
CSE 510 
Web Data Engineering 

SQL 

UB CSE 510 Web Data Engineering 



UB CSE 510 Web Data Engineering 2 

Applications’ View of a Relational 
Database Management System (RDBMS) 

•  Persistent data structure 
–  Large volume of data 
–  “Independent” from processes  

using the data 

•  High-level API 
for access & modification 
–  Automatically optimized 

•  Transaction management (ACID) 
–  Atomicity: all or none happens,  

despite failures & errors 
–  Concurrency 
–  Isolation: appearance of “one at a time” 
–  Durability: recovery from failures and other errors 

RDBMS 
Client 

Relations, 
cursors,  
other… 

JDBC/ODBC 
SQL commands 

RDBMS 
Server 

Application 

Relational 
Database 



UB CSE 510 Web Data Engineering 3 

Data Structure: Relational Model 

•  Relational Databases: 
Schema + Data 

•  Schema: 
–  collection of tables 

(also called relations) 
–  each table has a set  

of attributes 
–  no repeating relation names,  

no repeating attributes in  
one table 

•  Data (also called instance): 
–  set of tuples 
–  tuples have one value for each  

attribute of the table they belong 

Title Director Actor 
Wild Lynch Winger 
Sky Berto Winger 
Reds Beatty Beatty 
Tango Berto  Brando 
Tango Berto Winger 
Tango Berto Snyder 

Movie 

Theater Title 
Odeon Wild 
Forum Reds 
Forum Sky 

Schedule 



UB CSE 510 Web Data Engineering 4 

Data Structure: Relational Model 

Example Problem: 
•  Represent the students and Fall classes of the CSE 

department, including the list of students who take 
each class. 

•  Students have UB ID, first name and last name.  
•  Classes have a name, a number, date code (TR, 

MW, MWF) and start/end time. 
•  A student enrolls for a number of credits in a class. 

Solution:… 



UB CSE 510 Web Data Engineering 5 

Programming Interface: JDBC/ODBC 

•  How client opens connection with a server 
•  How access & modification commands are issued 
•  … 



UB CSE 510 Web Data Engineering 6 

Access (Query) & Modification 
Language: SQL 

•  SQL 
–  used by the database user 
–  declarative: we only describe what we want to 

retrieve 
–  based on tuple relational calculus 

•  The result of a query is always a table 
(regardless of the query language used) 

•  Internal Equivalent of SQL: Relational Algebra 
–  used internally by the database system 
–  procedural (operational): we describe how we 

retrieve 

•  CSE462, CSE562 



UB CSE 510 Web Data Engineering 7 

SQL Queries: The Basic From 

•  Basic form 
 SELECT A1,…,AN 

  FROM R1,…,RM 
  WHERE <condition> 
•  WHERE clause is optional 
•  When more than one 

relations in the FROM 
clause have an attribute 
named A, we refer to a 
specific A attribute as 
<RelationName>.A 

Find names of all students 

Find all students whose first 
name is John 

Find the students registered 
for CSE510 



UB CSE 510 Web Data Engineering 8 

SQL Queries: Aliases 

•  Use the same relation more than once in the 
FROM clause 

•  Tuple variables 
•  Problem: Find the classes taken by students 

who take CSE510 



UB CSE 510 Web Data Engineering 9 

SQL Queries: Nesting 

•  The WHERE clause can contain 
predicates of the form 
–  attr/value IN <query> 
–  attr/value NOT IN <query> 

•  The predicate is satisfied if the 
attr or value appears in the 
result of the nested <query> 

•  Also 
–  EXISTS <query> 
–  NOT EXISTS <query> 

Find the CSE510 students 
who take a TR 5:00pm class 



UB CSE 510 Web Data Engineering 10 

Universal Quantification by Negation 

Problem: 
•  Find the students that take every class “John 

Smith” takes 
Rephrase: 
•  Find the students such that there is no class that 

“John Smith” takes and they do not take 



UB CSE 510 Web Data Engineering 11 

SQL Queries: Aggregation & Grouping 

•  Aggregate functions: 
SUM, AVG, COUNT, MIN, 
MAX, and recently user 
defined functions as well 

•  GROUP BY 

Name Dept Salary 
Joe Toys 45 
Nick PCs 50 
Jim Toys 35 
Jack PCs 40 

Employee 

Example: Find the average salary of 
all employees: 

SELECT AVG(Salary) AS AvgSal 
FROM Employee 

AvgSal 
42.5 

Example: Find the average salary for 
each department: 

SELECT Dept, AVG(Salary) AS AvgSal 
FROM Employee 
GROUP BY Dept 

Dept AvgSal 
Toys 40 
PCs 45 



UB CSE 510 Web Data Engineering 12 

SQL Grouping: 
 Conditions that Apply on Groups 

•  HAVING <condition> may follow a GROUP BY clause 
•  If so, the condition applies to each group, and 

groups not satisfying the condition are eliminated 

•  Example: Find the average salary in each 
department that has more than 1 employee: 

 SELECT Dept, AVG(Salary) AS AvgSal 
 FROM Employee 
 GROUP BY Dept 
 HAVING COUNT(Name) > 1 



UB CSE 510 Web Data Engineering 13 

Aggregation Can Involve Many Tables 

•  Problem: List students and the number of 
credits for which they have registered 



UB CSE 510 Web Data Engineering 14 

SQL: More Bells and Whistles … 

•  Select all attributes 
using * 

•  Pattern matching 
conditions 
–  <attr> LIKE <pattern> 

Retrieve all student attributes 
of currently enrolled students 

Retrieve all students whose 
name contains “Ta” 

SELECT * 
FROM Students 
WHERE name LIKE “%Ta%” 



UB CSE 510 Web Data Engineering 15 

…and a Few “Dirty” Points 

•  Duplicate elimination must be explicitly 
requested 

  SELECT DISTINCT … 
 FROM … 
 WHERE … 

•  Null values 
–  All comparisons involving NULL are false by definition 
–  All aggregation operations, except COUNT(*), ignore 

NULL values 



UB CSE 510 Web Data Engineering 16 

Null Values and Aggregates 

•  Example:      

 SELECT COUNT(a), COUNT(b), AVG(b), COUNT(*) 
FROM R 
GROUP BY a 

a b 
x 1 
x 2 
x null 

null null 
null null 

R 

count(a) count(b) avg(b) count(*) 
3 2 1.5 3 
0 0 null 2 



UB CSE 510 Web Data Engineering 17 

SQL as a Data Manipulation Language: 
Insertions 

•  Inserting tuples 
 INSERT INTO R(A1,…,Ak) 

 VALUES (v1,…,vk); 
•  Some values may be left 

NULL 
•  Use results of queries for 

insertion 
 INSERT INTO R  
  SELECT …  

 FROM …  
 WHERE … 

•  Insert in Students 
“John Doe” with UB ID 
88888888 

•  Insert all CSE510 
students into CSE636 



UB CSE 510 Web Data Engineering 18 

SQL as a Data Manipulation Language: 
Updates and Deletions 

•  Deletion basic form: delete 
every tuple that satisfies 
<cond>: 

 DELETE FROM R  
WHERE <cond> 

•  Update basic form: update 
every tuple that satisfies 
<cond> in the way specified 
by the SET clause: 

 UPDATE R 
 SET A1=<exp1>,…,Ak=<expk> 
 WHERE <cond> 

•  Delete “John Doe” 

•  Update the registered 
credits of all CSE510 
students to 4 


