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Given condition(s) on attribute(s) find 
qualified records 

Attr = value 

Condition may also be  
•  Attr>value 
•  Attr>=value 

?	

 value 
Qualified records 

value 
value 

Goal of Indexing 
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•  Data Structures used for quickly locating tuples 
that meet a specific type of condition 
–  Equality condition: Find Movie tuples where Director=X 
–  Range conditions: Find Employee tuples where 

Salary>40 AND Salary<50 

•  Many types of indexes. Evaluate them on: 
–  Access time 
–  Insertion/Deletion time 
–  Condition types 
–  Disk Space needed 

Indexes (or Indices) 
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•  Conventional indexes 
•  B-Trees 
•  Hashing schemes 

Topics 
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Tuples are sorted by 
their primary key 

Block 
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Index file needs 
much fewer 
blocks than the 
data file, hence 
easier to fit in 
memory 

For a given key K, 
only log2n, out of 
n, index blocks 
need to be 
accessed 
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Typically, only one 
key per data block 

Find the index 
record with largest 
value that is less 
or equal to the 
value we are 
looking 

UB CSE 562 8 

Sequential File 
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Treat the index as 
a file and build an 
index on it 

•  Two levels are 
usually sufficient 

•  More than three 
levels are rare 
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•  Comment: 
 {FILE,INDEX} may be contiguous  
      or not (blocks chained) 
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Question: 

•  Can we build a dense, 2nd level index 
for a dense index? 
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•  Record pointers consist of block pointer and position 
of record in the block 

•  Using the block pointer only saves space at no extra 
disk accesses cost 

•  Block pointer (sparse index) can be smaller than 
record pointer 

 BP 

 RP 

Notes on Pointers 
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•  If file is contiguous, then we can omit 
pointers (i.e., compute them) 

Notes on Pointers 
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K1 

K3 

K4 

K2 

R1 

R2 

R3 

R4 

say: 
1024 B 
per block 

•  if we want K3 block: 
    get it at offset 
    (3-1)1024 
    = 2048 bytes 
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•  Sparse: Less index space per record 
  can keep more of index in memory 

•  Dense:  Can tell if any record exists 
  without accessing file 

(Later:  
–  sparse better for insertions 
–  dense needed for secondary indexes) 

Sparse vs. Dense Tradeoff 
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•  Index sequential file 
•  Search key ( ≠ primary key) 
•  Primary index (on Sequencing field) 

–  The index on the attribute (a.k.a. search key) that 
determines the sequencing of the table 

•  Secondary index 
–  Index on any other attribute 

•  Dense index (all Search Key values in) 
•  Sparse index 
•  Multi-level index 

Terms 
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•  Duplicate keys 

•  Deletion/Insertion 

•  Secondary indexes 

Next 
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Dense index, one way to implement? 

Duplicate Keys 
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Dense index, better way? 

Duplicate Keys 

UB CSE 562 20 

10 
10 

20 
10 

30 
20 

30 
30 

45 
40 

10 
10 
20 
30 

Sparse index, one way? 

ca
re

fu
l i

f 
lo

ok
in

g 
fo

r 
20

 o
r 

30
! 

Duplicate Keys 



6 

UB CSE 562 21 

10 
10 

20 
10 

30 
20 

30 
30 

45 
40 

10 
20 
30 
30 

Sparse index, another way? 
–  place first new key from block 
should 
this be 
40? 

Duplicate Keys 
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   Duplicate values,  
        primary index 

•  Index may point to first instance of  
 each value only 

       File 
        Index   

Summary 

a 
a 
a 

b 

.	



