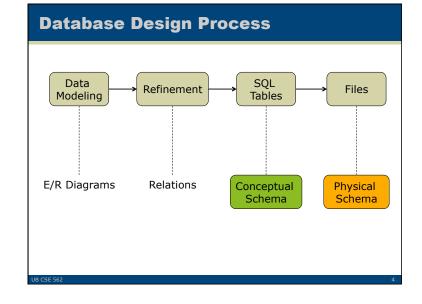


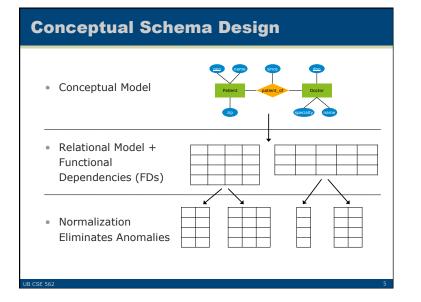
Goal

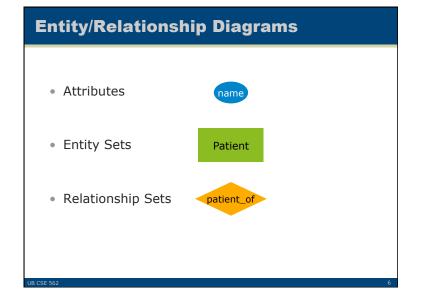
• **Question**: The relational model is great, but how do I go about designing my database schema?

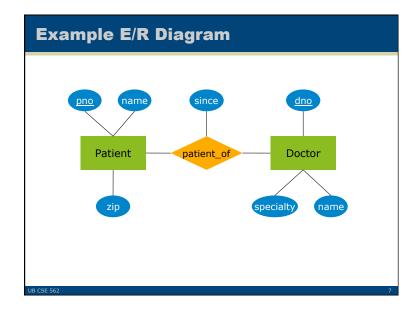
Outline

- Conceptual DB Design: Entity/Relationship Model
- Problematic Database Designs
- Functional Dependencies
- Normal Forms and Schema Normalization









Resulting Relations

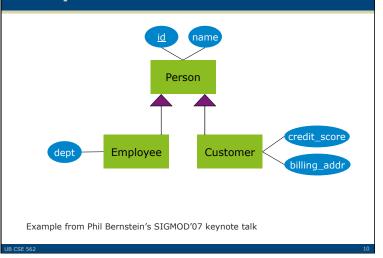
• One way to translate diagram into relations:

PatientOf (<u>pno</u>, name, zip, dno, since) Doctor (<u>dno</u>, dname, specialty)

Entity/Relationship Model

- Typically, each entity has a key
- E/R relationships can include multiplicity
 - One-to-one, one-to-many, etc.
 - Indicated with arrows
- Can model multi-way relationships
- Can model subclasses
- And more...

Example with Inheritance



Converting Into Relations

• One way to translate our E/R diagram into relations: HR (<u>id</u>, name)

Empl (<u>id</u>, dept) id is also a foreign key referencing HR Client (<u>id</u>, name, credit_score, billing_addr)

- Today, we only talk about using E/R diagrams to help us design the conceptual schema of a database
- In general, apps may need to operate on a view of the data closer to E/R model (e.g., OO view of data) while DB contains relations
 - Need to translate between objects and relations
 - Object-Relational Mapping (ORM)
 - Hibernate, Microsoft ADO.NET Entity Framework, etc.

Outline

- Conceptual DB Design: Entity/Relationship Model
- Problematic Database Designs
- Functional Dependencies
- Normal Forms and Schema Normalization

Problematic Designs

- Some DB designs lead to redundancy
 Same information stored multiple times
- Problems:

UB CSE 562

- Redundant Storage
- Update Anomalies
- Insertion Anomalies
- Deletion Anomalies

Problem Examples

		Redunda	ant		
Patie	ntOf				
pno	name	zip	dno	since	
1	p1	98125	2	2000	
1	p1	98125	3	2003	If we update to 98119,
2	p2	98112	1	2002	we get inconsistency
3	p1	98143	1	1985	

- What if we want to insert a patient without a doctor?
- What if we want to delete the last doctor for a patient?
- Illegal as (pno,dno) is the primary key, cannot have nulls

Solution: Decomposition Patient PatientOf pno name zip 98125 1 p1 1 2 2000 2 p2 98112 1 3 2003 3 p1 98143 2 1 2002 3 1 1985 • Decomposition solves the problem, but need to be careful...

