

We observe that the percent of time spent collecting tends to be higher for
second iterations. This difference is partly because the optimizing compiler
(invoked only in the first iteration) is computation-intensive compared to the
volume it allocates. The compiler also allocates a significant amount, which ex-
plains why first-iteration curves are high for small heaps. Another factor that
contributes to the difference is that in obtaining the second-iteration measure-
ments, we enable explicit GC, which is attempted by the SPEC harness and also
by javac. We enabled explicit GC so that we could cause a full heap GC between
the first and second iteration, thus giving the second iteration a clean slate.
The first-iteration numbers are from different runs using our default settings,
which disable explicit GC.

Another effect is that many of the second-iteration curves are nearly flat.
This is partly because of explicit GC invocations, which result in essentially
fixed GC time that is independent of heap size (the graphs of second-iteration
number of GCs in Figures 24 and 26 bear out this result). Another reason for the
flat second-iteration behavior is that many programs produce mostly garbage
after initially allocating some longer-lived objects. At a heap size large enough
to contain first-iteration compilation data structures, the second-iteration data
fits quite comfortably and the heap size quickly reaches a value requiring a
minimal number of full heap GCs. These GCs are responsible for most of the
GC time.

6.1.1 Basic GC Speed. We also measured the nonpretenuring collector’s
“raw” speed using the FixedLive test program, part of the Jikes RVM distribu-
tion. This first creates a chosen volume of live objects arranged in a binary tree
structure. Then, it creates objects that it immediately discards so as to force
the live objects to be collected repeatedly. We created 100MB of live objects,
each 24 bytes in size (8-byte header plus two 4-byte int fields plus two 4-byte
reference fields). This experiment gave a tracing (live object copying) rate of
17.2MB/s and an allocation rate of 131MB/s. If we keep the same volume, but
increase the object size to 192 bytes, we obtain a tracing rate of 50MB/s and an
allocation rate of 308MB/s. Clearly, there are significant per object overheads.
A simple regression fit on four points suggests that the per object tracing cost
is about 950–1000 ns and the per byte copying cost is about 15–20 ns.

The rates we obtained for FixedLive under gcj 4.0.1 (Boehm collector) on the
same machine are 52MB/s tracing and 92MB/s allocation. We would expect
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Fig. 8. SPEC benchmarks: percent of time spent collecting (nonpretenuring).
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Fig. 9. Olden Health (6,128) and pseudojbb: percent of time collecting.

our copying collector to be slower than a mark-sweep collector on this kind of
benchmark (little fragmentation) because of its copying work. Also, the Boehm
collector does deferred sweeping, which would affect the allocation rate, not the
tracing rate, as they are reported by this benchmark. While we must conclude
that our collector’s speed could be improved, it is fast enough so that there
would still be useful savings from pretenuring for a somewhat faster collector,
especially in relatively small heaps (where GC time is a substantial fraction of
total time).

6.2 Build-Time Pretenuring

Build-time advice is true advice; in these experiments, we combine advice
(Section 3.1.1) from each of the other benchmarks. Because pretenuring will
occur only at sites precompiled into the Jikes RVM boot image, build-time
advice does not result in pretenuring allocation sites within an application.
However, because considerable allocation occurs from those sites compiled into
the boot image (quite notably, from the Jikes RVM optimizing compiler and
key Java libraries), build-time advice has the distinct advantage of delivering
pretenuring benefits without requiring the user to profile the application.

Figure 10 shows the total performance improvement for each benchmark us-
ing build-time pretenuring normalized with respect to the generational collector
without pretenuring. The x-axis is the heap size, in multiples of the minimum
heap size, for 33 points from 1 to 3; the y-axis is execution time relative to not
pretenuring. All our results use the same x-axis (Figures 17–21 show individ-
ual program results for total performance, garbage collection time, number of
collections, and copying work. We discuss them in Section 6.4).

Notice that there is a lot of jitter for each benchmark in these graphs. This
jitter is present in our raw performance results for each specific allocator, as
well as in the normalized improvement graphs we show. The jitter is mostly due
to variation in the number of collections at a given heap size. Small changes
in the heap size can trigger collections either right before or after significant
object death, which affects both the effectiveness of a given collection and the
number of collections. This effect illustrates that GC evaluation should, as we
do, use many heap configurations, not just two or three. Pretenuring neither
dampens nor exaggerates this behavior, but is subject to it.
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Fig. 10. Relative execution time for build-time pretenuring.

In some cases, build-time pretenuring degrades total performance by a few
percent, but for most configurations the programs improve, sometimes signifi-
cantly. Improvements tend to decline as the heap size gets larger because the
contribution of garbage collection time to total time declines as the heap gets
bigger, simply because there are fewer collections. Pretenuring thus has fewer
opportunities to improve performance, but pretenuring still achieves an im-
provement on average of around 3%, even for large heaps. All programs improve
on average, and for javac, mtrt, and pseudojbb, in a number of configurations
the improvement is more than 50%. These improvements result from reducing
copying and saving copy reserve in the garbage collector, and the significant
decrease in GC time improves overall execution time.

