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CSE 562 
Database Systems 

Database Design 

UB CSE 562 

Some slides are based or modified from originals by 
Magdalena Balazinska 
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Goal 

•  Question: The relational model is great, but 
how do I go about designing my database 
schema? 

UB CSE 562 3 

Outline 

•  Conceptual DB Design: Entity/Relationship Model 
•  Problematic Database Designs 
•  Functional Dependencies 
•  Normal Forms and Schema Normalization 
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Database Design Process 

Data 
Modeling Refinement SQL 

Tables Files 

E/R Diagrams Relations Conceptual 
Schema 

Physical 
Schema 
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•  Conceptual Model 

•  Relational Model + 
 Functional 
 Dependencies (FDs) 

•  Normalization 
 Eliminates Anomalies 

Conceptual Schema Design 

Patient Doctor patient_of 

pno name 

specialty name zip 

dno since 
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Entity/Relationship Diagrams 

•  Attributes 

•  Entity Sets 

•  Relationship Sets 

Patient 

patient_of 

name 
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Example E/R Diagram 

Patient Doctor patient_of 

pno name 

specialty name zip 

dno since 
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Resulting Relations 

•  One way to translate diagram into relations: 

  PatientOf (pno, name, zip, dno, since) 
  Doctor (dno, dname, specialty) 
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Entity/Relationship Model 

•  Typically, each entity has a key 
•  E/R relationships can include multiplicity 

–  One-to-one, one-to-many, etc. 
–  Indicated with arrows 

•  Can model multi-way relationships 
•  Can model subclasses 
•  And more... 
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Example with Inheritance 

Example from Phil Bernstein’s SIGMOD’07 keynote talk 

Person 

Customer 

id name 

credit_score 

billing_addr 
dept Employee 
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Converting Into Relations 

•  One way to translate our E/R diagram into relations: 
 HR (id, name) 
 Empl (id, dept) id is also a foreign key referencing HR 
 Client (id, name, credit_score, billing_addr) 

•  Today, we only talk about using E/R diagrams to help us 
design the conceptual schema of a database 

•  In general, apps may need to operate on a view of the 
data closer to E/R model (e.g., OO view of data) while DB 
contains relations 
–  Need to translate between objects and relations 
–  Object-Relational Mapping (ORM) 
–  Hibernate, Microsoft ADO.NET Entity Framework, etc. 
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Outline 

•  Conceptual DB Design: Entity/Relationship Model 
•  Problematic Database Designs 
•  Functional Dependencies 
•  Normal Forms and Schema Normalization 
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Problematic Designs 

•  Some DB designs lead to redundancy 
–  Same information stored multiple times 

•  Problems: 
–  Redundant Storage 
–  Update Anomalies 
–  Insertion Anomalies 
–  Deletion Anomalies 
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Problem Examples 

•  What if we want to insert a patient without a doctor? 
•  What if we want to delete the last doctor for a patient? 
•  Illegal as (pno,dno) is the primary key, cannot have nulls 

pno name zip dno since 

1 p1 98125 2 2000 

1 p1 98125 3 2003 

2 p2 98112 1 2002 

3 p1 98143 1 1985 

Redundant 

If we update to 98119, 
we get inconsistency 

PatientOf 
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Solution: Decomposition 

•  Decomposition solves the problem,  
but need to be careful… 

pno name zip 

1 p1 98125 

2 p2 98112 

3 p1 98143 

Patient 

pno dno since 

1 2 2000 

1 3 2003 

2 1 2002 

3 1 1985 

PatientOf 
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Lossy Decomposition 

•  Decomposition can cause us to lose information! 

pno name zip 

1 p1 98125 

2 p2 98112 

3 p1 98143 

Patient 

name dno since 

p1 2 2000 

p1 3 2003 

p2 1 2002 

p1 1 1985 

PatientOf 
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Schema Refinement Challenges 

•  How do we know that we should decompose a 
relation? 
–  Functional dependencies 
–  Normal forms 

•  How do we make sure decomposition does not 
lose any information? 
–  Lossless-join decompositions 
–  Dependency-preserving decompositions 
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Outline 

•  Conceptual DB Design: Entity/Relationship Model 
•  Problematic Database Designs 
•  Functional Dependencies 
•  Normal Forms and Schema Normalization 
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Functional Dependency 

•  A functional dependency (FD) is an integrity 
constraint that generalizes the concept of a key 

•  An instance of relation R satisfies the FD: X → Y 
–  if for every pair of tuples t1 and t2 

