C$421: Introduction to Operating Systems
Fall 1998 : Project #3
Design and |mplementation of Secondary Storage System

Instructor: Dr. Davin Milun

1 Objective

Design and implement a basic disk-like secondary storage server.

Design and implement a basic file system to act as a client using the disk services provided by the server designed
above.

Study and learn to use the socket API. Sockets will be used to provide the communication mechanism between (i)
the client processes and the file system, and (ii) the file system and the disk storage server.

Optionally: learn about the System V message queue | PC system.
Very optionally: learn about the Solaris 2.6 doors | PC system.

2 Problem Description

21

Introductory Parts. Due Sunday November 15th

The Introductory Partswill primarily familiarize you with the socket-API. Sockets will serve as the communication back-
bone for the disk system that you will build in the later parts. Also, there is the Extra Credit option of using System V

message (ueues.

1

(4 points) Basic client-server: Create two programs: a client and a server. Let the two communicate through a
stream-based unix-domain socket. The client will pass anull-terminated ASCI| string to the server. The server will
reverse the string, and return it the reversed string to the client. The client should then print out the string that it
received from the server, and quit. The server must continue to run, waiting for the next connection.

For 2 Extra Credit points (see the Extra Credit section for details) provide a second implementation of part 1, using
message queues rather than sockets.

(7 points) Integer output server: Extend part one to implement an integer output server, and sample client. The
server waits for clients to connect to it. The client provides the server with some data.

Thedataisintheform of asingle character (representing the required base) followed by four bytes (representing an
integer). The first byte must be one of: d=decimal, o=octal, x=hexadecimal. The four bytes must be the four raw
bytes that represent an integer, (not the ASCII/string representation of the integer!)

The server receives that data, converts the integer into the requested base, and sends the resulting number as a null-
terminated ASCI| string back to the client, and then closes the connection. The server continues running, waiting
for the next connection.

The sampleclient should take the base and integer from the command line, sendthemto the server, receivetheresullts,
print them out, and then quit.

For 3 Extra Credit points (see the Extra Credit section for details) provide a second implementation of part 2, using
message queues rather than sockets.

(7 points) Trivial web browser: Inthispart, youwill bewritingonly aclient. Theclient will beonethat can retrieve
a document from the World Wide Web, by connecting to any Hypertext Transfer Protocol (HTTP) server on the
Internet.

Client command line: host nane pat hname
The client should connect to TCP port 80 on host nane, and send the simplest HTTP protocol GET request: “GET
/ pat hnane”.

The client should then simply print out all the data sent to it from the server, and then quit.

NOTE: Thisisthe bare minimum request that a web server will accept. The full protocol is much richer, and more
complex than this. The current version of the protocol isversion 1.1, and is described in RFC 2068. Which, aswell
as thousands of places on the net, you can look at locally as/ ft p/ pub/ rfc/rfc2068.t xt. gz.

Also note that typing a™ on the command line will not givea™ to your program in an argument, because the shell
will expand it into the directory name. Therefore, to read a user’s homepage, you'll need to put the pathname in
guotes on the command line. For example: part 3 www. cse. buffal o. edu "“m | un”

(4 points) mmap demo. Writeaprogram which mrap’sthe contentsof afile (thefilename provided onthe command
line), and replaces the 23rd to 33rd characters of that file with “MVIAP RULES! ”. If the file contains fewer than 33
characters, then the program should print awarning message, and exit. If thefile contains more than 2000 characters,
then it should also replace character 2000 with an “A”. When it works correctly, there should be no printed output
generated by the program—the contents of the file named on the command line should simply change.

Seethe mmap(2) man pagefor details, aswell as sample code from recitations. To determine the length of thefile,
you'll want to seethef st at (2) man page.

Main Parts. Due Thursday December 10th

5. (25 points) Basic disk-storage system: Implement, as a stream-based unix-domain socket server, asimulation of a

physical disk. The simulated disk is organized by cylinder and sector. The disk server should take as command line
parameters: the number of sectors per cylinder; and the number of cylinders on the disk. The number of bytes per
sector isfixed at 128 for this particular implementation.

Your simulation should store the actual datain areal disk file, and this data should be persistent between runs of the
server. You'll thus need the filename of this file as another command line parameter. Your program should assume
that the file already exists, and should quit with an error message if the file does not exist, or if the fileis not large
enough to hold the disk data as calculated by the other command line parameters. (You'll probably find that the
nmap(2) system call provides you with the easiest way of manipulating the actual storage. Also, the easiest way
of creating a new empty file from the command line, is probably the/ usr / sbi n/ nkf i | e command.)

The general scheme under which the disk-storage system should work isthat a client will connect to the server, and
then issue a sequence of Disk Protocol requestsuntil it is done with needing the server, and then disconnect from the
server. It is perfectly acceptable for your server to be an iterative server, so that it can only be connected to asingle
client at any onetime.