6.3 Application-Specific Pretenuring

This section compares our classification scheme to the CHL scheme [Cheng
et al. 1998] using application-specific (self) advice. Given an application run-
ning with a generational collector of fixed nursery size, CHL advice generation
initially measures the proportion of object instances that survive at least one
minor collection on a per allocation-site basis. CHL classifies as long lived those
allocation sites for which a high proportion survive (we implemented their ap-
proach with the same 80% threshold these authors used). CHL then pretenures
(allocates) objects created at these sites into the older generation, and allocates
objects from all other allocation sites into the nursery in the usual way. Because
of allocation-site homogeneity in ML (which we also observed in Section 4 for
our Java programs), their approach is fairly robust to the threshold.
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Fig. 11. Relative execution time for application-specific pretenuring.

The key differences between the two classification schemes are: (a) that our
advice is neutral with respect to the garbage collector algorithm and config-
uration, and (b) that we include an immortal category and our collector puts
immortal objects into a region that it never collects. The first of these differ-
ences makes our approach more general and the second improves performance.
Our pretenuring allocates on average 4% of objects into the immortal space (see
Table III), and these decisions are overwhelmingly correct (because our deci-
sions to pretenure to immortal space are so conservative). Since both schemes
get the same total heap size in our experiments, allocation into the immortal
region (because it requires no copy reserve) increases the space available to the
generational collector (see Figure 16). While 4% may not sound like much, in
tight heaps, it can result in a large proportional increase in nursery size, and
can thus lower GC time significantly.

Figure 11 compares CHL and our application-specific pretenuring, using the
generational collector, which has a flexible nursery size. The figure shows the
average relative execution time using a geometric mean of our benchmark pro-
grams. On average, our advice performs at least 2% better than CHL advice,
except in a tight heap, where the impact of immortal objects is highest and our
advice performs significantly better.

Because CHL advice generation is specific to program, collector, and collector
configuration, it cannot be combined for build-time pretenuring without signif-
icant change to the algorithm. We make no further comparisons with CHL
because of this drawback and because, as we have just illustrated, our three-
way classification offers better performance than the CHL two-way scheme on
average, and much better performance than CHL for tight heaps.
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Fig. 12. Comparing application-specific, build-time, and combined pretenuring: relative mark/cons
ratios.

6.4 Combining Build-Time and Application-Specific Pretenuring

In this section we show that combining build-time and application-specific pre-
tenuring results in better performance than either alone. For these three pre-
tenuring schemes, we present results using the geometric mean of the bench-
marks for relative mark/cons ratio in Figure 12, the geometric mean of the
relative garbage collection time in Figure 13, and the geometric mean of the
relative execution time in Figure 14.

Figure 12 shows the mark/cons ratio for each pretenuring scheme relative
to not pretenuring. The mark/cons ratio is the ratio of bytes copied (“marked”)
to bytes allocated (“cons’ed”). The figure explains why pretenuring works: It
reduces copying. In all cases, pretenuring reduces the volume of objects the
collector copies. Reductions range from 10% to 81%, which is quite significant
when minimum heap sizes can be as large 60MB (pseudojbb).

Figure 16 offers additional insights. Figure 16(a) shows heap usage over
time for a run of the javac benchmark without pretenuring, and Figure 16(b)
shows this with pretenuring. Both runs use a heap size of 24MB. The top line
in each graph shows the total heap consumption immediately before each GC.
The second line shows the space consumed by the older generation immediately
before each GC (both nursery and full heap collections). Finally, the bottom line
shows the immortal space consumption, which is always zero in Figure 16(a).

Note that in pretenuring, an allocation to immortal space effectively in-
creases the size of the heap because it does not need to reserve space to copy
immortals (of course, the total space available is the same in both cases). Thus,
the pretenuring graph’s total occupied heap size is larger. Because the copy
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Fig. 13. Comparing application-specific, build-time, and combined pretenuring: relative garbage
collection time.

Fig. 14. Comparing application-specific, build-time, and combined pretenuring: relative execution
time.
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Fig. 15. Comparing long-only, immortal-only, and combined pretenuring: relative execution time.

reserve is smaller, the nursery is larger (by half the occupancy of the immortal
space). This larger nursery delays the growth of the older generation and defers
older generation collections, in addition to reducing the frequency of nursery
collections. The lowest points in space consumption of the older generation (the
second line) are very similar in both graphs, which shows that pretenuring does
not allocate many immortal objects inappropriately (if it did, the second line
would be higher for pretenuring). Also note the shapes of the four troughs in
the second lines towards the right side of the figures. When not pretenuring,
the bottoms of the troughs are flat, showing that there is no direct allocation
to the older generation. With pretenuring, they show an upward slope to the
right, indicating direct allocation to the older generation.

In summary, pretenuring performs better because it does less copying. It
reduces copying in two ways: Direct allocation into older spaces avoids copying
to promote longer-lived objects; and the immortal space effectively increases
the size of the heap, thus reducing both the number of GCs and the amount of
copying.

