
1

UB CSE 562 1

CSE 562
Database Systems

Indexing

UB CSE 562

Some slides are based or modified from originals by
Database Systems: The Complete Book,

Pearson Prentice Hall 2nd Edition
©2008 Garcia-Molina, Ullman, and Widom

UB CSE 562 2

Given condition(s) on attribute(s) find
qualified records

Attr = value

Condition may also be
•  Attr>value
•  Attr>=value

?	

 value
Qualified records

value
value

Goal of Indexing

UB CSE 562 3

•  Data Structures used for quickly locating tuples
that meet a specific type of condition
–  Equality condition: Find Movie tuples where Director=X
–  Range conditions: Find Employee tuples where

Salary>40 AND Salary<50

•  Many types of indexes. Evaluate them on:
–  Access time
–  Insertion/Deletion time
–  Condition types
–  Disk Space needed

Indexes (or Indices)

UB CSE 562 4

•  Conventional indexes
•  B-Trees
•  Hashing schemes

Topics

2

UB CSE 562 5

Sequential File

20
10

40
30

60
50

80
70

100
90

Tuples are sorted by
their primary key

Block

UB CSE 562 6

Sequential File

20
10

40
30

60
50

80
70

100
90

Dense Index

10
20
30
40

50
60
70
80

90
100
110
120

Index file needs
much fewer
blocks than the
data file, hence
easier to fit in
memory

For a given key K,
only log2n, out of
n, index blocks
need to be
accessed

UB CSE 562 7

Sequential File

20
10

40
30

60
50

80
70

100
90

Sparse Index

10
30
50
70

90
110
130
150

170
190
210
230

Typically, only one
key per data block

Find the index
record with largest
value that is less
or equal to the
value we are
looking

UB CSE 562 8

Sequential File

20
10

40
30

60
50

80
70

100
90

Sparse 2nd level

10
30
50
70

90
110
130
150

170
190
210
230

10
90
170
250

330
410
490
570

Treat the index as
a file and build an
index on it

•  Two levels are
usually sufficient

•  More than three
levels are rare

3

UB CSE 562 9

•  Comment:
 {FILE,INDEX} may be contiguous
 or not (blocks chained)

UB CSE 562 10

Question:

•  Can we build a dense, 2nd level index
for a dense index?

UB CSE 562 11

•  Record pointers consist of block pointer and position
of record in the block

•  Using the block pointer only saves space at no extra
disk accesses cost

•  Block pointer (sparse index) can be smaller than
record pointer

 BP

 RP

Notes on Pointers

UB CSE 562 12

•  If file is contiguous, then we can omit
pointers (i.e., compute them)

Notes on Pointers

4

UB CSE 562 13

K1

K3

K4

K2

R1

R2

R3

R4

say:
1024 B
per block

•  if we want K3 block:
 get it at offset
 (3-1)1024
 = 2048 bytes

UB CSE 562 14

•  Sparse: Less index space per record
 can keep more of index in memory

•  Dense: Can tell if any record exists
 without accessing file

(Later:
–  sparse better for insertions
–  dense needed for secondary indexes)

Sparse vs. Dense Tradeoff

UB CSE 562 15

•  Index sequential file
•  Search key (≠ primary key)
•  Primary index (on Sequencing field)

–  The index on the attribute (a.k.a. search key) that
determines the sequencing of the table

•  Secondary index
–  Index on any other attribute

•  Dense index (all Search Key values in)
•  Sparse index
•  Multi-level index

Terms

UB CSE 562 16

•  Duplicate keys

•  Deletion/Insertion

•  Secondary indexes

Next

5

UB CSE 562 17

10
10

20
10

30
20

30
30

45
40

Duplicate Keys

UB CSE 562 18

10
10

20
10

30
20

30
30

45
40

10
10
10
20

20
30
30
30

10
10

20
10

30
20

30
30

45
40

10
10
10
20

20
30
30
30

Dense index, one way to implement?

Duplicate Keys

UB CSE 562 19

10
10

20
10

30
20

30
30

45
40

10
20
30
40

Dense index, better way?

Duplicate Keys

UB CSE 562 20

10
10

20
10

30
20

30
30

45
40

10
10
20
30

Sparse index, one way?

ca
re

fu
l i

f
lo

ok
in

g
fo

r
20

 o
r

30
!

Duplicate Keys

6

UB CSE 562 21

10
10

20
10

30
20

30
30

45
40

10
20
30
30

Sparse index, another way?
–  place first new key from block
should
this be
40?

