
1

CSE 562
Database Systems

Database Design

UB CSE 562

Some slides are based or modified from originals by
Magdalena Balazinska

UB CSE 562 2

Goal

•  Question: The relational model is great, but
how do I go about designing my database
schema?

UB CSE 562 3

Outline

•  Conceptual DB Design: Entity/Relationship Model
•  Problematic Database Designs
•  Functional Dependencies
•  Normal Forms and Schema Normalization

UB CSE 562 4

Database Design Process

Data
Modeling Refinement SQL

Tables Files

E/R Diagrams Relations Conceptual
Schema

Physical
Schema

2

UB CSE 562 5

•  Conceptual Model

•  Relational Model +
 Functional
 Dependencies (FDs)

•  Normalization
 Eliminates Anomalies

Conceptual Schema Design

Patient Doctor patient_of

pno name

specialty name zip

dno since

UB CSE 562 6

Entity/Relationship Diagrams

•  Attributes

•  Entity Sets

•  Relationship Sets

Patient

patient_of

name

UB CSE 562 7

Example E/R Diagram

Patient Doctor patient_of

pno name

specialty name zip

dno since

UB CSE 562 8

Resulting Relations

•  One way to translate diagram into relations:

 PatientOf (pno, name, zip, dno, since)
 Doctor (dno, dname, specialty)

3

UB CSE 562 9

Entity/Relationship Model

•  Typically, each entity has a key
•  E/R relationships can include multiplicity

–  One-to-one, one-to-many, etc.
–  Indicated with arrows

•  Can model multi-way relationships
•  Can model subclasses
•  And more...

UB CSE 562 10

Example with Inheritance

Example from Phil Bernstein’s SIGMOD’07 keynote talk

Person

Customer

id name

credit_score

billing_addr
dept Employee

UB CSE 562 11

Converting Into Relations

•  One way to translate our E/R diagram into relations:
 HR (id, name)
 Empl (id, dept) id is also a foreign key referencing HR
 Client (id, name, credit_score, billing_addr)

•  Today, we only talk about using E/R diagrams to help us
design the conceptual schema of a database

•  In general, apps may need to operate on a view of the
data closer to E/R model (e.g., OO view of data) while DB
contains relations
–  Need to translate between objects and relations
–  Object-Relational Mapping (ORM)
–  Hibernate, Microsoft ADO.NET Entity Framework, etc.

UB CSE 562 12

Outline

•  Conceptual DB Design: Entity/Relationship Model
•  Problematic Database Designs
•  Functional Dependencies
•  Normal Forms and Schema Normalization

4

UB CSE 562 13

Problematic Designs

•  Some DB designs lead to redundancy
–  Same information stored multiple times

•  Problems:
–  Redundant Storage
–  Update Anomalies
–  Insertion Anomalies
–  Deletion Anomalies

UB CSE 562 14

Problem Examples

•  What if we want to insert a patient without a doctor?
•  What if we want to delete the last doctor for a patient?
•  Illegal as (pno,dno) is the primary key, cannot have nulls

pno name zip dno since

1 p1 98125 2 2000

1 p1 98125 3 2003

2 p2 98112 1 2002

3 p1 98143 1 1985

Redundant

If we update to 98119,
we get inconsistency

PatientOf

UB CSE 562 15

Solution: Decomposition

•  Decomposition solves the problem,
but need to be careful…

pno name zip

1 p1 98125

2 p2 98112

3 p1 98143

Patient

pno dno since

1 2 2000

1 3 2003

2 1 2002

3 1 1985

PatientOf

UB CSE 562 16

Lossy Decomposition

•  Decomposition can cause us to lose information!

pno name zip

1 p1 98125

2 p2 98112

3 p1 98143

Patient

name dno since

p1 2 2000

p1 3 2003

p2 1 2002

p1 1 1985

PatientOf

5

UB CSE 562 17

Schema Refinement Challenges

•  How do we know that we should decompose a
relation?
–  Functional dependencies
–  Normal forms

•  How do we make sure decomposition does not
lose any information?
–  Lossless-join decompositions
–  Dependency-preserving decompositions

UB CSE 562 18

Outline

•  Conceptual DB Design: Entity/Relationship Model
•  Problematic Database Designs
•  Functional Dependencies
•  Normal Forms and Schema Normalization

UB CSE 562 19

Functional Dependency

•  A functional dependency (FD) is an integrity
constraint that generalizes the concept of a key

•  An instance of relation R satisfies the FD: X → Y
–  if for every pair of tuples t1 and t2