–  if t1.X = t2.X then t1.Y = t2.Y 
–  where X, Y are two nonempty sets of attributes in R 

•  We say that X determines Y 

•  FDs come from domain knowledge 
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FD Illustration 

The FD A1, …, Am → B1, …, Bn holds in R if: 
∀t, t’ ∈ R, 

 (t.A1=t’.A1 ∧ … ∧ t.Am=t’.Am ⇒ t.B1=t’.B1 ∧ … ∧ t.Bn=t’.Bn) 

   if t, t’ agree here then t, t’ agree here 

A1 … Am B1 … Bn 

R 

t 

t’ 
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FD Example 

•  An FD holds, or does not hold on an instance: 

•  EmpID → Name, Phone, Position 
•  Position → Phone 
•  but not Phone → Position 

EmpID Name Phone Position 

E0045 Smith 1234 Clerk 

E3542 Mike 9876 Salesrep 

E1111 Smith 9876 Salesrep 

E9999 Mary 1234 Lawyer 
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FD Terminology 

•  FDs are constraints 
–  On some instances they hold 
–  On others they do not 

•  If for every instance of R a given FD will hold, 
then we say that R satisfies the FD 
–  If we say that R satisfies an FD, we are stating a 

constraint on R 

•  FDs come from domain knowledge 
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An Interesting Observation 

     name → color 
•  If all these FDs are true:  category → department 

     color, category → price 

•  Then this FD also holds:  name, category → price 

•  Why ??? 
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How Is This All Useful? 

•  Anomalies occur when certain “bad” FDs hold 

•  We know some of the FDs 

•  Need to find all FDs 
•  Then look for the bad ones 
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Closure of FDs 

•  Some FDs imply others 
–  For example: Employee(ssn,position,salary) 
–  FD1: ssn → position and FD2: position → salary 
–  Imply FD3: ssn → salary 

•  Can compute closure of a set of FDs 
–  Set F+ of all FDs implied by a given set F of FDs 

•  Armstrong’s Axioms: sound and complete 
–  Reflexivity: if Y ⊆ X then X → Y 
–  Augmentation: if X → Y then XZ → YZ for any Z 
–  Transitivity: if X → Y and Y → Z then X → Z 

•  Convenient split/combine rule: 
 If X → Y and X → Z then X → YZ 
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Example (cont’d) 

     1. name → color 
•  Starting from these FDs:  2. category → department 

     3. color, category → price 

•  Infer the following FDs: 

Inferred FD Which Rule did we apply? 

4. name, category → name 

5. name, category → color 

6. name, category → category 

7. name, category → color, category 

8. name, category → price 
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Example (cont’d) 

     1. name → color 
•  Starting from these FDs:  2. category → department 

     3. color, category → price 

•  Infer the following FDs: 

•  TOO HARD! Let’s see an easier way. 

Inferred FD Which Rule did we apply? 

4. name, category → name Reflexivity 

5. name, category → color Transitivity on 4 and 1 

6. name, category → category Reflexivity 

7. name, category → color, category Split/Combine on 5 and 6 

8. name, category → price Transitivity on 7 and 3 
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Closure of a Set of Attributes 

•  Given a set of attributes A1, …, An 
•  The closure {A1, …, An}+ = the set of attributes B 

          such that A1, …, An → B 

•  Example: 
  category → department 
  name → color 
  color, category → price 

•  Closures: 
  name+ = {name, color} 
  {name, category}+ = {name, category, color,  
      department, price} 
  color+ = {color} 
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Closure Algorithm For Attributes 

To find closure {A1, …, An}+ 
1.  Start with X={A1, …, An} 
2.  Repeat until X doesn’t change:   
3.      if B1, …, Bn → C is a FD and 

       B1, …, Bn are all in X 
4.      then add C to X 

Can use this algorithm to find keys 
•  Compute X+ for all sets X 
•  If X+ = all attributes, then X is a superkey  
•  Minimal superkeys are keys 
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Closure For Attributes Example 

•  Example: 
  category → department 
  name → color 
  color, category → price 

•  Closures: 
  name+ = {name, color} 
  {name, category}+ = {name, category, color,  
      department, price} 
  color+ = {color} 
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Another Example 

•  R(A, B, C, D, E, F) 
     A, B → C 
     A, D → E 
     B → D 
     A, F → B 

•  Compute {A, B}+ 
  X = {A, B, C, D, E} 

•  Compute {A, F}+ 
  X = {A, F, B, C, D, E} 
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Using Closure To Infer ALL FDs 