Duplicate Keys

UB CSE 562 22

 Duplicate values,
 primary index

•  Index may point to first instance of
 each value only

 File
 Index

Summary

a
a
a

b

.	

.	

UB CSE 562 23

Deletion from sparse index

20
10

40
30

60
50

80
70

10
30
50
70

90
110
130
150

UB CSE 562 24

Deletion from sparse index
–  delete record 40

20
10

40
30

60
50

80
70

10
30
50
70

90
110
130
150

If the deleted
entry does not
appear in the
index do nothing

7

UB CSE 562 25

Deletion from sparse index

20
10

40
30

60
50

80
70

10
30
50
70

90
110
130
150

–  delete record 30

40 40

If the deleted
entry appears in
the index replace
it with the next
search-key value

UB CSE 562 26

Deletion from sparse index

20
10

40
30

60
50

80
70

10
30
50
70

90
110
130
150

–  delete records 30 & 40

50
70

If the next search
key value has its
own index entry,
then delete the
entry

UB CSE 562 27

Deletion from dense index

20
10

40
30

60
50

80
70

10
20
30
40

50
60
70
80

UB CSE 562 28

Deletion from dense index

20
10

40
30

60
50

80
70

10
20
30
40

50
60
70
80

–  delete record 30

40 40

Deletion from dense
primary index file is
handled in the same
way with deletion
from a sequential file Q: What about deletion from dense

primary index with duplicates?

8

UB CSE 562 29

Insertion, sparse index case

20
10

30

50
40

60

10
30
40
60

UB CSE 562 30

Insertion, sparse index case

20
10

30

50
40

60

10
30
40
60

–  insert record 34

34

•  our lucky day!
 we have free space
 where we need it!

UB CSE 562 31

Insertion, sparse index case

20
10

30

50
40

60

10
30
40
60

–  insert record 15

15
20

30
20

•  Illustrated: Immediate reorganization
•  Variation:

–  insert new block (chained file)
–  update index

UB CSE 562 32

Insertion, sparse index case

20
10

30

50
40

60

10
30
40
60

–  insert record 25
25

overflow blocks
(reorganize later...)

•  How often do we reorganize and how expensive is it?
B-Trees offer convincing answers

9

UB CSE 562 33

Insertion, dense index case

•  Similar

•  Often more expensive . . .

UB CSE 562 34

Secondary indexes
Sequence
field

50
30

70
20

40
80

10
100

60
90

File not sorted on
secondary search key

UB CSE 562 35

Secondary indexes
Sequence
field

50
30

70
20

40
80

10
100

60
90

•  Sparse index

30
20
80
100

90
...

does not make sense!

UB CSE 562 36

Secondary indexes
Sequence
field

50
30

70
20

40
80

10
100

60
90

•  Dense index
10
20
30
40

50
60
70
...

10
50
90
...

sparse
high
level

10

UB CSE 562 37

With secondary indexes:

•  Lowest level is dense
•  Other levels are sparse

Also: Pointers are record pointers
 (not block pointers; not computed)

UB CSE 562 38

Duplicate values & secondary indexes

10
20

40
20

40
10

40
10

40
30

UB CSE 562 39

Duplicate values & secondary indexes

10
20

40
20

40
10

40
10

40
30

10
10
10
20

20
30
40
40

40
40
...

one option...

Problem:
excess overhead!

•  disk space
•  search time

UB CSE 562 40

Duplicate values & secondary indexes

10
20

40
20

40
10

40
10

40
30

10

another option...

40
30

20 Problem:
variable size
records in
index!

11

UB CSE 562 41

Duplicate values & secondary indexes

10
20

40
20

40
10

40
10

40
30

10
20
30
40

50
60
...

λ

λ

λ

λ

Another idea:
Chain records
with same
key?

Problems:
•  Need to add fields to records, messes up maintenance
•  Need to follow chain to know records

UB CSE 562 42

Duplicate values & secondary indexes

10
20

40
20

40
10

40
10

40
30

10
20
30
40

50
60
...

buckets

UB CSE 562 43

Why “bucket” idea is useful

Indexes Records
Name: primary EMP (name, dept, floor, ...)
Dept: secondary
Floor: secondary

•  Enables the processing of queries working with
pointers only

•  Very common technique in Information Retrieval

UB CSE 562 44

Find employees in Toys dept on the 4th floor:

SELECT Name FROM Employee
WHERE Dept=“Toys” AND Floor=4

Dept Index Floor Index

Intersect Toys bucket and
4th floor bucket to get
set of matching EMP’s

Advantage of Buckets:
Process Queries Using Pointers Only

12

UB CSE 562 45

This idea used in
 text information retrieval

Documents
...the cat is
 fat ...

