
1

CSE 562
Database Systems

Constraints, Triggers, Views, Indexes

UB CSE 562

Some slides are based or modified from originals by
Database Systems: The Complete Book,

Pearson Prentice Hall 2nd Edition
©2008 Garcia-Molina, Ullman, and Widom

UB CSE 562 2

Example DB

 Beers(name, manf)
 Bars(name, addr, license)
 Sells(bar, beer, price)
 Drinkers(name, addr, phone)
 Likes(drinker, beer)
 Frequents(drinker, bar)

–  Underline indicates key attributes

UB CSE 562 3

Constraints and Triggers

•  A constraint is a relationship among data
elements that the DBMS is required to enforce
–  Example: key constraints

•  Triggers are only executed when a specified
condition occurs, e.g., insertion of a tuple
–  Easier to implement than complex constraints

UB CSE 562 4

Kinds of Constraints

•  Keys
•  Foreign-key, or referential-integrity
•  Value-based constraints

–  Constrain values of a particular attribute

•  Tuple-based constraints
–  Relationship among components

•  Assertions: any SQL Boolean expression

2

UB CSE 562 5

•  Place PRIMARY KEY or UNIQUE after the type in
the declaration of the attribute

•  Example:
 CREATE TABLE Beers (
 name CHAR(20) UNIQUE,
 manf CHAR(20)

);

Review: Single-Attribute Keys

UB CSE 562 6

Review: Multi-Attribute Key

•  The bar and beer together are the key for Sells:
 CREATE TABLE Sells (
 bar CHAR(20),

 beer VARCHAR(20),
 price REAL,

 PRIMARY KEY (bar, beer)

);

UB CSE 562 7

Foreign Keys

•  Values appearing in attributes of one relation
must appear together in certain attributes of
another relation

•  Example: in Sells(bar, beer, price), we might
expect that a beer value also appears in
Beers.name

UB CSE 562 8

Example: As Schema Element

CREATE TABLE Beers (
 name CHAR(20) PRIMARY KEY,
 manf CHAR(20)
);
CREATE TABLE Sells (
 bar CHAR(20),
 beer CHAR(20),
 price REAL,
 FOREIGN KEY(beer) REFERENCES Beers(name)
);

3

UB CSE 562 9

Actions Taken

•  An insert or update to Sells that introduces a
nonexistent beer must be rejected

•  A deletion or update to Beers that removes a
beer value found in some tuples of Sells can be
handled in three ways (next slide)

UB CSE 562 10

Actions Taken (cont’d)

•  Default: Reject the modification
•  Cascade: Make the same changes in Sells

–  Deleted beer: delete Sells tuple
–  Updated beer: change value in Sells

•  Set NULL: Change the beer to NULL

UB CSE 562 11

Choosing a Policy

•  When we declare a foreign key, we may choose
policies SET NULL or CASCADE independently for
deletions and updates

•  Follow the foreign-key declaration by:
 ON [UPDATE, DELETE][SET NULL CASCADE]

•  Two such clauses may be used
•  Otherwise, the default (reject) is used

UB CSE 562 12

Example: Setting Policy

CREATE TABLE Sells (
 bar CHAR(20),
 beer CHAR(20),
 price REAL,
 FOREIGN KEY(beer)
 REFERENCES Beers(name)
 ON DELETE SET NULL
 ON UPDATE CASCADE
);

4

UB CSE 562 13

Attribute-Based Checks

•  Constraints on the value of a particular attribute
•  Add CHECK(<condition>) to the declaration for

the attribute
•  The condition may use the name of the

attribute, but any other relation or attribute
name must be in a subquery

UB CSE 562 14

Example: Attribute-Based Check

CREATE TABLE Sells (

 bar CHAR(20),
 beer CHAR(20) CHECK (beer IN

 (SELECT name FROM Beers)),
 price REAL CHECK (price <= 5.00)

);

UB CSE 562 15

Tuple-Based Checks

•  CHECK (<condition>) may be added as a
relation-schema element

•  The condition may refer to any attribute of the
relation
–  But other attributes or relations require a subquery

