Software Engineering CSE442 (note: this syllabus should be used as a guide. The instructor reserves the right to make changes as the class unfolds and the situation warrants). This class is a combination of discussion topics and a “socially relevant” project. The class meets on Monday and Wednesday for lecture and discussion,
Michael Buckley mikeb@buffalo.edu Davis 327

Office hours: M & W, 3-4:45

Class web site: http://www.cse.buffalo.edu/~mikeb click on CSE442 Fall 2022
Required Books - The Tao of Pooh by Benjamin Hoff – a pdf link is included in the class lecture notes. We will not be using this until the October 9. Do not think this book to be trivial, it is important.
Additional mandatory readings - will be handed out or published on the class web site. Most are a page or two. Please don’t ignore them.
Required Software - You will need OpenOffice Libre for the project planning phase (Microsoft Project 2003 or later is a capable substitute), and Microsoft Visio or any drawing package of your own choosing, to present your system architecture.
Grading – this is tentative and will be adjusted based on how the projects progress (i.e. we may choose to over-emphasize or de-emphasize certain aspects):

Project Grade 70% -
 Requirements Specification - Requirements from the customer perspective (Phase 1) - 15%
 Design (Phase 2) - 20% (this includes 5% for the architectural diagram)
 Project Plan (Phase 3) – 15%
 Implementation/testing/Demo (Phase 4)
- 15%
 Peer Review – 5%
Individual Grade 30% -

Essay/Research Question #1
10%
Essay/Research Question #2
10%
Class participation & professionalism (individual) 10% - attendance is taken randomly throughout the semester, usually when the class looks empty. The professional component includes not just the attendance, but emphasizes more pointedly the productive value of input a student offers to class discussion. It could also include professional behaviors such as not texting during class, looking at laptops when they are not needed for the class, and not talking with fellow students during class. It includes other aspects of professional behavior such as properly written emails, preparedness when attending office hours, and advanced notification for classes that are missed.
Letter Grades:

A: 92.5 - 100

A-: 90.0 - 92.49

B+: 87.5 - 89.99

B: 82.5 - 87.49

B-: 80.0 - 82.49

C+: 77.5 - 79.99

C: 72.5 - 77.49

C-: 70.0 - 72.49

D+: 67.5 - 59.99

D: 50.0 - 67.49

F: 0 - 49.99

An A-or B+ is NOT failing. It is an excellent grade in this course. To get an A in CSE442/542, you must do substantially better than what is asked-for. All grading for this course grants a C for answering the requirements, a B for showing a level of understanding, and an A for insight sufficient to apply the material to real life. If you do not add to your submissions with real-life examples based on experience or reading, you will get a very well-deserved B.
Peer evaluations have a direct effect on grades: every negative evaluation cost a single point out of 5, unless the negative evaluation is from a student who has more negative evaluations than you. If ALL team members grade a student negatively, no credit is given in the peer evaluation category.

Late Penalty: no late assignments are accepted. To accommodate that very strict rule, ample time will be given for each assignment.

Topics:

Introduction

The software development lifecycle, paradigms of SW Engineering, the Software Engineering Institute Capability Maturity Model, commercial clients, the government, MIL-STD, the contractor/client relationship, the Tao of engineering, eclecticism, software disasters, the 35 (or so) steps of software implementation, pre- and post-project assessment, great sources of errors

Software Analysis

Requirements specification, client needs, hardware study, data flow-oriented analysis methods, data structure-oriented analysis methods, object-oriented analysis methods, database requirements, user interface, software prototyping, system design

Software Design

Decomposing requirements into modules, encapsulation, reusability, coupling, cohesion, process identification, Data Flow Diagrams, operation-oriented data structures, types of modules, abstract data types, data flow-oriented design, data structure-oriented design, object-oriented design, information hiding, data abstraction, real time design, real time databases/operating systems, languages, global data, preliminary design document, detailed design document, program design language, stepwise refinement, program structure, modularity , Structure Charts, task synchronization, communications protocols, integration, performance, error handling, fault tolerance, incremental and evolutionary models, spiral models, risk analysis

Coding

Company and project coding standards, correctness, safety, abstraction, clarity, simplicity, maintainability, reusability, compiler efficiency, language features, go-tos, comments, layout, personal style, reviews, configuration management, change control, maintenance techniques, maintenance costs, maintenance side effects, reporting, record keeping

Project Management

Critical paths, budgeting, scheduling, revision impact, tracking, errors, quality assurance

Software Testing

Objectives, unit testing, complexity measures, test case design, path testing, boundary values, integration, debugging

The Tao of Software Engineering
Management, leadership, personal style, relationships, ethics, privacy, data and program security, legal issues for SW engineers (copyrights, patents, etc.), safety.

ABET Student Learning Outcomes

This course serves as a capstone course for the computer science major. It covers all 6 student learning outcomes from the ABET Computer accreditation standards.

Upon successful completion of this course a student will be able to…

1. Analyze a complex computing problem and to apply principles of computing and other relevant disciplines to identify solutions. Activities, Final Presentation

2. Design, implement, and evaluate a computing-based solution to meet a given set of computing requirements in the context of the program’s discipline. Activities, Course Project

3. Communicate effectively in a variety of professional contexts. Essay exams

4. Recognize professional responsibilities and make informed judgments in computing practice based on legal and ethical principles. Essay exams

5. Function effectively as a member or leader of a team engaged in activities appropriate to the program’s discipline. Course Project, Self- and Peer-Assessments

6. Apply computer science theory and software development fundamentals to produce computing-based solutions. Project and Essay exams