...was raining
 cats and dogs...

...Fido the
 dog ... Buckets known as

Inverted lists

cat

dog

UB CSE 562 46

IR QUERIES

•  Find articles with “cat” and “dog”
–  Intersect inverted lists

•  Find articles with “cat” or “dog”
–  Union inverted lists

•  Find articles with “cat” and not “dog”
–  Subtract list of dog pointers from list of cat pointers

•  Find articles with “cat” in title
•  Find articles with “cat” and “dog” within 5

words

UB CSE 562 47

Common technique:
 more info in inverted list

cat Title 5

Title 100

Author 10
Abstract 57

Title 12

d3 d2

d1

dog

typ
e

pos
itio

n

loc
atio

n

UB CSE 562 48

Posting: an entry in inverted list.
 Represents occurrence of
 term in article

Size of a list: 1 Rare words or
 (in postings) miss-spellings

 106 Common words

Size of a posting: 10-15 bits (compressed)

13

UB CSE 562 49

IR DISCUSSION

•  Stop words
•  Truncation
•  Thesaurus
•  Full text vs. Abstracts
•  Vector model

UB CSE 562 50

Vector space model

 w1 w2 w3 w4 w5 w6 w7 …
DOC = <1 0 0 1 1 0 0 …>

Query= <0 0 1 1 0 0 0 …>

PRODUCT = 1 + ……. = score

UB CSE 562 51

•  Tricks to weigh scores + normalize

e.g.: Match on common word not as
 useful as match on rare words...

UB CSE 562 52

•  Conventional index
–  Basic Ideas: sparse, dense, multi-level…
–  Duplicate Keys
–  Deletion/Insertion
–  Secondary indexes

•  Buckets of Postings List

Summary of Indexing So Far

14

UB CSE 562 53

Advantage:
 - Simple algorithms
 - Index is sequential file
 good for scans

Disadvantage:
 - Inserts expensive, and/or
 - Lose sequentiality,
 reorganizations are needed

Conventional Indexes

UB CSE 562 54

Example Index (sequential)

 continuous

 free space

10
20
30

40
50
60

70
80
90

39
31
35
36

32
38
34

33

overflow area
(not sequential)

UB CSE 562 55

•  Conventional indexes
•  B-Trees ⇒ NEXT
•  Hashing schemes

Topics

UB CSE 562 56

•  NEXT: Another type of index
– Give up on sequentiality of index
– Try to get “balance”

15

UB CSE 562 57

Root

B+Tree Example n=3

10
0

12
0

15
0

18
0

30

3 5 11

30

35

10
0

10
1

11
0

12
0

13
0

15
0

15
6

17
9

18
0

20
0

UB CSE 562 58

Sample non-leaf

to keys to keys to keys to keys

< 57 57≤ k<81 81≤k<95 ≥95

57

81

95

UB CSE 562 59

Sample leaf node:

 From non-leaf node

 to next leaf
 in sequence 57

81

95

To
 r

ec
or

d

w
ith

 k
ey

 5
7

To
 r

ec
or

d

w
ith

 k
ey

 8
1

To
 r

ec
or

d

w
ith

 k
ey

 8
5

UB CSE 562 60

In textbook’s notation n=3

Leaf:

Non-leaf:

30

35

30

30 35

30

16

UB CSE 562 61

Size of nodes: n+1 pointers
 n keys

(fixed)

UB CSE 562 62

Don’t want nodes to be too empty

•  Non-root nodes have to be at least half-full
•  Use at least

Non-leaf: ⎡(n+1)/2⎤ pointers

Leaf: ⎣(n+1)/2⎦ pointers to data

UB CSE 562 63

 Full node min. node

Non-leaf

Leaf

n=3

12
0

15
0

18
0

30

3 5 11

30

35

co
un

ts
 e

ve
n

if
nu

ll

UB CSE 562 64

B+Tree rules tree of order n

(1) All leaves at same lowest level
 (balanced tree)

(2) Pointers in leaves point to records
 except for “sequence pointer”