•  Checked on insert or update only

UB CSE 562 16

Example: Tuple-Based Check

•  Only Joe’s Bar can sell beer for more than $5:
 CREATE TABLE Sells (
 bar CHAR(20),

 beer CHAR(20),
 price REAL,

 CHECK (bar = ’Joe’’s Bar’ OR

 price <= 5.00)
);

5

UB CSE 562 17

Assertions

•  These are database-schema elements, like
relations or views

•  Defined by:
 CREATE ASSERTION <name>
 CHECK (<condition>);

•  Condition may refer to any relation or attribute
in the database schema

UB CSE 562 18

Example: Assertion

Bars with an
average price

above $5

•  In Sells(bar, beer, price), no bar may charge an
average of more than $5

 CREATE ASSERTION NoRipoffBars CHECK (
 NOT EXISTS (

 SELECT bar FROM Sells
 GROUP BY bar

 HAVING 5.00 < AVG(price)
)

);

UB CSE 562 19

Example: Assertion

•  In Drinkers(name, addr, phone) and Bars(name,
addr, license), there cannot be more bars than
drinkers

 CREATE ASSERTION FewBar CHECK (

 (SELECT COUNT(*) FROM Bars) <=

 (SELECT COUNT(*) FROM Drinkers)
);

UB CSE 562 20

Triggers: Motivation

•  Assertions are powerful, but the DBMS often
can’t tell when they need to be checked

•  Attribute- and tuple-based checks are checked
at known times, but are not powerful

•  Triggers let the user decide when to check for
any condition

6

UB CSE 562 21

Event-Condition-Action Rules

•  Another name for “trigger” is ECA rule, or
event-condition-action rule

•  Event: typically a type of database modification,
e.g., “insert on Sells”

•  Condition: Any SQL Boolean-valued expression
•  Action: Any SQL statements

UB CSE 562 22

Preliminary Example: A Trigger

•  Instead of using a foreign-key constraint and
rejecting insertions into Sells(bar, beer, price)
with unknown beers, a trigger can add that beer
to Beers, with a NULL manufacturer

UB CSE 562 23

Example: Trigger Definition

The event

The condition

The action

CREATE TRIGGER BeerTrig

 AFTER INSERT ON Sells
 REFERENCING NEW ROW AS NewTuple

 FOR EACH ROW
 WHEN (NewTuple.beer NOT IN

 (SELECT name FROM Beers))

 INSERT INTO Beers(name)
 VALUES(NewTuple.beer);

UB CSE 562 24

Options: The Event

•  AFTER can be BEFORE
•  INSERT can be DELETE or UPDATE

–  And UPDATE can be UPDATE … ON a particular
attribute

7

UB CSE 562 25

Options: FOR EACH ROW

•  Triggers are either “row-level” or “statement-
level”

•  FOR EACH ROW indicates row-level; its absence
indicates statement-level

•  Row level triggers: execute once for each
modified tuple

•  Statement-level triggers: execute once for a
SQL statement, regardless of how many tuples
are modified

UB CSE 562 26

Options: REFERENCING

•  INSERT statements imply a new tuple (for row-
level) or new table (for statement-level)
–  The “table” is the set of inserted tuples

•  DELETE implies an old tuple or table
•  UPDATE implies both
•  Refer to these by

 [NEW OLD][TUPLE TABLE] AS <name>

UB CSE 562 27

Options: The Condition

•  Any Boolean-valued condition
•  Evaluated on the database as it would exist

before or after the triggering event, depending
on whether BEFORE or AFTER is used
–  But always before the changes take effect

•  Access the new/old tuple/table through the
names in the REFERENCING clause

UB CSE 562 28

Options: The Action

•  There can be more than one SQL statement in
the action
–  Surround by BEGIN … END if there is more than one

•  But queries make no sense in an action, so we
are really limited to modifications

8

UB CSE 562 29

Another Example

•  Using Sells(bar, beer, price) and a unary relation
RipoffBars(bar), maintain a list of bars that raise
the price of any beer by more than $1