Lossy Decomposition

UB CSE 562

Pati	ient		Patien	tOf
pno	name	zip	name	dno
1	p1	98125	p1	2
2	p2	98112	p1	3
3	p1	98143	p2	1
			p1	1

• Decomposition can cause us to lose information!

Schema Refinement Challenges

- How do we know that we should decompose a relation?
 - Functional dependencies
 - Normal forms
- How do we make sure decomposition does not lose any information?
 - Lossless-join decompositions
 - Dependency-preserving decompositions

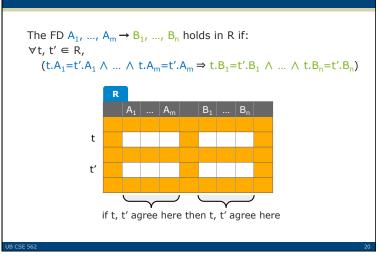
Outline

- Conceptual DB Design: Entity/Relationship Model
- Problematic Database Designs
- Functional Dependencies
- Normal Forms and Schema Normalization

Functional Dependency

- A functional dependency (FD) is an integrity constraint that generalizes the concept of a key
- An instance of relation R satisfies the **FD: X** → **Y** if for every pair of tuples t₁ and t₂
 - if $t_1 X = t_2 X$ then $t_1 Y = t_2 Y$
 - where X, Y are two nonempty sets of attributes in R
- We say that X determines Y
- FDs come from domain knowledge

FD Illustration



FD Example

• An FD **holds**, or **does not hold** on an instance:

EmpID	Name	Phone	Position
E0045	Smith	1234	Clerk
E3542	Mike	9876	Salesrep
E1111	Smith	9876	Salesrep
E9999	Mary	1234	Lawyer

- EmpID → Name, Phone, Position
- Position \rightarrow Phone
- but not Phone \rightarrow Position

FD Terminology

- FDs are constraints
 - On some instances they hold
 - On others they do not
- If for every instance of R a given FD will hold, then we say that R satisfies the FD
 - If we say that R satisfies an FD, we are stating a constraint on $\ensuremath{\mathsf{R}}$
- FDs come from domain knowledge

An Interesting Observation

- If all these FDs are true:
 A category → department color, category → price
- Then this FD also holds: **name, category** → **price**
- Why ???

UB CSE 562

How Is This All Useful?

- Anomalies occur when certain "bad" FDs hold
- We know some of the FDs
- Need to find **all** FDs
- Then look for the bad ones

Closure of FDs

- Some FDs imply others
 - For example: Employee(ssn,position,salary)
 - FD1: ssn \rightarrow position and FD2: position \rightarrow salary
 - Imply FD3: ssn \rightarrow salary
- Can compute **closure** of a set of FDs
 - Set F+ of all FDs implied by a given set F of FDs
- Armstrong's Axioms: sound and complete
 - Reflexivity: if $Y \subseteq X$ then $X \rightarrow Y$
 - Augmentation: if $X \rightarrow Y$ then $XZ \rightarrow YZ$ for any Z
 - Transitivity: if $X \to Y$ and $Y \to Z$ then $X \to Z$
- Convenient split/combine rule: If $X \to Y$ and $X \to Z$ then $X \to YZ$

Example (cont'd) Starting from these FDs: ¹. name → color ². category → department ³. color, category → price

• Infer the following FDs:

4. name, category → name	
5. name, category → color	
6. name, category → category	
7. name, category \rightarrow color, category	
8. name, category → price	

 Starting from these FDs: 1. name → color 2. category → department 3. color, category → price 				
• Infer the following FDs:				
Inferred FD	Which Rule did we apply?			
4. name, category \rightarrow name	Reflexivity			
5. name, category → color	Transitivity on 4 and 1			
6. name, category → category	Reflexivity			
7. name, category \rightarrow color, category	Split/Combine on 5 and 6			
8. name, category \rightarrow price	Transitivity on 7 and 3			
• TOO HARD! Let's see an easier way.				

Closure of a Set of Attributes . Given a set of attributes A₁, ..., A_n . The closure {A₁, ..., A_n}+ = the set of attributes B such that A₁, ..., A_n → B . . Example: category → department name → color color, category → price .