17

UB CSE 562 65

(3) Number of pointers/keys for B+Tree

Non-leaf
(non-root) n+1 n ⎡(n+1)/2⎤ ⎡(n+1)/2⎤- 1

Leaf
(non-root) n+1 n

Root n+1 n 1 1

Max Max Min Min
ptrs keys ptrs→data keys

⎣(n+1)/2⎦ ⎣(n+1)/2⎦

Counting
sequence
pointer also

UB CSE 562 66

Insert into B+Tree

(a) simple case
–  space available in leaf

(b) leaf overflow
(c) non-leaf overflow
(d) new root

UB CSE 562 67

(a) Insert key = 32 n=3

3 5 11

30

31

30

10
0

32

UB CSE 562 68

(a) Insert key = 7 n=3

3 5 11

30

31

30

10
0

3 5

7
7

18

UB CSE 562 69

(c) Insert key = 160 n=3

10
0

12
0

15
0

18
0

15
0

15
6

17
9

18
0

20
0

16
0

18
0

16
0

17
9

UB CSE 562 70

(d) New root, insert 45 n=3

10

20

30

1 2 3 10

12

20

25

30

32

40

40

45

40

30

new root

UB CSE 562 71

(a) Simple case - no example

(b) Coalesce with neighbor (sibling)

(c) Re-distribute keys
(d) Cases (b) or (c) at non-leaf

Deletion from B+Tree

UB CSE 562 72

(b) Coalesce with sibling
– Delete 50

10

40

10
0

10

20

30

40

50

n=4

40

19

UB CSE 562 73

(c) Redistribute keys
– Delete 50

10

40

10
0

10

20

30

35

40

50

n=4

35

35

UB CSE 562 74

40

45

30

37

25

26

20

22

10

14

1 3

10

20

30

40

(d) Non-leaf coalese
– Delete 37

n=4

40

30

25

25

new root

UB CSE 562 75

B+Tree deletions in practice

– Often, coalescing is not implemented
–  Too hard and not worth it!

UB CSE 562 76

Comparison: B-Trees vs. static
 indexed sequential file

Ref #1: Held & Stonebraker
 “B-Trees Re-examined”
 CACM, Feb. 1978

20

UB CSE 562 77

Ref # 1 claims:
 - Concurrency control harder in B-Trees

 - B-Tree consumes more space

For their comparison:
 block = 512 bytes
 key = pointer = 4 bytes
 4 data records per block

UB CSE 562 78

Example: 1 block static index

127 keys

(127+1)4 = 512 Bytes
-> pointers in index implicit! up to 127

 blocks

k1

k2

k3

k1

k2

k3

1 data
block

UB CSE 562 79

Example: 1 block B-Tree

63 keys

63x(4+4)+8 = 512 Bytes
-> pointers needed in B-Tree up to 63

 blocks because index is blocks
 not contiguous

k1

k2

...

k63

k1

k2

k3

1 data
block

next
-

UB CSE 562 80

 Static Index B-Tree
data # data
blocks height blocks height

2 -> 127 2 2 -> 63 2
128 -> 16,129 3 64 -> 3,968 3
16,130 -> 2,048,383 4 3,969 -> 250,047 4

 250,048 -> 15,752,961 5

21

UB CSE 562 81

Ref. #1 analysis claims

•  For an 8,000 block file,
 after 32,000 inserts

 after 16,000 lookups
 ⇒ Static index saves enough accesses

 to allow for reorganization

Ref. #1 conclusion Static index better!!

UB CSE 562 82

Ref #2: M. Stonebraker,
 “Retrospective on a database

 system,” TODS, June 1980

Ref. #2 conclusion B-Trees better!!

UB CSE 562 83

•  DBA does not know when to reorganize
•  DBA does not know how full to load

 pages of new index

Ref. #2 conclusion B-Trees better!!

UB CSE 562 84

•  Buffering
– B-Tree: has fixed buffer requirements
– Static index: must read several overflow

 blocks to be efficient
 (large & variable
size buffers
needed for this)

Ref. #2 conclusion B-Trees better!!

22

UB CSE 562 85

•  Speaking of buffering…
 Is LRU a good policy for B+Tree buffers?

→ Of course not!
→ Should try to keep root in memory

 at all times
(and perhaps some nodes from second level)

UB CSE 562 86

Interesting problem:

 For B+Tree, how large should n be?

…

n is number of keys / node

UB CSE 562 87

Sample assumptions:
(1) Time to read node from disk is

 (S+Tn) msec.
(2) Once block in memory, use binary

 search to locate key:
 (a + b LOG2 n) msec.

 For some constants a,b; Assume a << S

(3) Assume B+Tree is full, i.e.,
 # nodes to examine is LOGn N
 where N = # records

UB CSE 562 88

➸Can get:
 f(n) = time to find a record

f(n)

 nopt n

23

UB CSE 562 89

➸ FIND nopt by f’(n) = 0

 Answer should be nopt = “few hundred”

➸ What happens to nopt as

•  Disk gets faster?
•  CPU get faster?