UB CSE 562 30

The Trigger

The event –
only changes
to prices

Updates let us
talk about old
and new tuples

We need to consider
each price change

Condition:
a raise in
price > $1

When the price change
is great enough, add
the bar to RipoffBars

CREATE TRIGGER PriceTrig

 AFTER UPDATE OF price ON Sells
 REFERENCING

 OLD ROW AS ooo
 NEW ROW AS nnn

 FOR EACH ROW

 WHEN(nnn.price > ooo.price + 1.00)
 INSERT INTO RipoffBars

 VALUES(nnn.bar);

UB CSE 562 31

Views

•  A view is a relation defined in terms of stored
tables (called base tables) and other views

•  Two kinds:
–  Virtual = not stored in the database; just a query for

constructing the relation
–  Materialized = actually constructed and stored

UB CSE 562 32

Declaring Views

•  Declare by:
 CREATE [MATERIALIZED] VIEW <name> AS
 <query>;

•  Default is virtual

9

UB CSE 562 33

Example: View Definition

•  CanDrink(drinker, beer) is a view “containing”
the drinker-beer pairs such that the drinker
frequents at least one bar that serves the beer:

 CREATE VIEW CanDrink AS

 SELECT drinker, beer
 FROM Frequents, Sells

 WHERE Frequents.bar = Sells.bar;

UB CSE 562 34

Example: Accessing a View

•  Query a view as if it were a base table
–  Also: a limited ability to modify views if it makes sense

as a modification of one underlying base table

•  Example query:
 SELECT beer

 FROM CanDrink
 WHERE drinker = ’Sally’;

UB CSE 562 35

Materialized Views

•  Problem: each time a base table changes, the
materialized view may change
–  Cannot afford to re-compute the view with each change

•  Solution: Periodic reconstruction of the
materialized view, which is otherwise “out of
date”

UB CSE 562 36

Example: A Data Warehouse

•  Wal-Mart stores every sale at every store in a
database

•  Overnight, the sales for the day are used to
update a data warehouse = materialized views
of the sales

•  The warehouse is used by analysts to predict
trends and move goods to where they are selling
best

10

UB CSE 562 37

Indexes

•  Index = data structure used to speed access to
tuples of a relation, given values of one or more
attributes

•  Could be a hash table, but in a DBMS it is always
a balanced search tree with giant nodes (a full
disk page) called a B-tree

UB CSE 562 38

Declaring Indexes

•  No standard!
•  Typical syntax:
 CREATE INDEX BeerInd ON Beers(manf);

 CREATE INDEX SellInd ON Sells(bar, beer);

UB CSE 562 39

Using Indexes

•  Given a value v, the index takes us to only those
tuples that have v in the attribute(s) of the
index

•  Example: use BeerInd and SellInd to find the
prices of beers manufactured by Pete’s and sold
by Joe (next slide)

UB CSE 562 40

Using Indexes (cont’d)

SELECT price

FROM Beers, Sells
WHERE manf = ’Pete’’s’ AND

 Beers.name = Sells.beer AND
 bar = ’Joe’’s Bar’;

1.  Use BeerInd to get all the beers made by Pete’s
2.  Then use SellInd to get prices of those beers,

with bar = ’Joe’’s Bar’

11

UB CSE 562 41

Database Tuning

•  A major problem in making a database run fast
is deciding which indexes to create

•  Pro: An index speeds up queries that can use it
•  Con: An index slows down all modifications on

its relation because the index must be modified
too

UB CSE 562 42

Example: Tuning

•  Suppose the only things we did with our beers
database was:
–  Insert new facts into a relation (10%)
–  Find the price of a given beer at a given bar (90%)

•  Then SellInd on Sells(bar, beer) would be
wonderful, but BeerInd on Beers(manf) would be
harmful

UB CSE 562 43

This Time

•  Constraints and Triggers
–  Chapter 7

•  Views and Indexes
–  Chapter 8: 8.1, 8.3, 8.5.1, 8.5.2

