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ABSTRACT
Students in introductory programming courses struggle with build-
ing the mental models that correctly describe concepts such as
variables, subroutine calls, and dynamic memory usage. This strug-
gle leads to lowered student learning outcomes and, it has been
argued, the high failure and dropout rates commonly seen in these
courses. We will show that accurately modeling what is occurring
in memory and requiring students to trace code using this model
improves student performance and increases retention.

This paper presents the results of an experiment in which intro-
ductory programming courses were organized around code tracing.
We present program memory traces, a new approach for tracing
code that models what occurs in memory as a program executes.
We use these traces to drive our lectures and to act as key pieces of
our active learning activities. We report the results of student sur-
veys showing that instructor tracing was rated as the most valuable
piece of the course and students’ overwhelming agreement on the
importance of the tracing activities for their learning. Finally, we
demonstrate that trace-based teaching led to statistically significant
improvements student grades, decreased drop and failure rates, and
an improvement in students’ programming abilities.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computers and Information
Science Education—Computer science education; Curriculum

General Terms
Tracing; Pedagogical Choices

Keywords
CS1, CS2, Pedagogy, Tracing

1. INTRODUCTION
Past research found that many introductory programming students

hold impossible mental models of how programs execute. These
inviable mental models include ones related to understanding how
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variables behave [7], how references work [14], and how subroutines
get executed [3, 5]. It has also been suggested that the difficulty of
developing viable models is among the leading reasons these early
courses have such high dropout rates [11].

As a result, visual models were investigated as a way of helping
introductory students. Nearly a decade ago, Holliday and Luginbuhl
documented that a student’s ability to draw visual representations of
objects in a program’s heap and their comprehension of the material
were correlated [6]. This led Sorva and Sirkiä to determine that
using a program which presents a program’s objects visually helps
students construct viable models of execution [15]. Given this
potential to help students, many programs have been developed that
perform this visualization (e.g., [1, 4, 15]).

This paper presents program memory traces, a new trace format
that includes abstract representations of both a program’s stack and
its heap. By abstracting what happens in memory, our program
memory trace can be used with many languages and for multiple
programming paradigms.

We build on previous research by presenting our experiences
organizing instruction in introductory computer science courses
around tracing code using this new format. For this study, lectures
typically begin with 20–30 minutes of instruction which followed
brief introductions to the concepts with the instructor leading the
class through tracing prewritten code samples that illustrate the
concept. Students spend the remainder of the 50- or 75-minute
lecture period working in small groups on activities focused on their
tracing sample programs. By actively providing a visual model
of the concepts and reinforcing this model with in-class activities
in which students trace prewritten code, we help students develop
viable models of the concepts and thereby improve student learning
and increase the rate at which students successfully complete the
course.

To demonstrate the effectiveness of our teaching approach, we
examined both quantitative and qualitative measures of student learn-
ing and teaching effectiveness. We show that switching to this new
approach increased the rate at which students successfully complete
a Java-based data structures course from 75% to 91%. This was
also met with students’ unsolicited comments expressing their belief
in the value of these traces. We also show that this increase was
accompanied by a considerable improvement in students’ lecture
grade and a statistically significant increase in students’ laboratory
grade. Anonymous surveys from both a Java-based data structures
course and a C-based introduction to programming course show that
a majority of students in each course rated both watching the instruc-
tor trace code and tracing code on their own to be “very helpful” to
their learning. Furthermore each form of tracing was rated either
“helpful” or “very helpful” by at least 90% of each course’s students.

The rest of the paper is organized as follows. Section 2 presents



an overview of the program memory trace format we used. The or-
ganization of courses to focus on the use of these traces is described
in Section 3. We analyze the effects of our trace-driven teaching
approach in Section 4. Section 5 describes the related work and
Section 6 offers suggestions for future work and concludes.

2. PROGRAM MEMORY TRACES
Motivated by a desire to help novice programmers develop valid

mental models of many challenging programming concepts, we de-
veloped program memory traces. A program memory trace provides
an accurate representation of the program’s memory usage in such a
way that it balances the abstractness required by introductory stu-
dents with the accuracy needed for advanced students. We wanted
to develop a model that would remain useful to students throughout
their education and beyond. As such, a program memory trace
depicts all of the program’s accessible memory by dividing the trace
area into different regions representing different types of memory:
stack, heap, and static.