Closure Algorithm For Attributes

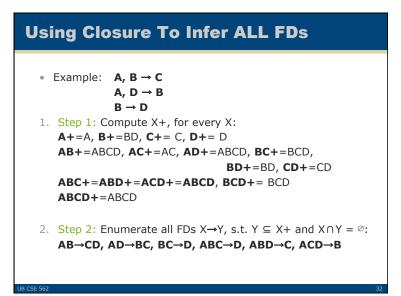
- To find **closure** $\{A_1, ..., A_n\}$ +
- 1. Start with $X = \{A_1, ..., A_n\}$
- 2. Repeat until X doesn't change:
- 3. if $B_1, ..., B_n \rightarrow C$ is a FD and $B_1, ..., B_n$ are all in X
- 4. then add C to X

Can use this algorithm to find keys

- Compute X+ for all sets X
- If X+ = all attributes, then X is a superkey
- Minimal superkeys are keys

Closure For Attributes Example . Example: category → department name → color color, category → price . Closures: mame+ = {name, color} {name, category}+ = {name, category, color, department, price} color+ = {color}

Another Example			
• R(A, B, C, D, E, F)	A, $B \rightarrow C$ A, $D \rightarrow E$ $B \rightarrow D$ A, $F \rightarrow B$		
 Compute {A, B}+ X = {A, B, C, D, Compute {A, F}+ X = {A, F, B, C, 			



Decomposition Problems

- FDs will help us identify possible redundancy
 Identify redundancy and split relations to avoid it
- Can we get the data back correctly? - Lossless-join decomposition
- Can we recover the FDs on the 'big' table from the FDs on the small tables?
 - Dependency-preserving decomposition
 - So that we can enforce all FDs without performing joins

Outline

- Conceptual DB Design: Entity/Relationship Model
- Problematic Database Designs
- Functional Dependencies
- Normal Forms and Schema Normalization

Normal Forms

- Based on Functional Dependencies
 - 3rd Normal Form
 - Boyce Codd Normal Form (BCNF)
- Based on Multi-valued Dependencies

 4th Normal Form
- Based on Join Dependencies
 - 5th Normal Form

BCNF

• A simple condition for removing anomalies from relations:

A relation R is in BCNF if:

If $A_1, ..., A_n \rightarrow B$ is a non-trivial dependency in R, then $\{A_1, ..., A_n\}$ is a superkey for R

• BCNF ensures that no redundancy can be detected using FD information alone

Example

PatientOf						
pno	name	zip	dno	since		
1	p1	98125	2	2000		
1	p1	98125	3	2003		
2	p2	98112	1	2002		
3	p1	98143	1	1985		

- {pno, dno} is a key, but **pno** → **name, zip**
- BCNF violation, so we decompose

Decomposition in General $R(A_{1}, ..., A_{n}, B_{1}, ..., B_{m}, C_{1}, ..., C_{p})$ $R_{1}(A_{1}, ..., A_{n}, B_{1}, ..., B_{m})$ $R_{2}(A_{1}, ..., A_{n}, C_{1}, ..., C_{p})$ $R_{1} = \text{projection of R on } A_{1}, ..., A_{n}, B_{1}, ..., B_{m}$ $R_{2} = \text{projection of R on } A_{1}, ..., A_{n}, C_{1}, ..., C_{p}$ $Theorem \text{ If } A_{1}, ..., A_{n} \rightarrow B_{1}, ..., B_{m}, \text{ then the decomposition is lossless}$ $Note: \text{ don't need necessarily } A_{1}, ..., A_{n} \rightarrow C_{1}, ..., C_{p}$

BCNF Decomposition Algorithm

Repeat

choose $A_1,\,...,\,A_m\to B_1,\,...,\,B_n$ that violates BCNF condition split R into

 $R_1(A_1, ..., A_m, B_1, ..., B_n)$ and $R_2(A_1, ..., A_m, [rest])$ continue with both R_1 and R_2

Until no more violations

- Lossless-join decomposition: Attributes common to R_1 and R_2 must contain a key for either R_1 or R_2

3NF

• A simple condition for removing anomalies from relations

A relation R is in 3rd normal form if: Whenever there is a nontrivial dependency $A_1, A_2, ..., A_n \rightarrow B$ for R, then $\{A_1, A_2, ..., A_n\}$ is a superkey for R, or B is part of a key

3NF Discussion

- 3NF decomposition vs. BCNF decomposition:
 - Use same decomposition steps, for a while
 - 3NF may stop decomposing, while BCNF continues
- Tradeoffs
 - BCNF = no anomalies, but may lose some FDs
 - 3NF = keeps all FDs, but may have some anomalies

Summary

Database design is not trivial

- Use E/R models
- Translate E/R models into relations
- Normalize to eliminate anomalies

Normalization tradeoffs

- BCNF: no anomalies, but may lose some FDs
- 3NF: keeps all FDs, but may have anomalies
- Too many small tables affect performance

This Time

UB CSE 562

- Design Theory for Relational Databases
 Chapter 3: 3.1 3.5
- High-Level Database Models - Chapter 4: 4.1 - 4.6