•  Example:  A, B → C 
   A, D → B 
   B → D 

1.  Step 1: Compute X+, for every X: 
 A+=A, B+=BD, C+= C, D+= D 
 AB+=ABCD, AC+=AC, AD+=ABCD, BC+=BCD, 
      BD+=BD, CD+=CD 
 ABC+=ABD+=ACD+=ABCD, BCD+= BCD 
 ABCD+=ABCD 

2.  Step 2: Enumerate all FDs X→Y, s.t. Y ⊆ X+ and X∩Y = ∅: 
 AB→CD, AD→BC, BC→D, ABC→D, ABD→C, ACD→B 
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Decomposition Problems 

•  FDs will help us identify possible redundancy 
–  Identify redundancy and split relations to avoid it 

•  Can we get the data back correctly? 
–  Lossless-join decomposition 

•  Can we recover the FDs on the ‘big’ table from 
the FDs on the small tables? 
–  Dependency-preserving decomposition 
–  So that we can enforce all FDs without performing joins 
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Outline 

•  Conceptual DB Design: Entity/Relationship Model 
•  Problematic Database Designs 
•  Functional Dependencies 
•  Normal Forms and Schema Normalization 
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Normal Forms 

•  Based on Functional Dependencies 
–  3rd Normal Form 
–  Boyce Codd Normal Form (BCNF) 

•  Based on Multi-valued Dependencies 
–  4th Normal Form 

•  Based on Join Dependencies 
–  5th Normal Form 
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BCNF 

•  A simple condition for removing anomalies from 
relations: 

 A relation R is in BCNF if: 
 If A1, …, An → B is a non-trivial dependency in R, 
then {A1, …, An} is a superkey for R 

•  BCNF ensures that no redundancy can be 
detected using FD information alone 
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Example 

•  {pno, dno} is a key, but pno → name, zip 
•  BCNF violation, so we decompose 

pno name zip dno since 

1 p1 98125 2 2000 

1 p1 98125 3 2003 

2 p2 98112 1 2002 

3 p1 98143 1 1985 

PatientOf 
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Decomposition in General 

R(A1, …, An, B1, …, Bm, C1, …, Cp) 

R1(A1, …, An, B1, …, Bm)  R2(A1, …, An, C1, …, Cp) 

•  R1 = projection of R on A1, …, An, B1, …, Bm 
•  R2 = projection of R on A1, …, An, C1, …, Cp 

•  Theorem If A1, …, An → B1, …, Bm, then the 
decomposition is lossless 

•  Note: don’t need necessarily A1, …, An → C1, …, Cp 
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BCNF Decomposition Algorithm 

Repeat 
    choose A1, …, Am → B1, …, Bn that violates BCNF condition 
    split R into 
        R1(A1, …, Am, B1, …, Bn) and R2(A1, …, Am, [rest]) 
    continue with both R1 and R2 

Until no more violations 

•  Lossless-join decomposition: Attributes common to R1 
and R2 must contain a key for either R1 or R2 
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BCNF and Dependencies 

•  FDs:  Unit → Company 
   Company, Product → Unit 

•  So there is a BCNF violation, and we decompose 

Unit Company Product 
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BCNF and Dependencies 

•  FDs:  Unit → Company 
   Company, Product → Unit 

•  So there is a BCNF violation, and we decompose 

    Unit → Company 

    No FDs 

•  In BCNF we lose the FD: Company, Product → Unit 

Unit Company Product 

Unit Company 

Unit Product 
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3NF 

•  A simple condition for removing anomalies 
from relations 

 A relation R is in 3rd normal form if: 
 Whenever there is a nontrivial dependency 
 A1, A2, …, An → B for R, then {A1, A2, …, An } is 
a superkey for R, or B is part of a key 
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3NF Discussion 

•  3NF decomposition vs. BCNF decomposition: 
–  Use same decomposition steps, for a while 
–  3NF may stop decomposing, while BCNF continues 

•  Tradeoffs 
–  BCNF = no anomalies, but may lose some FDs 
–  3NF = keeps all FDs, but may have some anomalies 
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Summary 

•  Database design is not trivial 
–  Use E/R models 
–  Translate E/R models into relations 
–  Normalize to eliminate anomalies 

•  Normalization tradeoffs 
–  BCNF: no anomalies, but may lose some FDs 
–  3NF: keeps all FDs, but may have anomalies 
–  Too many small tables affect performance 
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This Time 

•  Design Theory for Relational Databases 
–  Chapter 3: 3.1 – 3.5 

•  High-Level Database Models 
–  Chapter 4: 4.1 – 4.6 