The first and most important region represents the program stack;
we simply call it the stack. In the stack, we use blocks to repre-
sent the stackframes created whenever a subroutine is called. For
each parameter and each local variable, the block contains a space
for that variable including its name and its current value. Value
variables represent their value in the space within the stackframe,
while a reference variable’s value is shown as an arrow pointing to
the memory block to which they refer. Whenever a method returns
(or quits executing), the corresponding block in the stack is dis-
posed of by drawing an “X” through it. By accurately representing
each method call with its stackframe, students are able to better
understand method calling and variable scoping.

Next is the heap where blocks depict dynamically allocated mem-
ory. In C this includes any memory allocated using malloc, while
in Java this includes memory allocated using new. In a program
memory trace, the return values of malloc and new are depicted
as an arrow from the reference variable to which the return type is
assigned to the memory block representing the dynamically allo-
cated memory. Blocks in the heap are disposed of by drawing an
“X” through it. This would occur whenever they are freed (in C) or,
optionally, are no longer reachable (in Java).

Finally, the static region contains any statically allocated memory.
For static memory, blocks represent each statically allocated variable
labeled according to who allocated it and thus who has the ability to
modify it. Since static memory is allocated at the start of a program
and “lives” until the end of the program, blocks in the static region
are created when they are needed by the trace and are never disposed
of.

To illustrate both how these program memory traces work and
how they can be used with different languages and programming
paradigms, we show two sample programs shown in Figure 1. This
figure shows the same program written in both C (Figure 1a) and
Java (Figure 1c) and the program memory traces generated for
them (Figures 1b and 1d, respectively). These sample programs
are intended to illustrate the trace format and so were designed to
be small and highlight multiple features of the trace; they are not
programs we have used in our classes.

In a program memory trace, program execution starts at a method
call. In many cases, this is main but it does not have to be. At the
start of any method, a new stackframe is created and, thus in our
trace, we draw a block on the stack to represent that method. The
method’s parameters are evaluated and given space in the method’s
block. A common mistake when evaluating the method’s parame-
ters in an object-oriented language like Java is to forget the this

reference. this is treated like a method parameter. Once the pa-

rameters are evaluated and their initial values recorded, the method
can be stepped through one line at a time. With each line, we
update the memory trace to reflect its effects. As an example, an
assignment statement requires evaluating the right-hand-side. The
right-hand-side could simply be a value, an arithmetic expression,
or even another method call. The result of the evaluation is used to
update the value of the variable named on the left-hand-side of the
assignment. These updates are shown by crossing out the old value
of the variable and showing the new value. When a method call is
encountered, the execution of the current method is interrupted and
a new stackframe created at the top of the stack. For most languages,
only the method of the most current stackframe can be traced.

3. TRACE-DRIVEN TEACHING
Like many institutions [11], our introductory classes suffered

from low retention rates and poor student performance. These prob-
lems occurred despite our making a number of pedagogical changes
including adding active learning exercises and demonstrating how
code features worked using live coding and canned examples. Stu-
dents seemed to have an especially difficult time with issues such as
variable scoping and pointer assignments/aliasing. These problems
led to further difficulties. Despite devoting a week or more of class
time to the basics of recursion, the majority of students struggled to
write recursive methods. These classes slogged on with little of the
fun and none of the “passion, awe, and joy” that encourage students
to become or continue as computer science majors. Something
needed to be done.

While many others had previously documented these struggles
(e.g., [3,5,7,14]), very few solutions were suggested. The classes al-
ready included in-class code tracing and coding activities, labs, small
programming homework exercises, larger programming projects,
and other opportunities for students to develop valid mental models.
We observed that some of these activities seemed to hurt as much as
they helped. Even working in groups, activities in which students
coded on paper seemed to reinforce inaccurate models and made
it more difficult for students to change. Code tracing activities ex-
posed students’ inviable models [6] and, more importantly, provided
a much clearer starting point with which to discuss correct models.
While this should have encouraged students to trace code, students
would avoid these questions and instead just guess at program’s end
state. As others have found, students were extremely hesitant to
perform any tracing on their own [9, 16].

