

Object-Relational Mapping

● Consider a typical business scenario
– Business data resides on relational DBMS's

– Business applications are coded using OOPL's

– These applications are data driven (i.e. data intensive)

– A typical interaction between application and DBMS
● Data is requested from the DBMS
● The DBMS retrieves the data and sends it to the application
● The application processes the data
● Then, either an update or another data retrieval is requested, or a

view is rendered using the retrieved data

Object-Relational Mapping

● Details of the interaction
– Data request (application)

● Uses an API to send SQL strings to the DBMS
● API: DBMS specific (e.g., libpq.so) or agnostic (e.g., JDBC)

– Data retrieval (DBMS and application)
● The DBMS sends data back to the application
● The application uses the API to process the returned data

– Updates (DBMS and application)
● The application uses the API to send SQL strings to the DBMS
● The DBMS executes the updates and returns status and/or data
● The application uses the API to check the result of the update

Object-Relational Mapping

● Object-Relational Impedance Mismatch
– Design goals (data vs behavior)

– Building blocks (tables/rows/fields vs classes/instances)

– Type systems (e.g. BLOB vs PDFDocument)

– Data retrieval (query based vs navigational access)

– Data modification (DML vs setters)

– Error handling (no recovery vs structured error handling)

– Other
● DBMS: referential integrity, transactions, concurrency control, etc
● OOPL: inheritance, interfaces, relationships, reflection, etc

Object-Relational Model

● What is the optimal solution?
– A single data model across PL and DBMS

● What is does a sub-optimal solution look like?
– Bring the PL and DBMS data models as close as possible

– Make this procedure as automatic as possible

– Effectively isolate all this plumbing from the business layer

– Allow freedom for choice (PL and DBMS)

Object-Relational Mapping

● ORM as one solution (not “the” solution)
– Natural programming model

● You program OOP, the mapping layer does the data plumbing

– Classes can be used and tested independently of application

– Minimize DBMS trips with optimized fetching strategies
● A good tool is expected to do better than average programmers

– Coding
● Reduced coding time and total code size
● Code is easier to read and maintain

– Error frequency is significantly decreased

Object-Relational Mapping

● ORM Desirable Features (not exhaustive)
– Transparency (POJOs/Beans)

– Transitivity (relationships)

– Persistent/transient instances (attached/detached)

– Automatic dirty instance detection

– Inheritance strategies (single table, class per table, etc)

– Fetching strategies (lazy/eager)

– Transaction control

– Flexible, “sensible defaults” based configuration

– Availability of development tools and learning resources

Object-Relational Mapping

● Other solutions
– Native OODBMS's

● db4o is a Java/.NET open source OODBMS (go check it out!)
● Ozone is a Java open source OODBMS (older but advanced)

– MS LINQ
● LINQ stands for Language Integrated Query

– Persistent Programming Language
● No discrete boundary between program and database objects

– Others...

Object-Relational Mapping

● Further reading
– There are good books on the subject and a number of (very)

decent resources online

– Ireland, C. et al. A Classification of Object-Relational
Impedance Mismatch. DBKDA'09. (download if from IEEE
Xplore, accessible via the UB Libraries subscription)

– Minnaar, Douglas. Object-Relational Mapping as a
Persistence Strategy. http://tinyurl.com/yeao2fq.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8

