CSE 562
Database Systems

Constraints, Triggers, Views, Indexes

Some slides are based or modified from originals by
Database Systems: The Complete Book,
Pearson Prentice Hall 2@ Edition
©2008 Garcia-Molina, Uliman, and Widom

x‘se@b%ﬂz&r

UB CSE 562

Constraints and Triggers

e A constraint is a relationship among data
elements that the DBMS is required to enforce
- Example: key constraints

e Triggers are only executed when a specified
condition occurs, e.g., insertion of a tuple
- Easier to implement than complex constraints

UB CSE 562 3

Example DB

Beers(name, manf)
Bars(name, addr, license)
Sells(bar, beer, price)
Drinkers(name, addr, phone)
Likes(drinker, beer)
Frequents(drinker, bar)

- Underline indicates key attributes

UB CSE 562 2
- -

Kinds of Constraints

o Keys
e Foreign-key, or referential-integrity
e Value-based constraints

- Constrain values of a particular attribute

e Tuple-based constraints
- Relationship among components

e Assertions: any SQL Boolean expression

UB CSE 562

Review: Single-Attribute Keys

e Place PRIMARY KEY or UNIQUE after the type in
the declaration of the attribute

o Example:
CREATE TABLE Beers (
name CHAR(20) UNIQUE,
manf CHAR (20)

Foreign Keys

* Values appearing in attributes of one relation
must appear together in certain attributes of
another relation

o Example: in Sells(bar, beer, price), we might
expect that a beer value also appears in
Beers.name

UB CSE 562 7

Review: Multi-Attribute Key

e The bar and beer together are the key for Sells:
CREATE TABLE Sells (

bar CHAR (20),
beer VARCHAR (20),
price REAL,

PRIMARY KEY (bar, beer)

UB CSE 562 6

Example: As Schema Element

CREATE TABLE Beers (
name CHAR (20) PRIMARY KEY,
manf CHAR (20)
)
CREATE TABLE Sells (
bar CHAR (20),
beer CHAR (20),
price REAL,
FOREIGN KEY (beer) REFERENCES Beers (name)

UB CSE 562

Actions Taken

¢ An insert or update to Sells that introduces a
nonexistent beer must be rejected

¢ A deletion or update to Beers that removes a
beer value found in some tuples of Sells can be
handled in three ways (next slide)

Choosing a Policy

* When we declare a foreign key, we may choose
policies SET NULL or CASCADE independently for
deletions and updates

* Follow the foreign-key declaration by:

ON [UPDATE, DELETE][SET NULL CASCADE]
e Two such clauses may be used
o Otherwise, the default (reject) is used

UB CSE 562 11

Actions Taken (cont’d)

e Default: Reject the modification

e Cascade: Make the same changes in Sells
- Deleted beer: delete Sells tuple
- Updated beer: change value in Sells

e Set NULL: Change the beer to NULL

UB CSE 562 10
-

Example: Setting Policy

CREATE TABLE Sells (

bar CHAR (20),

beer CHAR (20),

price REAL,

FOREIGN KEY (beer)
REFERENCES Beers (name)
ON DELETE SET NULL
ON UPDATE CASCADE

UB CSE 562

Attribute-Based Checks

» Constraints on the value of a particular attribute

¢ Add CHECK(<condition>) to the declaration for
the attribute

e The condition may use the name of the
attribute, but any other relation or attribute
name must be in a subquery

UB CSE 562

Tuple-Based Checks

e CHECK (<condition>) may be added as a
relation-schema element

e The condition may refer to any attribute of the
relation
- But other attributes or relations require a subquery

e Checked on insert or update only

UB CSE 562 15

Example: Attribute-Based Check

CREATE TABLE Sells (
bar CHAR (20),
beer CHAR (20) CHECK (beer IN
(SELECT name FROM Beers)),
price REAL CHECK (price <= 5.00)
)7

UB CSE 562 14

Example: Tuple-Based Check

e Only Joe’s Bar can sell beer for more than $5:
CREATE TABLE Sells (

bar CHAR (20),
beer CHAR (20),
price REAL,

CHECK (bar = ’'Joe’’s Bar’ OR
price <= 5.00)

UB CSE 562

e These are database-schema elements, like
relations or views

e Defined by:
CREATE ASSERTION <name>
CHECK (<condition>);

e Condition may refer to any relation or attribute
in the database schema

Example: Assertion

e In Drinkers(name, addr, phone) and Bars(name,
addr, license), there cannot be more bars than
drinkers

CREATE ASSERTION FewBar CHECK (
(SELECT COUNT (*) FROM Bars) <=
(SELECT COUNT (*) FROM Drinkers)

)

UB CSE 562 19

Example: Assertion

e In Sells(bar, beer, price), no bar may charge an
average of more than $5

CREATE ASSERTION NoRipoffBars CHECK (
NOT EXISTS (

Bars with an
SELECT bar FROM Sells /average price
GROUP BY bar above $5

HAVING 5.00 < AVG (price)

UB CSE 56

Triggers: Motivation

e Assertions are powerful, but the DBMS often
can’t tell when they need to be checked

o Attribute- and tuple-based checks are checked
at known times, but are not powerful

e Triggers let the user decide when to check for
any condition

UB CSE 562

Event-Condition-Action Rules

Preliminary Example: A Trigger

¢ Another name for “trigger” is ECA rule, or o Instead of using a foreign-key constraint and
event-condition-action rule rejecting insertions into Sells(bar, beer, price)