Figure 13 shows that reduction in copying cost significantly and consistently
reduces GC time, especially considering that the advice is true, rather than
self advice for build-time pretenuring. In particular, combined (application and
build-time) pretenuring improves collector performance between 40 and 80%
for most heap sizes. Combined pretenuring is, on average, the most effective of
the three. In large heaps application-specific pretenuring is on average nearly
as good, but build-time pretenuring offers significantly higher advantage than
application-specific in small heaps because it includes a higher volume of im-
mortal allocation.
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Fig. 16. Comparison of heap usage over time without and with pretenuring.

These results carry over to execution time (Figure 14). We see that all pre-
tenuring schemes improve performance. Average improvements are usually
between 1% and 6% in larger heaps and 11% to 36% in very tight heaps, but as
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shown in Figures 17 and 21, some individual programs improve more dramat-
ically.

It may strike the reader as surprising that pretenuring consistently gives
benefits, even at larger heap sizes, which have fewer collections. As we will see
in Section 6.9, part of the benefit, about 2–3% on average, is from improved
locality (fewer cache and TLB misses). The other 2–3% average improvement
in execution time is from reduced GC time. Recall that pretenuring reduces
the cost of nursery collection, and the percentage of improvement in GC time
will be higher when GC is invoked less often (same amount of copying saved,
but less total copying). Also, the heap sizes we use are not large enough for
GC improvements to disappear relative to total execution time. We would need
rather larger heaps to obtain this effect.

6.5 Immortal-Only and Long-Only Pretenuring

We investigated the relative importance of immortal and long pretenuring by
refining our advice as follows:

(1) Immortal-Only: Take the advice previously generated and discard any
long advice (these sites will be treated as short). We retain the immortal
advice.

(2) Long-Only: Take all immortal advice and treat it as long. All short advice
remains the same.

(3) Both: Keep both the immortal and long classifications, as before.

Figure 15 shows results using these three sets of advice. The figure reveals
that the long-only approach gives a robust average improvement of about 5%
at larger heap sizes, but its cost increases noticeably at smaller ones (because
it forces more frequent collections), overcoming its benefits. Immortal-only is
always beneficial, enormously so in tight heaps, because it increases the effec-
tive heap size (as shown in Figure 16 for javac). At larger sizes, it does not give
quite as much benefit as long-only. Doing both kinds of pretenuring robustly
obtains both benefits.

6.6 Comments on Specific Benchmarks

We now analyze noteworthy features of the individual benchmark results.
Figures 17–21 show individual program results for total performance, garbage
collection time, number of collections, and mark/cons ratio.

— jess, jack, and mpegaudio: Application-specific pretenuring does not help
much, and occasionally degrades performance slightly because of nepotism.
Both jess and jack have very small nursery survival rates (less than 1% for
jess, and 3% for jack). Since application-specific objects are mostly short lived,
application-specific pretenuring puts only a very small volume of objects into
higher spaces. A similar pattern exists for mpegaudio, which has a higher
nursery survival rate, but does very little allocation and so places little stress
on the garbage collector. Pretenuring shows benefit with build-time advice,
since the survival rates for Jikes RVM objects are higher. For example, in
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Fig. 17. SPEC benchmarks: execution time relative to nonpretenuring.
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Fig. 18. SPEC benchmarks: GC time relative to nonpretenuring.
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Fig. 19. SPEC benchmarks: mark/cons ratio relative to nonpretenuring.
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Fig. 20. SPEC benchmarks: number of garbage collections.
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Fig. 21. Olden health (6,128) and pseudojbb: execution time, GC time, mark/cons ratio, and number
of GCs.
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jess, application-specific pretenuring allocates 210KB of immortal objects
and 450KB of long objects, while build-time pretenuring produces 2700KB
of immortal objects.

—mtrt and raytrace: Both build-time and application-specific pretenuring of-
fer substantial performance improvements of up to 10% and 50% in tight
heaps because of the heap space saved by pretenuring immortal objects.
For larger heaps, build-time pretenuring gives only slight improvement,
but application-specific pretenuring improves performance by 4–6%, and the
combination gives an additional 1–2% improvement.

— javac: This program has a substantial number of long and immortal sites,
and thus build-time pretenuring is relatively less important. In tight heaps,
most of the benefit comes from build-time pretenuring at immortal sites (by
saving copy reserve space), and application-specific pretenuring has much
less benefit or even degrades total execution time. The reason is that javac
suffers from nepotism, which we also observe in pseudojbb. Larger heaps
reduce the effects of nepotism, and the benefit of less copying shows up.
Here, we observe that application-specific pretenuring gives about a 5–6%
performance improvement.

—health and db: These applications have some large data structures that are
used throughout the execution. Thus, application-specific pretenuring can
bring benefits by saving copying cost. For health, application-specific pre-
tenuring improves performance by up to 27% for tight heaps, and 8–13%
for larger heaps. Although build-time pretenuring alone does not have much
benefit, the combination yields an additional 5% improvement.

—pseudojbb: Application-specific pretenuring suffers from nepotism in tight
heaps, and gives only slight improvement (about 1%) in larger heaps. Build-
time pretenuring gives a huge improvement of up to 60% by saving copy
reserve. For larger heaps, pseudojbb spends most of its time in the mutator,
usually spending less than 10% of its time in GC. Hence, although we are
able to reduce GC time by more than 10% in most cases, the improvement in
total execution time is limited to around 1%.