The Disk Protocol

The server must understand the following commands, and give thefollowing responses. All numeric data specified
in thisprotocol specisto be sent in raw encoded integer form. (Since we're using Unix Domain Sockets, both
ends of the socket will always be on the same system, so endian-nessis not an issue.) Note that the return codes are
not numeric data, but are the single characters’ 0’ etc.

¢ | : Information request. The disk returnsareturn code of '0’, followed by three integers representing, in order,
the disk geometry: the number of cylinders on the disk, the number of sectors per cylinder, and number of bytes
per sector (128).

¢ Rcs: Read request for the contents of cylinder ¢ sector s. The disk returns’ 0’ followed by the 256 bytes of
information from that sector, or ’ 1’ if no such block exists. (This command will return whatever data happens
to be on the disk in a given sector, even if nothing has ever been explicitly written to that sector before.)

o Wddat a: Writerequest for cylinder ¢ sector s. | isthe number of bytes being provided, with a maximum of
onesector (128). Thedat a isthosel bytesof data. Thedisk returns’ O’ totheclientif itisavalid write request
(legal valuesof ¢, sand|), or returnsa’1’ otherwise. In caseswhere| < 128, the contents of those bytes of the
sector between byte | and byte 128 is undefined—you may implement it any way that you want (for example:
leave the old data; zero-fill; etc.).

e Q Quit request. The disk returns areturn code of ' 0’, and then shutsitself down, causing the disk server pro-
gram to terminate.

o D: Disconnect request. The disk returns areturn code of ' 0’, and then closes the connection to the client. This
isthe polite way for aclient to disconnect, (rather than the client just closing the connection without warning).

¢ Any other character should simply be ignored: no return code should be sent at all.

The data format that you must use for ¢ sand | above is the raw integer data. So, for example, a read request for
the contents of sector 17 of cylinder 130 would look like: R, the 4 bytes representing the integer 130, the 4 bytes
representing the integer 17. And then 129 bytes of data would be returned: the character 0, followed immediately
by the 128 bytes read from that sector.

The Sample Disk Client
Theclient that you need to write here ismostly for testing purposes. Thereal use of this“disk” will bethefilesystem
implemented in the later parts of this project.

So, for testing/demonstration purposes, you heed to implement a command-line driven client: This client should
work in aloop, having the user type commands in the format of the above protocol, send the commands to the disk
server, and display the results to the user. (It would be difficult to debug your disk server without such a debugging
tool anyway.) Theclient only needsto do minimal sanity checking on the entered data. Thisisamini test client, not
amajor part of the project.

. (35 points) File system server: Implement aflat filesystem that keepstrack of filesin asingle directory (table). The
filesystem should provide operations such as: initialize the filesystem, create afile, read the datafrom afile, write a
file with given data, append datato afile, remove afile, etc..

The following features are not required in your implementation:

The ability to create and use subdirectories.

o Filesystem status reports (free space, number of files, percentage of used space, fragmentation etc.).
o Filesystem integrity checks.

o File permissions.

You will find that in order to provide the abovefile-like concepts, you will need to operate on more than just the raw
block numbers that your disk server provides you. You will need to keep track of things such as which blocks of
storage are allocated to which file, and the free space available on the disk. A file allocation table (FAT) can be used
to keep of current allocation, and mapping of blocksto files. Free space management involves maintaining alist of
free blocks available on the disk. (Some possible methods are: a bit vector (1 bit per block), chain of free blocks, or
simply searching for free blocksin the FAT.) Associated with each block isa cylinder# and sector#. Writingto afile
gets converted to writing into a specific cylinder# and sector#. Note that al this meta-information also needsto be
stored on the disk, as the filesystem module could be shut down and restarted and the disk data should be persistent.

Implement this file system server as another stream-based unix-domain socket server. So, this program will be a
server for one unix-domain socket; and also be a client to the disk-server unix-domain socket from the previous
part. (And you' d be well advised to structure your program similarly, so that you' |l have separate parts, in separate
functions, that do each of these two sockets. In particular, your file system server should probably have functionsto
implement each of the Disk Protocol client requests, called something likedi sk_r ead, di sk_wri t e, etc.)