To improve upon our courses, we decided to surround students
with viable models of memory by using traces as the focus of our
teaching. We introduce students to tracing and the ideas of a pro-
gram memory trace from the onset of our classes. While concepts
such as the heap and stackframes are not needed immediately, we
use them in our traces from the beginning to accurately model what
is happening in memory. In our lectures, we follow each topic in-
troduction with tracing through sample code to illustrate what the
concept does or how it works. Because we continue to use active
learning pedagogy, at least half each lecture period has students
working on activities in small groups. These activities always in-
clude problems requiring they trace code and, if they ask students to
write code, require students to trace the code they wrote 1.

Our hope was that by organizing instruction around program
memory traces, students would be more likely to develop viable
mental models of how programs execute. Beyond just surrounding
them with visual representations, trace-based teaching should help

1Examples of these activities can be found at http://cs.
canisius.edu/~hertzm/tracing and http://staff.kings.
edu/mariajump/tracing



typedef struct Ex {
int min , max;

} Ex;
void comp(int *arr , Ex *r) {

for (int i=0; i < 3; i++) {
r->max = (arr[i]>r->max)?arr[i]:r->max;
r->min = (arr[i]<r->min)?arr[i]:r->min;

}
}
int main() {

Ex *result = malloc(sizeof(Ex));
int arr[] = {7, 3, 14};
result.min = 100;
result.max = -1;
comp(arr , result );
return 0;

}

(a) Sample program written in C. (b) Program memory trace generated for the C program.

public class Ex {
private int min , max;
void comp(int[] arr) {

for (int i=0; i < 3; i++) {
max = (arr[i]>max)?arr[i]:max;
min = (arr[i]<min)?arr[i]:min;

}
}
public static int main(String [] args) {

Ex result = new Ex();
int arr[] = {7, 3, 14};
result.min = 100;
result.max = -1;
result.comp(arr);
return 0;

}
}

(c) Sample program written in Java. (d) Program memory trace generated for the Java program.
Figure 1: Sample program, written in both C and Java, with which we illustrate how program memory traces are created. Both program use
static and dynamic allocation, arrays and scalar variables, and subroutines. These will be used to illustrate how these traces work.

students by “priming” them for many of the concepts with which
past research had found students struggle. One example of this is
that of stackframes. By including stackframes from the very start,
students are comfortable with the mechanics of variable scoping
before the course gets to subroutine execution. Similarly, by having
our traces represent what occurs in memory, students literally see
the parallels between related concepts (e.g., arrays and pointers in C
are both represented as arrows). These illustrations highlight these
relationships and make reusing knowledge easier.

4. RESULTS AND ANALYSIS
We use this trace-driven teaching approach in two introductory

courses at a medium-sized regional college. The first, a CS1 (“Intro-
duction to Programming”) course taught in C, is required for, and
largely populated by, first-year physics and pre-engineering majors.
For nearly all of the students, this CS1 course is their first computer
science course and they begin the term with little interest in com-
puter science. Enrollments in this course vary greatly between 12 –
31 students. The second course, a CS2 course taught in Java, is re-
quired for computer science majors and minors and is usually taken
by second-year students. Course registrations vary from year to year
from a low enrollment of 9 to a high of 21 (mean enrollment was 14).
A small minority of students come from the CS1 course described
above, but would have had to have taken a Java-based CS1 course
in the interim. Both the CS1 and CS2 classes in this study have a

similar structure including 3 hours per week of instructional time,
a 1 hour per week laboratory session, small weekly programming
sets, and 3 larger programming projects. Classes are taught using
active learning with 15 - 30 minutes of active lecture followed by
activities performed in 3 - 5 person groups.