—compress: Application-specific pretenuring has little effect, but build-time
pretenuring produces large variation in performance across heap sizes. This
variation comes from large variation in the volume of objects copied, as can
be seen in the mark/cons ratio graph for compress. This variation is not due
so much to pretenuring itself, but to the fact that the pretenuring causes
moments when GC is triggered to move a bit, and compress uses a num-
ber of large short-lived objects. If we collect at a “bad” moment, we end up
copying these large objects and then throwing them away at the next full
heap collection (which will come sooner than in a “good” run because we pro-
moted a large object that will die soon). The effect is more pronounced at
smaller heap sizes because more frequent GCs make it more likely that we
promote a large short-lived object, but this behavior, though repeatable (de-
terministic), is chaotic with respect to heap size (it is one way in which jitter
arises).
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6.7 Second-Iteration Results

We previously described the first- and second-iteration experimental method-
ology. We now present these results for second iterations of the SPEC bench-
marks: execution time (relative to nonpretenuring second-iteration time) in
Figure 22, GC time (relative to nonpretenuring second-iteration GC time) in
Figure 23, and number of GCs in Figure 24. The corresponding results for
health and pseudojbb appear in Figures 25 and 26, along with graphs showing
the geometric mean of all benchmarks.

While there is some individual variation, as to be expected, second-iteration
relative performance is quite comparable to first-iteration, which shows at least
two things: (a) our scheme improves application performance overall, not just
for Jikes RVM compilers; and (b) our approach is likely to give useful benefits
to JVMs with runtime systems that do not allocate into the application heap
(i.e., ones written in C).

6.8 Effects of Compilation Strategy and Trace Generation

Section 3.2 describes various compilation strategies for Jikes RVM , namely
opt, adaptive, and replay. Figures 27(a), (b), and (c) show results using these
three compilation strategies, all with the same advice (developed from traces
generated from opt builds). These graphs show two important things for our
purposes. First, the similarity between Figures 27(b) and (c) demonstrates that
adaptive and replay behave virtually the same with respect to pretenuring.
Second, while Figures 27(a) and (b) are a little less similar, they retain the same
trends. The primary difference is that the opt runs do much more optimizing
compilation, which results in more allocation at build-time pretenured sites.
Hence, build-time pretenuring is relatively more important for opt runs.

By default, we profile opt runs to produce advice. Figures 27(c) and (d) com-
pare generating advice from replay runs versus opt runs. We see there is es-
sentially no difference.

6.9 Locality Effects

Since pretenuring results in possibly rather different placement of objects in
the heap, one might wonder how it impacts memory reference locality. In par-
ticular, does it increase or decrease cache and translation look-aside buffer
(TLB) misses? We performed runs that collected hardware performance mon-
itor statistics on Level 1 (L1) and Level 2 (L2) cache misses and TLB misses,
presented in Figures 28(a)–(c). As usual, the x-axis is relative heap size. The
y-axis is the relative miss rate. More specifically, for each run where we mea-
sured L1 (L2, TLB) misses, we computed the miss rate as the number of misses
divided by the number of cycles the run took. The graphs show these rates for
pretenuring relative to rates without pretenuring. We show this for build-time,
application-specific, and combined pretenuring, each a separate curve in each
graph. These are all for the Appel replay collector, and we present the geometric
mean across all benchmarks.

To interpret the results and see why we developed them this way, consider
a point at which overall execution time improves with pretenuring. If the
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Fig. 22. SPEC benchmarks: second-iteration execution time relative to nonpretenuring.
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Fig. 23. SPEC benchmarks: second-iteration GC time relative to nonpretenuring.
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Fig. 24. SPEC benchmarks: second-iteration number of GCs.
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Fig. 25. Olden health (6,128) and pseudojbb results, and geometric means: second-iteration GC
and execution time relative to nonpretenuring.
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Fig. 26. Olden health (6,128) and pseudojbb: second-iteration number of GCs.

Fig. 27. Comparing pretenuring under different compilation options.

improvement is because there are fewer total cycles and proportionately fewer
misses, we would obtain a miss rate ratio of 1.0, meaning that there is no local-
ity difference and the improvement has to do with the number of instructions
executed, rather than cache performance. If the ratio is less than 1.0, then at
least some of the improvement is coming from improved locality (lower miss

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 1, Article 2, Publication date: January 2007.



Profile-Based Pretenuring • 45

Fig. 28. Comparing cache and TLB locality.

rate), and if the ratio is greater than 1.0, we are seeing overall improvement in
the face of a higher miss rate (unlikely, but theoretically possible).

Generally, we see improvements in locality, rather than degradations. The
L1 miss rate ratio curves are similar to our performance curves, L2 miss rate
ratios indicate general improvement, and TLB miss rate ratios show that build-
time and combined pretenuring usually reduce TLB miss rates, but application-
specific pretenuring sometimes gives reductions and sometimes improvements.
Therefore, pretenuring does not overly disturb the good locality of nursery allo-
cation in a contiguous region [Blackburn et al. 2004b], nor does it degrade GC
locality.