The Filesystem Protocol

The server must understand the following commands, and give thefollowing responses. (Seethe Appendix for some
suggested, but not required, algorithmsto implement some of these operations.) All numeric data specified in this
protocol specissent asASCII strings.

o F: Format. Will format the filesystem on the disk, by initializing any/all of tablesthat the filesystem relies on.
Possible return codes: 0 = format completed successfully; 1 = format failed.

e C f: Createfile f. Thiswill create a new, empty, file named f in the filesystem. Possible return codes. 0 =
successfully created the file; 1 = afile of this name already existed; 2 = some other failure (such as no space
left, etc.).

e D f: Deletefile f. Thiswill deletethefilenamed f from thefilesystem. Possiblereturn codes: 0= successfully
deleted the file; 1 = afile of this name did not exist; 2 = some other failure.

e L b: Directory listing of typeb. This generatesalisting of the filesin thefilesystems. It returns a return code
of '0’, followed by a space, followed by an ASCII decimal string representing the number of filesin thelisting,
followed by a space, followed by one line of datafor eachfile. bisaboolean flag: if 'O’ it listsjust the names
of al thefiles, oneper ling; if 1’ it includes other information about each file, such asfile length, plus anything
else your filesystem might store about each file (such as modification date, etc.).

¢ R f: Readfile f. Thiswill read the entire contents of the file named f, and return the data that came fromit.
The message sent back to theclient is, in order: areturn code, awhite-space, the number of bytesin thefile (as
an integer sent as an ASCII decimal string), a white-space, and finally the data from the file. Possible return
codes: 0 = successfully read file; 1 = no such filename exists; 2 = some other failure.

e W f | data: Write file. Thiswill overwrite the contents of the file named f with the | bytes of dat a. |
should be sent as an ASCII string, followed by a space. (Notethat | is not limited by the size of a sector, and
need not be a multiple of sector size.) If the new datais longer than the data previously in file f, then the file
will be made longer. If the new datais shorter than the data previoudly in thefile, the file will be truncated to
the new length. A return codeis sent back to the client. Possible return codes: 0 = successfully wrote thefile;
1 = no such filename exists; 2 = some other failure (such as no space left, etc.).

e A f | data: Appendtofile. Thiswill append the | bytes of dat a to the end of the current contents of the
filenamed f. A return codeis sent back to the client. Possible return codes. 0 = successfully appended tofile;
1 = no such filename exists; 2 = some other failure (such as no space left, etc.).

¢ Any other character should simply be ignored: no return code should be sent at all.

For testing/demonstration purposes, you need to implement a command-line driven client, similar to the one that
you wrote for the disk server. It should work in aloop, having the user type commands in the format of the above
protocol, send the commands to the disk server, and display the results to the user. (It would be difficult to debug
your disk server without such a debugging tool anyway.)

7. (18 points) User level commands To make the filesystem useful, implement a few basic command-line user level
commands. Each of these should be a short program. Each is an independent client program which talks (using the
Filesystem Protocol) to the filesystem unix-domain socket from the previous part.

Implement:
(@ mycat filename: show the contents of filename.
(b) nywr it e filename: Read stdin and overwrite filename with all the data from stdin.
(c) myappend filename: Append all the data from stdin to filename.
(d) nyl s : show thelist of filesin the directory.
(e) myl sl : show thelong form list of filesin the directory.
(f) nmyr mfilename: remove filename.
(g) nycp filename, filename,: copy filename; to filename, (overwriting filename, if it already exists).
(h) nmynv filename, filename,: rename filename; to filename, (overwriting filename, if it already exists).
(i) mynewf s : format the filesystem, removing all contents.

3 ExtraCredit

In this project, | am providing away for studentsto receive extra credit. This extra credit can be worth at most 40 points
for the best conceivable project, however it's unlikely that anyone will receive that many extra credit points.

The curvefor this project will be based on the regular 100 required points. The extra credit will be used as an 8% extra
grade, added in to your overall course grade, (but your course grade will still be divided by the regular total of 100%, not
108%). Thus the extra credit will result in grade improvements for some, and grade deterioration for nonein the class.

Ways of obtaining extra credit:

e Do the Extra Credit options within the Intro Parts.

o Extend thefilesystem, by adding multipledirectories. To to thisyou should extend thefilesystem protocol by adding
the M(make directory), N (change directory), O (delete empty directory) commands, and corresponded part 6 com-
mands to take advantage of them. (Up to 15 points, depending on level of implementation.)

o Extend the filesystem is some of the other ways described above in the list of things that you are not required to
implement. (Points dependent on what you implement, and how well.)

¢ Implement the communication between the filesystem and the disk server using System V Message Queues, rather

than Sockets. Note that thisisinstead of implementing the Sockets version. However, the communication between
the client programs and the disk server must till be done using sockets. (5 points)

¢ Implement the communication between the filesystem and the disk server using the Solaris Doors mechanism, rather

than Sockets. Notethat thisisinstead of implementing the Sockets version. However, the communication between
the client programs and the disk server must till be done using sockets. (10 points)

You are permitted to provide two separate implementations, if you want to do both of these extra last two extra credit
options. If you write the file server well, it should only require changing one “module” of your server.