« Event: typically a type of database modification, with unknown beers, a trigger can add that beer
e.g., “insert on Sells” to Beers, with a NULL manufacturer

e Condition: Any SQL Boolean-valued expression
e Action: Any SQL statements

UB CSE 562 21 UB CSE 562 22

Example: Trigger Definition Options: The Event

CREATE TRIGGER BeerTrig The event e AFTER can be BEFORE
AFTER INSERT ON Sells o INSERT can be DELETE or UPDATE
REFERENCING NEW ROW AS NewTuple - And UPDATE can be UPDATE ... ON a particular
attribute

FOR EACH ROW
WHEN (NewTuple.beer NOT IN /
(SELECT name FROM Beers))
INSERT INTO Beers (name)
VALUES (NewTuple.beer) ; “—— The action

The condition

UB CSE 562

UB CSE 562

Options: FOR EACH ROW

e Triggers are either “row-level” or “statement-
level”

* FOR EACH ROW indicates row-level; its absence
indicates statement-level

e Row level triggers: execute once for each
modified tuple

e Statement-level triggers: execute once for a
SQL statement, regardless of how many tuples
are modified

UB CSE 562

Options: The Condition

¢ Any Boolean-valued condition

¢ Evaluated on the database as it would exist
before or after the triggering event, depending
on whether BEFORE or AFTER is used
- But always before the changes take effect

e Access the new/old tuple/table through the
names in the REFERENCING clause

UB CSE 562 27

Options: REFERENCING

INSERT statements imply a new tuple (for row-
level) or new table (for statement-level)
- The “table” is the set of inserted tuples
DELETE implies an old tuple or table
UPDATE implies both
Refer to these by
[NEW OLD][TUPLE TABLE] AS <name>

UB CSE 562 26

Options: The Action

e There can be more than one SQL statement in
the action
- Surround by BEGIN ... END if there is more than one
e But queries make no sense in an action, so we
are really limited to modifications

UB CSE 562

Another Example

e Using Sells(bar, beer, price) and a unary relation
RipoffBars(bar), maintain a list of bars that raise
the price of any beer by more than $1

UB CSE 562 29

e A view is a relation defined in terms of stored
tables (called base tables) and other views
e Two kinds:

- Virtual = not stored in the database; just a query for
constructing the relation

- Materialized = actually constructed and stored

UB CSE 562 31

The Trigger

CREATE TRIGGER PriceTrig The event —
; only changes
AFTER UPDATE OF price ON Sells/to prices

REFERENCING Updates let us
OLD ROW AS ooo talk about old
and new tuples
NEW ROW AS nnn Condition:

We need to consider a raise in
FOR EACH ROW “— each price change price > $1

WHEN (nnn.price > ooo.price + 1.00)
INSERT INTO RipoffBars
VALUES (nnn.bar) ;

When the price change
is great enough, add
the bar to RipoffBars

UB CSE 562 30
- -

Declaring Views

e Declare by:
CREATE [MATERIALIZED] VIEW <name> AS
<query>;
e Default is virtual

UB CSE 562

Example: View Definition

e CanDrink(drinker, beer) is a view “containing”
the drinker-beer pairs such that the drinker
frequents at least one bar that serves the beer:

CREATE VIEW CanDrink AS
SELECT drinker, beer
FROM Frequents, Sells
WHERE Frequents.bar = Sells.bar;

UB CSE 562

Materialized Views

e Problem: each time a base table changes, the
materialized view may change
- Cannot afford to re-compute the view with each change
e Solution: Periodic reconstruction of the
materialized view, which is otherwise “out of
date”

UB CSE 562 35

Example: Accessing a View

* Query a view as if it were a base table

- Also: a limited ability to modify views if it makes sense
as a modification of one underlying base table

« Example query:
SELECT beer
FROM CanDrink
WHERE drinker = ’Sally’;

UB CSE 562 34

Example: A Data Warehouse

e Wal-Mart stores every sale at every store in a
database

e Overnight, the sales for the day are used to
update a data warehouse = materialized views
of the sales

* The warehouse is used by analysts to predict
trends and move goods to where they are selling
best

UB CSE 562

e Index = data structure used to speed access to
tuples of a relation, given values of one or more
attributes

e Could be a hash table, but in a DBMS it is always
a balanced search tree with giant nodes (a full
disk page) called a B-tree

UB CSE 562

Using Indexes

e Given a value v, the index takes us to only those
tuples that have v in the attribute(s) of the
index

o Example: use BeerInd and SellInd to find the
prices of beers manufactured by Pete’s and sold
by Joe (next slide)

UB CSE 562

Declaring Indexes

* No standard!

e Typical syntax:
CREATE INDEX BeerInd ON Beers (manf);
CREATE INDEX SellInd ON Sells (bar, beer);

UB CSE 562

Using Indexes (cont’d)

SELECT price
FROM Beers, Sells

WHERE manf = ’'Pete’’s’ AND
Beers.name = Sells.beer AND
bar = "Joe’’s Bar’;

1. Use BeerInd to get all the beers made by Pete’s

2. Then use SellInd to get prices of those beers,
with bar = "Joe”’s Bar’

UB CSE 562

10

Database Tuning

¢ A major problem in making a database run fast
is deciding which indexes to create
e Pro: An index speeds up queries that can use it

e Con: An index slows down all modifications on

its relation because the index must be modified
too

UB CSE 562

This Time

e Constraints and Triggers
- Chapter 7
¢ Views and Indexes
- Chapter 8: 8.1, 8.3, 8.5.1, 8.5.2

UB CSE 562

Example: Tuning

e Suppose the only things we did with our beers
database was:

- Insert new facts into a relation (10%)
- Find the price of a given beer at a given bar (90%)
e Then SellInd on Sells(bar, beer) would be

wonderful, but BeerInd on Beers(manf) would be
harmful

UB CSE 562 42

11