Finally, we ask the question: How does pretenuring affect mutator execu-
tion time (as opposed to the collector)? This indirectly indicates locality bene-
fits, since mutator instruction execution should be quite comparable, both with
and without pretenuring. Figure 29 shows just mutator time under build-time,
application-specific, and combined pretenuring, each relative to nonpretenur-
ing. There is a set of bars for each benchmark program and for the geomet-
ric mean. We see there is one case of more than minimal slow down: 4% for
build-time pretenuring on raytrace. In most cases, there is little effect, but in
several there is a considerable reduction in mutator time under pretenuring,

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 1, Article 2, Publication date: January 2007.



46 • S. M. Blackburn et al.

Fig. 29. Comparing mutator time to estimate mutator locality effects.

most notably db, and to a lesser extent, health. We observe that db is known
to be highly sensitive to the exact layout of heap data, since it repeatedly tra-
verses long singly-linked lists, which cautions against reading too much from
db results. Still, we find on average a slight reduction in mutator time when
pretenuring.

6.10 Application-Specific Advice with Other Inputs

Space precludes a thorough consideration of how well application-specific ad-
vice collected from one program run (trace) affects the execution of the same
program with different inputs. However, since the SPEC benchmarks come
with different input “sizes,” we performed some simple comparisons. The “sizes”
available are 1 (intended only for testing that a program runs), 10, and 100.
We use size 100 runs to develop our traces and in all the other evaluations
presented here. Figure 30 shows the geometric mean of size 10 performance
relative to nonpretenuring. This averages the eight SPEC benchmarks, plus
health run with parameters (5,128).15 As the figure shows, we still see improve-
ment, though not as great a fraction, probably because these runs are so short
and thus do relatively less allocation and collection. Still, we see that the ad-
vice is never harmful, that build-time pretenuring remains useful, and that
application-specific and build-time pretenuring provide cumulative benefit.

We also explored developing advice from size 10 traces, but found that they
did not run long enough to produce very useful application-specific advice: The
runs were dominated relatively more by compilation. Also, in short runs, there
is an increased risk of labeling as immortal objects (and sites) that should not be,
just because the run was not sufficiently long for our criterion to weed them out.

15It seemed pointless to run pseudojbb just for a shorter time, since the behavior would be so
self-similar. The same may be true of some SPEC benchmarks.
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Fig. 30. Relative execution time of size = 10 runs with size = 100 advice.

6.11 Pretenuring with Other Collectors

We now consider the question of how well our pretenuring advice works with
other age-based collectors. Specifically, we consider the Beltway and Older First
(OF) collectors. It is important to emphasize that we use exactly the same
collector-neutral pretenuring advice for all three collectors.

6.11.1 Pretenuring with the Beltway Collector. For the Beltway col-
lector, we use the configuration 25.25.100, which is reported to perform
well [Blackburn et al. 2002]. This configuration has three belts. The first belt
is the nursery and its size is 25% of the usable space (12.5% of the total heap
size, which includes the copy reserve). When the nursery belt is full, Beltway
promotes survivors of nursery collections to the second belt, which consists of
four increments, each sized up to 25% of the usable space. This belt can grow,
provided that the heap is not full. When the second belt is full, Beltway collects
the oldest window of the belt, and promotes survivors to the third belt. The
third belt has only one window, which can be as large as 100% of the usable
space (50% of the total heap size). Collections on the third belt guarantee com-
pleteness of the collector (i.e., that it eventually collects any garbage object).
When the heap is full and the other belts are empty, Beltway collects the third
belt. These collections are rare.

We added to Beltway an immortal belt that is never collected. With pretenur-
ing advice, Beltway directly allocates immortal objects on the immortal belt. It
puts long-lived objects into the youngest window of the second belt, so that they
can stay on the second belt for the longest possible time before Beltway collects
them.

Figure 31 shows the geometric mean of relative performance for all our
benchmarks with the modified Beltway collector, normalized with respect to
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Fig. 31. Relative execution time for pretenuring with the Beltway collector.

the Beltway collector without pretenuring. We show build-time, application-
specific, and combined pretenuring results. Application-specific Beltway pre-
tenuring always improves performance by about 4–6%, except for the tightest
heap sizes, where javac and pseudojbb suffer from nepotism and experience
degradations of 30% and 8%, respectively. All other benchmarks have substan-
tial improvement with application-specific pretenuring at tight heap sizes, so
we observe only a 3% degradation in the geometric mean. Build-time Beltway
pretenuring improves performance by up to 12% in tight heaps, and by about
2% for larger heaps. The improvements for combined Beltway pretenuring are
about 15% in tight heaps, and 7% in larger heaps. Note that we achieve less
benefit from pretenuring in tight heaps than we do for the Appel-style genera-
tional collector. Beltway’s performance advantages over generational collection
without pretenuring come partly from the fact that Beltway uses a dynamic
copy reserve and thus uses heap space more efficiently. Hence, pretenuring
gives relatively less benefit to Beltway.