4 Hintsand Miscellaneous comments

1

Thereis agraphical Javaimplementation and demonstration of (an older version of) this filesystem project, avail-
able for youtorunashttp://ww. cse. buf fal o. edu/ " nki rsch/javal/ VFi | eSystem htm . (It
was written for me by Jacob Kirsch, as an independent study project.) It should give you a reasonable guide as
to how the whole system fits together, and what data is transfered between which clients/servers at what points.

Read the notes that you got from Makin' Copies. Thereislots of material and examples and explanations relevant
to this project, especially in the last part of the notes. Also, read chapters 11 and 12 of your text book.

See™ m | un/ EXAMPLES/ nessagequeues/ for example Message Queues code. Also, seethenmsgget (2) ,
msgsnd(2), nsgrcv(2) man pages.

If you' re planning on trying Solaris Doors, you’' remostly on your own. You probably want to see the following man
pages. door _creat e(3X),door _cal | (3X),door _i nfo(3X),door _return(3X)

Your program must be robust. If any of the callsfail, it should print error message and exit with appropriate error
code. Always check for failure when invoking any system or library call. By convention, most UNIX callsreturn a
valueof NULL or negativeone(—1) in caseof anerror (but alwayscheck the RETURN VAL UES section of each man
pagefor details), and you can usethisinformation for agraceful exit. Usecerr, perror(3),orstrerror(3)
library routines to generate/print appropriate error messages.

5 Material to be Submitted

1

Submit the sour ce code for al the programs. Use meaningful names for the files so that the contents of the fileis
obvious from the name.

Submit a README file describing which program file corresponds to which part of the project. Also include any
special notes, instructions, etc..

You arerequired to submit aMakefilefor your project. 1t should be set up sothat just typing mak e inyour submission
directory should correctly compile all parts.

You need to submit a printed Technical Report for the Main Parts (parts 4-6), including any Main Parts Extra Credit
sections. It should contain two parts:

(a) A usersmanual, describing how to interact with your programs

(b) A technical manual, describing your design disk, and of your filesystem. You must give complete technical
details of the format of all data-structures used in your program, as well as the main algorithms, etc..

This Technical Report should be a professional 1ooking document. It should preferably be typeset (using LaTeX,
FrameMaker, |slandWrite, MS Word etc.), and should definitely not be handwritten (except possibly for diagrams).

6 DueDates

e Submit on-line the Introductory Parts by 11:59pm of Sunday November 15.
e Submit on-line the Main Parts by 11:59pm of Thursday December 10.
e The printed Technical Report is duein class the following day, Friday December 11.

7 Appendix: Possiblealgorithms

Here are some hints/thoughts/suggesti onsof rough algorithmsthat you might use to implement some of thefilesystem-level
features. You are not required to actually use any of these. They are simply here to guide your thinking.

e The concept isthat thereis afixed sized FAT in thefirst (few?) sector(s) of the disk. Each FAT entry is big enough
to hold a block number (cylinder and sector). Thereis one FAT entry corresponding to each block on the disk. The
value in each FAT entry represents the next block in the file, following the block represented by the FAT position.
The specia mark of EOF (1) indicatesthat thereare no further blocksin the current file. The special mark of EMPTY
(O) represents that the block corresponding to this FAT entry is not part of any file.

Thedirectory isafixed number of sectors, following the FAT. Each directory entry contains space for afixed-length
filename, the length of thefile, a pointer to the FAT index corresponding to thefirst sector of the data of thefile, plus
any other datathat you might want to store (deleted flag, etc.). For zero-length files, the EOF marker is put into this
FAT position.

Create: search the directory for that filename; if it already exists, fail;
search for an empty directory entry;
record the filename in that directory entry;
record the filelength = 0 in the directory entry;
mark the FAT entry field in the directory entry with an EOF marker

Read: search the directory for that filename; if none exists, fail;
read the length field from the directory entry, and return it;
get thefirst block number in the directory entry;
read the data from that sector, and return the data;
search for next block of thefile;
just keep doing that until we reach the end of file

Write: search the directory for that filename; if none exists, fail;
get thefirst block number in the directory entry;
write the first sector’s worth of datainto that block;
if there are more sectors already allocated to the file, use next one;
if no more, then need to allocate free block;
to allocate a free block, update the FAT entry of the current block to pointing the newly allocated block;
and keep writing until everything iswritten;
update the file length in the directory entry;
if the new file was shorter, update other FAT entriesto EMPTY

o Alternatively, you could store the directory (as described above) in afixed place on the disk (such as the first few
sectors); and have the directory entry point at the first data sector. And have every data sector use thefirst few bytes
to point at the next data sector of that file, or EOF if none. In other words, implement something equivalent to a
linked list of sectors. Notethat you'll still need to keep alist/table of available/allocated sectors somewhere though.