As a quantitative measure of the effectiveness of our teaching
approach, we compare students’ grades from the 3 years preceding
the change to trace-driven teaching with the 4 subsequent years.
This comparison can only be performed for the CS2 course because
the content and coverage of the CS1 course changed significantly
during this time frame.2 As a qualitative measure, we performed
end-of-course assessments during the last week of the course and,
during the past 3 years, included questions asking students to rate
how helpful each aspect of the course was for their learning the mate-
rial. Responses to this question were on a 5-point Likert scale (“very
unhelpful”, “unhelpful”, “neither helpful nor unhelpful”, “helpful”,
and “very helpful”). Student participation in the end-of-course as-
sessment was both voluntary and anonymous. Aggregated within
each course, we had 53 responses in our CS1 course (a 88.33% re-
sponse rate) and 36 responses in our CS2 course (a 97.30% response
rate). As with most qualitative measures, students often confuse
what was most helpful with what they liked the most. Regardless,

2In particular, the CS1 course now covers 25% more material and
goes deeper into other topics relative to the course before switching
trace-driven teaching



(a) Percentage of students answering how useful each of the aspects
of the CS1 course was to their learning (n=53). Almost two-thirds of
the students found the instructors tracing code in lectures to be “very
helpful,” a rate higher than any other aspect of the course.

(b) Percentage of students answering how useful each of the aspects of
the CS2 course was to their learning (n=36). The instructor’s use of
traces continued to be more popular than even the lectures themselves
and, along with weekly homework assignments, the aspect of the course
that students found to be most helpful.

Figure 2: Results of anonymous surveys of the students in the CS1 (a) and CS2 (b) courses. Students in both classes found traces to really help
them learn the material. In particular, students rated the instructor tracing code in the lecture as among the most helpful aspects of the course.

qualitative results often help explain any changes we see in the
grades students received.

Students were overwhelmingly positive about using traces to
explain the concepts. A majority of students in each class responded
that the instructor’s tracing code while lecturing was “very helpful”
to their learning of the material. Over 94% of students in each class,
in fact, stated that the instructor tracing code was either “helpful” or
“very helpful” to their learning (the remaining students rated this as
“neither helpful nor unhelpful”). As can be seen from the results in
Figure 2a, students were more positive about the instructor’s tracing
of code than they were about the slides which included the traces.
In fact, the instructor’s tracing of code was found to be more helpful
than the lectures as whole. Additionally, the data in Figure 2b shows
that students rate the instructor tracing code among the most helpful
aspects of both the CS1 and CS2 courses.

While students reported that the instructor tracing code helped
them learn, our course design also places an emphasis on having the
students trace code. While students had tried to “guess” what code
does rather than actually complete a trace previously, students in
trace-driven teaching courses willing trace code when a problem re-
quires it .Even with this emphasis, students in trace-driven teaching
class were no more likely to use traces on their own than students in
our classes before the change. A majority of students in each class
responded that they found having to trace code to be “very helpful”.
While the percentages are lower than for the instructor tracing code,
over 90% of students in each class rated students tracing code posi-
tively (in fact, only a single CS2 student rated this “unhelpful”). In
both courses student tracing code was rated more positively than the
multi-week programming projects and in CS1 students tracing code
was rated more positively than the daily activities as a whole.

While students clearly feel that trace-driven teaching helps them
learn, those results cannot show whether it improves student learning.
For this we turn to quantitative data and compared students grades
from the 3 years preceding the change to trace-driven teaching
with the 4 subsequent years. All of these classes were taught by
the same instructor using the same structure, content, and grading

scheme. Any changes, therefore, reflect the effect of using trace-
driven teaching.3

First we examine student’s CS2 lecture grade which includes
all aspects of the course except weekly labs. The CS2 lab (like
the CS1 lab) require students work individually at a computer to
complete the programming problems. These labs last 1 to 2 hours
and assignments are due at the end of that time. The lab grade
reflects students’ performance writing the required code (the lab
assignments do not require tracing, though students can use this to
find bugs). As shown in Figure 3a, the median CS2 lecture grade
remains unchanged but the distribution of grades has skewed much
higher. Similarly, the CS2 lab grade distribution (see Figure 3b)
show grades improved considerably since switching to trace-driven
teaching.

To understand the significance of the grade data, we used an
analysis of variance (ANOVA) test. ANOVA examines the variance
in the data of two groups to determine the confidence with which
one can state that two populations’ means are different [12]. We
evaluated the student grade data using ANOVA to establish if the
grade improvements seen with trace-driven teaching are significant.
We found that while the differences in the lecture grades are strong,
they are not quite statistically significant (p = 0.0805). The same
cannot be said for students’ lab grades, however. The improvement
in these grades is very, very strong and well beyond what is neces-
sary for statistical significance (p = 0.000131). Initially, this result
may seem odd: the improvements from trace-driven teaching are
far stronger for the lab portion of the course rather than the portion
that uses traces. We argue this makes sense: the improvement re-
flects students’ improved understanding of the material and holding
viable mental models. This improvement has the biggest impact on
students’ programming skills, the skills most directly assessed, and
so most visible, within the laboratory portion of the class.