6.11.2 Pretenuring with the OF Collector. We found that the same advice
can improve an Older First (OF) collector [Stefanović et al. 1999]. The OF col-
lector organizes the heap in allocation order. Viewing the heap as a queue, the
oldest objects are at the tail and the OF allocator inserts newly allocated objects
at the head of the queue. OF begins by positioning the window of collection at
the end of the queue, which contains the oldest objects. During a collection, it
copies and compacts the survivors in place, returns free blocks to the head of
the queue, and then positions the window closer to the front of the queue, just
past the survivors of the current collection. When it bumps into the allocation
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Fig. 32. Relative execution time for pretenuring with the OF collector.

point for the youngest objects, it resets the window to the oldest objects. See
Stefanović et al. [1999] for more details.

With pretenuring advice, OF puts immortal objects in a reserved space that is
never collected. OF allocates long-lived objects at the copy point for the previous
collection, which gives them the longest possible time before OF will consider
them for collection. OF continues to put short-lived objects at the head of the
queue. As with the generational collector, we use a fixed sized heap, reduced
by the space allocated to immortal objects. We set the collection window size to
0.3× the heap size.

Figure 32 shows the geometric mean of the relative performance for all our
benchmarks, normalized with respect to the OF collector without pretenur-
ing for build-time, application-specific, and combined pretenuring. Application-
specific OF pretenuring improves performance in all cases, ranging from 3% to
8%. Again, build-time pretenuring improves performance, and additional im-
provements from combined pretenuring are consistent and significant, ranging
from 4% to 12%.

Since the OF collector visits older objects more regularly than does the gen-
erational collector, there is potential for better improvements, and it is realized
in these results. However, our implementation of the OF collector is currently
not well-tuned, and does not include key details, such as an address-order write
barrier [Stefanović et al. 1999]. These drawbacks prevent direct comparisons
between the performance of OF and generational collectors, with or without
pretenuring. Indeed, these comparisons are not pertinent to the subject of this
work. The key point of this section is that we can use the same advice in these
vastly different collectors and it improves performance equally well.
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7. USING PRETENURING IN PRACTICE

Here, we used GC configurations suited to clarity of experimental methodology.
In practice, we would probably adjust some of the policies to produce a system
more convenient for production use:

—We used a fixed total size for the heap to ease comparisons, but in practice,
heap growth and shrinkage is more appropriate. If a program runs for a
moderate length of time and accumulates some amount of garbage in the
immortal space (and nepotism in the long space), growing may be an easy
way to handle this problem if the space “leak” is not very great (we may also
adjust heap size in response to available real memory, as explored by Yang
et al. [2004]).

—While our technique appears reliable, it does not guarantee to bound growth
of either the immortal space [Boehm 2002] or of objects in other spaces re-
tained because of nepotism. Thus, we might apply a “back-up” collector from
time to time, for example, global marking, either separately or as part of
an older generation collection. This can determine the volume of dead ob-
jects in the immortal space, and of those objects retained in other spaces
because of them. If the dead immortal volume is relatively large, we could
apply sliding compaction (say) to the immortal space (current versions of
GCTk’s successor package, MMTk [Blackburn et al. 2004a, 2004b], make
this relatively easy to build and configure). If the volume is relatively small,
we could zero out the bodies of dead immortal objects, preventing long-term
nepotism.

—An additional concern is programs that have popular allocation sites with
poor lifetime homogeneity, or that profiling mispredicts so that we generate
inappropriate immortal or long advice for them. One possible direction is to
apply pretenuring adaptively [Harris 2000; Jump et al. 2004]. These designs
would need extensions to deal with an immortal space. It may be reasonable
to use a simpler mechanism, where we mark all immortals objects with their
allocation site (or perhaps just a sampled fraction of them). If our backup
immortal space collection mechanism detects particular offending allocation
sites, we can patch the site to allocate to a shorter-lived space.

—A particular concern about the quality of advice is that certain coding prac-
tices may increase the lifetime heterogeneity of allocation sites. In particular,
factory methods, that is, methods whose purpose is to allocate an object on
behalf of their caller, may tend to contain allocation sites with more hetero-
geneous lifetimes. This effect is mitigated if the factory methods are inlined.
Increased lifetime heterogeneity will usually just reduce the potential benefit
of pretenuring by disqualifying more allocation sites.

—The concept of pretenuring applies to generational systems, and is not par-
ticular to copying GCs. Would our pretenuring scheme be effective for, say, a
system that uses linear allocation into a nursery, but manages older objects
with mark-sweep or occasional sliding compaction? We expect some shifting
of design points, but argue that the same general approach is likely to pro-
duce useful benefits, though perhaps not as great as seen with copying. In
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our scheme, the immortal space is particularly helpful because it needs no
copy reserve and this effectively frees space for allocation in younger gener-
ations. In other words, it effectively increases the heap size. In noncopying
systems or those that copy out of a nursery to noncopying spaces, there would
be no (additional) space benefit. However, we still obtain a processing time
benefit, assuming that the strategy for most collections does not need to ex-
amine most of the immortal space (thus, we would prefer remembered sets
that usually remember particular referring slots, rather than remembering
referring objects).