–  if t1.X = t2.X then t1.Y = t2.Y
–  where X, Y are two nonempty sets of attributes in R

•  We say that X determines Y

•  FDs come from domain knowledge

UB CSE 562 20

FD Illustration

The FD A1, …, Am → B1, …, Bn holds in R if:
∀t, t’ ∈ R,

 (t.A1=t’.A1 ∧ … ∧ t.Am=t’.Am ⇒ t.B1=t’.B1 ∧ … ∧ t.Bn=t’.Bn)

 if t, t’ agree here then t, t’ agree here

A1 … Am B1 … Bn

R

t

t’

6

UB CSE 562 21

FD Example

•  An FD holds, or does not hold on an instance:

•  EmpID → Name, Phone, Position
•  Position → Phone
•  but not Phone → Position

EmpID Name Phone Position

E0045 Smith 1234 Clerk

E3542 Mike 9876 Salesrep

E1111 Smith 9876 Salesrep

E9999 Mary 1234 Lawyer

UB CSE 562 22

FD Terminology

•  FDs are constraints
–  On some instances they hold
–  On others they do not

•  If for every instance of R a given FD will hold,
then we say that R satisfies the FD
–  If we say that R satisfies an FD, we are stating a

constraint on R

•  FDs come from domain knowledge

UB CSE 562 23

An Interesting Observation

 name → color
•  If all these FDs are true: category → department

 color, category → price

•  Then this FD also holds: name, category → price

•  Why ???

UB CSE 562 24

How Is This All Useful?

•  Anomalies occur when certain “bad” FDs hold

•  We know some of the FDs

•  Need to find all FDs
•  Then look for the bad ones

7

UB CSE 562 25

Closure of FDs

•  Some FDs imply others
–  For example: Employee(ssn,position,salary)
–  FD1: ssn → position and FD2: position → salary
–  Imply FD3: ssn → salary

•  Can compute closure of a set of FDs
–  Set F+ of all FDs implied by a given set F of FDs

•  Armstrong’s Axioms: sound and complete
–  Reflexivity: if Y ⊆ X then X → Y
–  Augmentation: if X → Y then XZ → YZ for any Z
–  Transitivity: if X → Y and Y → Z then X → Z

•  Convenient split/combine rule:
 If X → Y and X → Z then X → YZ

UB CSE 562 26

Example (cont’d)

 1. name → color
•  Starting from these FDs: 2. category → department

 3. color, category → price

•  Infer the following FDs:

Inferred FD Which Rule did we apply?

4. name, category → name

5. name, category → color

6. name, category → category

7. name, category → color, category

8. name, category → price

UB CSE 562 27

Example (cont’d)

 1. name → color
•  Starting from these FDs: 2. category → department

 3. color, category → price

•  Infer the following FDs:

•  TOO HARD! Let’s see an easier way.

Inferred FD Which Rule did we apply?

4. name, category → name Reflexivity

5. name, category → color Transitivity on 4 and 1

6. name, category → category Reflexivity

7. name, category → color, category Split/Combine on 5 and 6

8. name, category → price Transitivity on 7 and 3

UB CSE 562 28

Closure of a Set of Attributes

•  Given a set of attributes A1, …, An
•  The closure {A1, …, An}+ = the set of attributes B

 such that A1, …, An → B

•  Example:
 category → department
 name → color
 color, category → price

•  Closures:
 name+ = {name, color}
 {name, category}+ = {name, category, color,
 department, price}
 color+ = {color}

8

UB CSE 562 29

Closure Algorithm For Attributes

To find closure {A1, …, An}+
1.  Start with X={A1, …, An}
2.  Repeat until X doesn’t change:
3.  if B1, …, Bn → C is a FD and

 B1, …, Bn are all in X
4.  then add C to X

Can use this algorithm to find keys
•  Compute X+ for all sets X
•  If X+ = all attributes, then X is a superkey
•  Minimal superkeys are keys

UB CSE 562 30

Closure For Attributes Example

•  Example:
 category → department
 name → color
 color, category → price

•  Closures:
 name+ = {name, color}
 {name, category}+ = {name, category, color,
 department, price}
 color+ = {color}

UB CSE 562 31

Another Example

•  R(A, B, C, D, E, F)
 A, B → C
 A, D → E
 B → D
 A, F → B

•  Compute {A, B}+
 X = {A, B, C, D, E}

•  Compute {A, F}+
 X = {A, F, B, C, D, E}

UB CSE 562 32

Using Closure To Infer ALL FDs

•  Example: A, B → C
 A, D → B
 B → D

1.  Step 1: Compute X+, for every X:
 A+=A, B+=BD, C+= C, D+= D
 AB+=ABCD, AC+=AC, AD+=ABCD, BC+=BCD,
 BD+=BD, CD+=CD
 ABC+=ABD+=ACD+=ABCD, BCD+= BCD
 ABCD+=ABCD