Finally, since one of our motivations for using trace-driven teach-
ing was the high rates that students had been dropping out or failing
our introductory courses, we examine student success rate. Fully
one-quarter (25.49%) of students did not successfully complete the
CS2 course in the three years prior to this change. In the four years

3To validate this assumption, we examined grades in the instructor’s
other courses. They were unchanged during this time.



(a) While the median lecture grade in CS2 has not changed, the increase
in student learning can be seen in the higher skew of the grade distribu-
tions. Using ANOVA, the differences are significant with p=0.08.

(b) Even while reducing the time students spend writing code in-class,
trace-driven teaching improves students coding ability by increasing their
understanding of the material. This change is statistically significant
with a p=0.000131.

Figure 3: Graphs showing grade distributions in a CS2 class before and after changing to trace-driven teaching. The boxes show the range of
grades in the 1 - 3 quartiles, the dashed lines show the range of grades within 1.5 times of the interquartile range beyond these quartiles, and
the solid line is the median grade. As shown by these grades, trace-driven teaching has improved student understanding of the material and
their ability to program.

following this change, only 4 out of 57 students (8.51%) have failed
this course (no students in this time dropped out). As much as the
students’ reports of our approach’s helpfulness and the increase in
student grades, this reduction in the rate in which students did not
successfully complete our course shows the value of trace-driven
teaching.

5. RELATED WORK
While this is the first paper of which we know that studied the

effectiveness of organizing classes around traces, there are other
works in related topics such as visualizing a program’s state or
using traces to assess or improve student learning. We discuss these
related works now.

Many papers have been published in which ways of visualiz-
ing a program’s heap state is discussed. These systems include
more general means of visualizing such as Heapviz [1], UUWhis-
tle [15], and visualization tools built into IDEs such as BlueJ [8] and
jGRASP [4]. Other systems have been designed to visualize more
specific data structures. Examples of these latter systems include
iSketchmate [13] and CSTutor [2]. While these papers share our
goal of creating means to educate students, they cannot be used
with only pencil and paper and do not examine the effectiveness of
organizing a class around these topics.

Other research has investigated using traces to assess or improve
student learning. An early important work in this area found that
introductory students were especially weak at tracing [9]. Unlike
our research, this earlier work only looked at students’ tracing ability
and did not examine the benefits of using traces to educate students.
While further research examined the correlation between students
ability to trace code with their ability to write code [10], the tracing
in that research does not model what occurs in memory and so is
an assessment tool and not a way to help students develop viable
mental models. Further research by Holliday and Luginbuhl [6]
used a trace format created by the authors to document a correlation
between students’ ability to draw traces and their comprehension
of the material. Unlike our research, Holliday and Luginbuhl’s
trace format did not visualize all of a program’s memory and their

research did not examine the effectiveness of using traces to teach
introductory topics. Thomas, et al., examined the effect of providing
students with incomplete traces when asked to answer multiple-
choice questions [16]. While some of their findings, that students
who draw traces are better able to answer questions, match ours,
they did not consider the effect of organizing their course around
traces and so could not overcome student resistance. Finally, Ma,
et al., used visualizations and cognitive conflict to improve student
understanding of value assignments [11]. Like us, they found that
visualizations can provide statistically significant improvements
in student learning, but only considered the gains from a single
exposure to visualizations and did not consider the gains possible
when visualization is used throughout a course.



6. CONCLUSION
This paper introduces trace-based teaching which centers teaching

introductory programming courses around program memory traces.
Program memory traces present an accurate memory model upon
which programming concepts can be explained to students. We show
that students feel that tracing code help them learn and hold tracing
as more important to their learning and understanding the material
than writing code. We also document that trace-based teaching led to
improvements in student learning by finding a statistically significant
improvement in student programming grades. Thus, this paper
shows that program memory traces help students develop viable
models of programming concepts and increases the rate students
successfully complete the course.
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