UB CSE 562 90

Variation on B+Tree: B-Tree (no +)

•  Idea:
– Avoid duplicate keys
– Have record pointers in non-leaf nodes

UB CSE 562 91

 to record to record to record
 with K1 with K2 with K3

 to keys to keys to keys to keys
 < K1 K1<x<K2 K2<x<k3 >k3

K1 P1 K2 P2 K3 P3

UB CSE 562 92

B-Tree example n=2

65

12
5

14
5

16
5

85

10
5

25

45

10

20

30

40

11
0

12
0

90

10
0

70

80

17
0

18
0

50

60

13
0

14
0

15
0

16
0

•  sequence pointers
 not useful now!
 (but keep space for simplicity)

24

UB CSE 562 93

Note on inserts

•  Say we insert record with key = 25

10

20

30
 n=3

leaf

10

– 20

–

25

30

•  Afterwards:

UB CSE 562 94

So, for B-Trees:

 MAX MIN
 Tree Rec Keys Tree Rec Keys
 Ptrs Ptrs Ptrs Ptrs

Non-leaf
non-root n+1 n n ⎡(n+1)/2⎤ ⎡(n+1)/2⎤-1 ⎡(n+1)/2⎤-1
Leaf
non-root 1 n n 1 ⎣(n+1)/2⎦ ⎣(n+1)/2⎦
Root
non-leaf n+1 n n 2 1 1
Root
Leaf 1 n n 1 1 1

UB CSE 562 95

 B-Trees have faster lookup than B+Trees

  in B-Tree, non-leaf & leaf different sizes
  in B-Tree, smaller fan-out
 in B-Tree, deletion more complicated

➨ B+Trees preferred!

Tradeoffs

UB CSE 562 96

But note:

•  If blocks are fixed size
 (due to disk and buffering restrictions)

 Then lookup for B+Tree is
 actually better!!

25

UB CSE 562 97

Example:
 - Pointers 4 bytes
 - Keys 4 bytes
 - Blocks 100 bytes (just example)
 - Look at full 2 level tree

UB CSE 562 98

Root has 8 keys + 8 record pointers
 + 9 son pointers

 = 8x4 + 8x4 + 9x4 = 100 bytes

B-Tree:

Each of 9 sons: 12 rec. pointers (+12 keys)
 = 12x(4+4) + 4 = 100 bytes

2-level B-Tree, Max # records =
 12x9 + 8 = 116

UB CSE 562 99

Root has 12 keys + 13 son pointers
 = 12x4 + 13x4 = 100 bytes

B+Tree:

Each of 13 sons: 12 rec. ptrs (+12 keys)
 = 12x(4 +4) + 4 = 100 bytes

2-level B+Tree, Max # records
 = 13x12 = 156

UB CSE 562 100

So...

 ooooooooooooo ooooooooo
 156 records 108 records

 Total = 116

B+ B

8 records

•  Conclusion:
– For fixed block size,
– B+Tree is better because it is bushier

26

UB CSE 562 101

•  What is a good index structure when:
–  records tend to be inserted with keys

that are larger than existing values?
(e.g., banking records with growing data/time)

– we want to remove older data

An Interesting Problem...

UB CSE 562 102

•  Example: I1, I2

day days indexed days indexed
 I1 I2
10 1,2,3,4,5 6,7,8,9,10
11 11,2,3,4,5 6,7,8,9,10
12 11,12,3,4,5 6,7,8,9,10
13 11,12,13,4,5 6,7,8,9,10

• advantage: deletions/insertions from smaller index
• disadvantage: query multiple indexes

One Solution: Multiple Indexes

UB CSE 562 103

day I1 I2 I3 I4
10 1,2,3 4,5,6 7,8,9 10
11 1,2,3 4,5,6 7,8,9 10,11
12 1,2,3 4,5,6 7,8,9 10,11, 12
13 13 4,5,6 7,8,9 10,11, 12
14 13,14 4,5,6 7,8,9 10,11, 12
15 13,14,15 4,5,6 7,8,9 10,11, 12
16 13,14,15 16 7,8,9 10,11, 12

• advantage: no deletions
• disadvantage: approximate windows

Another Solution (Wave Indexes)

UB CSE 562 104

•  Conventional Indexes
– Chapter 14: 14.1

• Sparse vs. dense
• Primary vs. secondary

•  B-Trees
– Chapter 14: 14.2

• B+Trees vs. B-Trees vs. indexed sequential

This Time