2.  Step 2: Enumerate all FDs X→Y, s.t. Y ⊆ X+ and X∩Y = ∅:
 AB→CD, AD→BC, BC→D, ABC→D, ABD→C, ACD→B

9

UB CSE 562 33

Decomposition Problems

•  FDs will help us identify possible redundancy
–  Identify redundancy and split relations to avoid it

•  Can we get the data back correctly?
–  Lossless-join decomposition

•  Can we recover the FDs on the ‘big’ table from
the FDs on the small tables?
–  Dependency-preserving decomposition
–  So that we can enforce all FDs without performing joins

UB CSE 562 34

Outline

•  Conceptual DB Design: Entity/Relationship Model
•  Problematic Database Designs
•  Functional Dependencies
•  Normal Forms and Schema Normalization

UB CSE 562 35

Normal Forms

•  Based on Functional Dependencies
–  3rd Normal Form
–  Boyce Codd Normal Form (BCNF)

•  Based on Multi-valued Dependencies
–  4th Normal Form

•  Based on Join Dependencies
–  5th Normal Form

UB CSE 562 36

BCNF

•  A simple condition for removing anomalies from
relations:

 A relation R is in BCNF if:
 If A1, …, An → B is a non-trivial dependency in R,
then {A1, …, An} is a superkey for R

•  BCNF ensures that no redundancy can be
detected using FD information alone

10

UB CSE 562 37

Example

•  {pno, dno} is a key, but pno → name, zip
•  BCNF violation, so we decompose

pno name zip dno since

1 p1 98125 2 2000

1 p1 98125 3 2003

2 p2 98112 1 2002

3 p1 98143 1 1985

PatientOf

UB CSE 562 38

Decomposition in General

R(A1, …, An, B1, …, Bm, C1, …, Cp)

R1(A1, …, An, B1, …, Bm) R2(A1, …, An, C1, …, Cp)

•  R1 = projection of R on A1, …, An, B1, …, Bm
•  R2 = projection of R on A1, …, An, C1, …, Cp

•  Theorem If A1, …, An → B1, …, Bm, then the
decomposition is lossless

•  Note: don’t need necessarily A1, …, An → C1, …, Cp

UB CSE 562 39

BCNF Decomposition Algorithm

Repeat
 choose A1, …, Am → B1, …, Bn that violates BCNF condition
 split R into
 R1(A1, …, Am, B1, …, Bn) and R2(A1, …, Am, [rest])
 continue with both R1 and R2

Until no more violations

•  Lossless-join decomposition: Attributes common to R1
and R2 must contain a key for either R1 or R2

UB CSE 562 40

BCNF and Dependencies

•  FDs: Unit → Company
 Company, Product → Unit

•  So there is a BCNF violation, and we decompose

Unit Company Product

11

UB CSE 562 41

BCNF and Dependencies

•  FDs: Unit → Company
 Company, Product → Unit

•  So there is a BCNF violation, and we decompose

 Unit → Company

 No FDs

•  In BCNF we lose the FD: Company, Product → Unit

Unit Company Product

Unit Company

Unit Product

UB CSE 562 42

3NF

•  A simple condition for removing anomalies
from relations

 A relation R is in 3rd normal form if:
 Whenever there is a nontrivial dependency
 A1, A2, …, An → B for R, then {A1, A2, …, An } is
a superkey for R, or B is part of a key

UB CSE 562 43

3NF Discussion

•  3NF decomposition vs. BCNF decomposition:
–  Use same decomposition steps, for a while
–  3NF may stop decomposing, while BCNF continues

•  Tradeoffs
–  BCNF = no anomalies, but may lose some FDs
–  3NF = keeps all FDs, but may have some anomalies

UB CSE 562 44

Summary

•  Database design is not trivial
–  Use E/R models
–  Translate E/R models into relations
–  Normalize to eliminate anomalies

•  Normalization tradeoffs
–  BCNF: no anomalies, but may lose some FDs
–  3NF: keeps all FDs, but may have anomalies
–  Too many small tables affect performance

12

UB CSE 562 45

This Time

•  Design Theory for Relational Databases
–  Chapter 3: 3.1 – 3.5

•  High-Level Database Models
–  Chapter 4: 4.1 – 4.6