7.1 Online Pretenuring?

Our approach is based on feeding back profile information from previous, instru-
mented runs of programs. Could this be applied online? While we compile into
generated machine code the region into which each allocation site is to allocate,
it is possible to change the allocation site on-the-fly by patching, regenerating
the code, or inserting a test. However, it is conceptually problematic to apply
online anything like our definition of immortal objects, since this depends on
knowing when the program will end. As we discuss in more detail next, neither
of the online pretenuring schemes [Harris 2000; Jump et al. 2004] obtain much
improvement.

7.2 Whither Profile Feedback?

Doing profile feedback is tedious for users, so the most obvious way to exploit
our approach is to use build-time pretenuring, which has significant benefit
and may be more reliable than application-specific pretenuring decisions. Also,
even though Merlin is much faster than previous techniques, the slowdown
for even a granulated trace is 20–80 times, further suggesting that build-time
pretenuring is more reasonable in most instances.

However, we can imagine collecting, at modest overhead, somewhat coarse-
grained object lifetime statistics from many runs and integrating them into
a database. We could run an analyzer and advice generator on this database
periodically, and future runs could use the advice. This is a way to make the
feedback automatic and nonintrusive, an interesting idea for future work.

8. RELATED WORK

We first compare our work to previous research on generational garbage collec-
tors, object lifetime prediction, and pretenuring. We then relate this to work on
prediction and object segregation for C programs with explicit allocation and
freeing.

Ungar pioneered the use of generational copying garbage collection to effect
quick reclamation of the many short-lived objects in Smalltalk programs [Ungar
1984]. Performance studies with a variety of languages demonstrate that well-
tuned generational collector performance generally ranges from 10% to 40%
of the total execution time [Ungar and Jackson 1988, 1992; Zorn 1989; Barrett
and Zorn 1995; Tarditi and Diwan 1996; Cheng et al. 1998; and Blackburn et al.
2004b].
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Ungar and Jackson use online profiling to identify longer-lived objects in a
two-generation collector for Smalltalk [Ungar and Jackson 1988, 1992]. Their
tenured object space corresponds roughly to our immortal space in that they
never collect it. However, they do not pretenure (allocate any objects directly
into tenured space). Rather, they copy into tenured space objects that survive
a given number of nursery collections. They adjust this number, the tenuring
threshold, by tracking the volume of nursery objects that have survived one
collection, two collections, etc. Thus, their system keeps long-lived objects in
the nursery, repeatedly copying them to keep from tenuring them, in order to
avoid tenured garbage. They use the object demographics that they obtain from
a given nursery collection to set the tenuring threshold for the next collection.
The goal is to tenure as few bytes as possible, while keeping the nursery space
from growing too large and thus exhibiting unacceptable pause times when
it is collected. They further outline a multigenerational approach that would
copy long-lived objects fewer times. They notice immortal objects, but since
these were insignificant in their system, they take no special action. We allocate
immortal objects directly into a permanent space. We thus never copy immortal
objects. We also have the potential never to copy long-lived objects, but we
may.

Cheng et al. (CHL) evaluate pretenuring and lifetime prediction for ML pro-
grams in the context of a generational collector [Cheng et al. 1998]. Similar to
Ungar and Jackson, they divide the heap into two regions: a fixed size nurs-
ery and an older generation. They collect the nursery on every collection, and
both spaces when the entire heap fills up. They generate pretenuring advice
based on profiles of this collector, and classify call sites as short or long lived.
Most objects are short lived and allocation sites are bimodal: Either almost
all objects are short lived, or all are long lived. Their advice is dependent on
both their collection algorithm and the specific configuration, whereas our pre-
tenuring advice is based on two collector-neutral statistics: age and time of
death. We therefore can and do use it with different configurations of a gen-
erational collector, and with altogether different collectors, Older First and
Beltway.

CHL statically modify those allocation sites where 80% or more of the ob-
jects are long lived so as to allocate directly into the older generation, which
is collected less frequently than the nursery. We allocate instead into three ar-
eas: the nursery, older generation, or permanent space. We never collect our
permanent space. At collection time, their system must scan all pretenured
objects because they believed that the write barrier cost for storing pointers
from pretenured objects into the nursery would be prohibitive. We instead per-
form the write barrier as needed; this cost is very small in our case. The cost
of scanning is significant [Cheng et al. 1998; Stefanović et al. 1999], and as
they point out, it reduces the effectiveness of pretenuring in their system.
We never collect immortal objects, and only collect long-lived objects later
when they have had time to die. In summary, our pretenuring classification
is more general, and our collectors more fully realize the potential of pretenur-
ing. Most importantly, the more general mechanism we use to gather statis-
tics and generate advice enables our system to combine advice from different
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executions and perform build-time pretenuring, which is not possible in their
framework.

Harris [2000] and Jump et al. [2004] present dynamic pretenuring schemes.
Harris samples using Agesen and Garthwaite’s [2000] approach, which inserts
weak pointers and after a collection, computes object lifetime statistics. Harris
then pretenures into the older generation of a two-generation collector, and
samples older objects to stop pretenuring, and thus can react to phase changes.
He does not report accuracy or overhead, but does not improve performance.
The dynamic pretenuring approach of Jump et al. [2004] improves only one
program, namely javac. However, they develop an inexpensive and accurate
mechanism for tracking object lifetimes that is based on frequent samples (one
object out of every 256 bytes allocated).

