
CSE 510
Web Data Engineering

Database Design

UB CSE 510 Web Data Engineering

UB CSE 510 Web Data Engineering 2

How to Design a Database and
Avoid Bad Decisions

•  With experience…
•  Learn in CSE462 normalization rules of database

design
•  Think entities and relationships – translate to

relations

UB CSE 510 Web Data Engineering 3

E/R-Based Design
Attribute

Enrollment

Credits

Students

UBID

FirstName

LastName

Number

DateCode

StartTime

Classes

Name EndTime

Entity

Relationship

UB CSE 510 Web Data Engineering 4

E/R  Relational Schema:
 Basic Translation

•  For every entity, create corresponding
table
–  Include an ID attribute even if not in E/R

•  For every relationship, create table
– For each referenced entity Ei include foreign

key attribute referencing ID of Ei

UB CSE 510 Web Data Engineering 5

Movies

Title

Year

Length
StarsIn

Owns

Stars

Name Address

Studios

Name Address

Example

UB CSE 510 Web Data Engineering 6

3-Way Relationship

•  A studio has contracted with a particular star to
act in a particular movie

Movies

Title

Year

Length
Stars

Name Address

Studios

Name Address

Fee

Contract

UB CSE 510 Web Data Engineering 7

Relationships with Roles

Movies

Title

Year

Length

SequelOf

Original

Sequel

UB CSE 510 Web Data Engineering 8

“Subclassing”

Movies

Title

Year

Length

StarsIn

Voices

Stars

Name Address

Cartoons

…

IsA

UB CSE 510 Web Data Engineering 9

Transaction Management

•  Transaction: Collection of actions that
maintain the consistency of the database
if ran to completion & isolated

•  Goal: Guarantee integrity and
consistency of data despite
– Concurrency
– Failures

•  Concurrency Control
•  Recovery

UB CSE 510 Web Data Engineering 10

Concurrency & Failure Problems

•  Consider the “John & Mary”
checking & savings account
– C: checking account balance
– S: savings account balance

•  Check-to-Savings transfer
transaction moves $X from
C to S
–  If it runs in the system alone

and to completion, the total
sum of C and S stays the
same

C2S(X=100)
Read(C)
C:=C-100
Write(C)
Read(S)
S:=S+100
Write(S)

UB CSE 510 Web Data Engineering 11

Failure Problem &
Recovery Module’s Goal

•  Database is in inconsistent
state after machine restarts

•  It is not the developer’s
problem to account for
crashes

•  Recovery module guarantees
that all or none of a
transaction happens and its
effects become “durable”

C2S(X=100)
Read(C)
C:=C-100
Write(C)

CPU Halts
Read(S)
S:=S+100
Write(S)

UB CSE 510 Web Data Engineering 12

Concurrency Problem &
Concurrency Control Module’s Goals

•  If multiple
transactions run in
sequence, the
resulting database is
consistent

•  Serial schedules
–  De facto correct

Serial Schedule
Read(C)
C:=C+100
Write(C)
Read(S)
S:=S-100
Write(S)

 Read(C)
 C:=C+50
 Write(C)
 Read(S)
 S:=S-50
 Write(S)

UB CSE 510 Web Data Engineering 13

Concurrency Problem &
Concurrency Control Module’s Goals

•  Databases allow
transactions to run in
parallel

Good Schedule
with Concurrency
Read(C)
C:=C+100
Write(C)

 Read(C)
 C:=C+50
 Write(C)

Read(S)
S:=S-100
Write(S)

 Read(S)
 S:=S-50
 Write(S)

UB CSE 510 Web Data Engineering 14

Concurrency Problem &
Concurrency Control Module’s Goals

•  “Bad” interleaved
schedules may leave
database in
inconsistent state

•  Developer should not
have to account for
parallelism

•  Concurrency control
module guarantees
serializability
–  only schedules

equivalent to serial ones
happen

Bad Schedule
with Concurrency
Read(C)
C:=C+100

 Read(C)
Write(C)

 C:=C+50
 Write(C)
 Read(S)
 S:=S-50
 Write(S)

Read(S)
S:=S-100
Write(S)