For many benchmarks, dynamic pretenuring will always suffer because pro-
grams often allocate a high proportion of immortal and long-lived objects at
the very beginning of the program [Jump et al. 2004] before any dynamic
scheme has time to train itself. Since static pretenuring relies on prior runs, it is
not subject to this drawback. Furthermore, it is accurate and improves perfor-
mance. However, it does require a profiling run and does not respond to phase
changes.

For explicit allocation and deallocation in C programs, Hanson [1990] per-
forms object segregation of short lived and all other objects on a per allocation-
site basis with user-specified object lifetimes. Barrett and Zorn [1993] extend
Hanson’s algorithm by using profile data to predict short lived objects automat-
ically. To achieve accurate results, their predictor uses the dynamic call chain
and object size, whereas we show that in Java, prediction does well with only the
allocation site. Subsequent work by Seidl and Zorn [1998] predicts short-lived
objects with only the call chain. In these three studies, a majority of objects are
short lived, and the goal is to group them together to improve locality (and thus
performance) by reusing the same memory quickly. Barrett and Zorn’s [1993]
allocator dynamically chooses between a special area for short-lived objects,
and the default heap. Because we attain accurate prediction for an allocation
site, we indicate statically where to place each object in the heap, which is less
expensive than dynamically examining and hashing on the call chain at each
allocation. Since in their context “long lived” is the conservative assumption,
Barrett and Zorn predict “short lived” only for those call chains where 100%
of the allocations profile to short lived. In a garbage collected system, our con-
servative prediction is instead “short lived.” We also differentiate between long
lived and immortal objects, which they do not.

Demers et al. [1990] looked at other ways of identifying allocation sites with
context, in particular, using stack pointer values as an inexpensive approxima-
tion to detailed calling context. In contrast to this runtime technique, we need
a static prediction, since we compile in a choice of allocation area. Of course,
it might be possible to apply our static prediction to highly homogeneous sites
and a more contextual one to more heterogeneous sites, but we obtained good
results with the static predictor.

The work we present here adds several dimensions over our prior
work [Blackburn et al. 2001]. We now use exact lifetime information to

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 1, Article 2, Publication date: January 2007.



54 • S. M. Blackburn et al.

generate advice, while our previous advice used frequent collections (e.g., ev-
ery 64K bytes of allocation), a technique that overestimates object lifetimes.
This change prompted a revised advice classification scheme whose sensitivi-
ties we explore experimentally. Our new technique improves the quality of our
advice. Consequently, this advice significantly improves application pretenur-
ing. Now, application pretenuring improves performance consistently, whereas
in our previous work it did not. We further use a more modern Java compilation
strategy (adaptive), modified to produce deterministic, yet realistic results (re-
play), and see that this affects the relative impact of application-specific versus
build-time pretenuring; because there is less allocation by the optimizing com-
piler, build-time pretenuring has relatively less impact, though it is usually still
useful. We also add a richer set of benchmarks, more in-depth analysis, and the
Beltway collector to our results. We additionally include here second-iteration
results, cache and TLB miss performance, results from using long-run advice
for short runs, and more statistics for the nonpretenuring collector that is the
standard against which we compare. These additions further demonstrate the
applicability and generality of our approach.

A technique somewhat complementary to pretenuring is a large object space
(LOS) [Caudill and Wirfs-Brock 1986; Ungar and Jackson 1992; Hicks et al.
1998]. There, large objects (ones exceeding a chosen size threshold) are allocated
directly into a noncopying space, effectively applying mark-sweep techniques
to them. This technique avoids ever copying these objects, and can noticeably
improve performance. GCTk does not support LOS, so we do not compare here
the relative benefits of LOS and pretenuring. Some JVMs allocate large objects
directly into older spaces; that is, they use size as a criterion for pretenuring
(these older spaces may also be mark-sweep, so they are effectively implement-
ing pretenuring and LOS). While pretenuring large objects may be generally
helpful in a two-way classification system (a point that requires further anal-
ysis), it could be disastrous to pretenure into our immortal space using size as
the sole criterion. The compress benchmark is an example of this: It allocates
and discards large arrays.

9. CONCLUSIONS

This article makes several unique contributions. It offers a new mechanism
for collecting and combining pretenuring advice, and a novel and generaliz-
able classification scheme. We show that application-specific pretenuring using
profiling works well for Java. Our per site classification scheme for Java finds
many opportunities to pretenure objects, reduce copying and garbage collection
times, and reduce the total time, sometimes significantly. We show that the
combination of build-time and application-specific pretenuring offers the best
improvements. We are the first to demonstrate the effectiveness of build-time
pretenuring, and we do so using true advice. Because Jikes RVM is written in
Java for Java, we profile it, as well as any libraries we choose to include, combine
the advice, then build the JVM and libraries with this advice, and ship. User
applications thus can benefit from pretenuring without any profiling. These
results thus demonstrate an advantage of the Java-in-Java approach.
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