.	
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Deletion from sparse index 
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Deletion from sparse index 
–  delete record 40 
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If the deleted 
entry does not 
appear in the 
index do nothing 
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Deletion from sparse index 
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–  delete record 30 

40 40 

If the deleted 
entry appears in 
the index replace 
it with the next 
search-key value 
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Deletion from sparse index 

20 
10 

40 
30 

60 
50 

80 
70 

10 
30 
50 
70 

90 
110 
130 
150 

–  delete records 30 & 40 

50 
70 

If the next search 
key value has its 
own index entry, 
then delete the 
entry 
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Deletion from dense index 
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Deletion from dense index 
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Deletion from dense 
primary index file is 
handled in the same 
way with deletion 
from a sequential file Q: What about deletion from dense 

primary index with duplicates? 
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Insertion, sparse index case 
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Insertion, sparse index case 
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–  insert record 34 

34 

•  our lucky day! 
   we have free space 
   where we need it! 
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Insertion, sparse index case 
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•  Illustrated: Immediate reorganization 
•  Variation: 

–  insert new block (chained file) 
–  update index 
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Insertion, sparse index case 
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–  insert record 25 
25 

overflow blocks 
(reorganize later...) 

•  How often do we reorganize and how expensive is it? 
B-Trees offer convincing answers 
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Insertion, dense index case 

•  Similar 

•  Often more expensive . . .  
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Secondary indexes 
Sequence 
field 
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File not sorted on  
secondary search key 
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Secondary indexes 
Sequence 
field 
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•  Sparse index 
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does not make sense! 
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Secondary indexes 
Sequence 
field 
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With secondary indexes: 

•  Lowest level is dense 
•  Other levels are sparse 

Also: Pointers are record pointers 
 (not block pointers; not computed) 
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Duplicate values & secondary indexes 

10 
20 

40 
20 

40 
10 

40 
10 

40 
30 

UB CSE 562 39 

Duplicate values & secondary indexes 
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one option... 

Problem: 
excess overhead! 

•  disk space 
•  search time 
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Duplicate values & secondary indexes 
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another option... 

40 
30 

20 Problem: 
variable size 
records in 
index! 
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Duplicate values & secondary indexes 
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Another idea: 
Chain records 
with same 
key? 

Problems: 
•  Need to add fields to records, messes up maintenance 
•  Need to follow chain to know records 
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Duplicate values & secondary indexes 
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Why “bucket” idea is useful 

Indexes    Records 
Name: primary   EMP (name, dept, floor, ...) 
Dept: secondary 
Floor: secondary 

•  Enables the processing of queries working with 
pointers only 

•  Very common technique in Information Retrieval 
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Find employees in Toys dept on the 4th floor: 

SELECT Name FROM Employee  
WHERE Dept=“Toys” AND Floor=4 

Dept Index Floor Index 

Intersect Toys bucket and  
4th floor bucket to get  
set of matching EMP’s 

Advantage of Buckets: 
Process Queries Using Pointers Only 
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This idea used in  
 text information retrieval 

Documents 
...the cat is  
     fat ... 

...was raining 
 cats and dogs... 

...Fido the  
     dog ... Buckets known as 

Inverted lists 

cat 

dog 
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IR QUERIES 

•  Find articles with “cat” and “dog” 
–  Intersect inverted lists 

•  Find articles with “cat” or “dog” 
–  Union inverted lists 

•  Find articles with “cat” and not “dog” 
–  Subtract list of dog pointers from list of cat pointers 

•  Find articles with “cat” in title 
•  Find articles with “cat” and “dog” within 5 

words 
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Common technique:  
      more info in inverted list 

cat Title 5 

Title 100 

Author 10 
Abstract 57 

Title 12 

d3 d2 

d1 

dog 

typ
e 

pos
itio

n 

loc
atio

n 
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Posting: an entry in inverted list. 
  Represents occurrence of 
  term in article 

Size of a list:  1  Rare words or 
  (in postings)     miss-spellings 

         106  Common words 

Size of a posting: 10-15 bits (compressed) 



13 

UB CSE 562 49 

IR DISCUSSION 

•  Stop words 
•  Truncation 
•  Thesaurus 
•  Full text vs. Abstracts 
•  Vector model 
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Vector space model 

       w1  w2  w3  w4  w5  w6  w7 … 
DOC =  <1     0    0    1     1    0    0  …> 

Query= <0     0    1    1     0    0    0 …> 

PRODUCT =                  1 + ……. = score 
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•  Tricks to weigh scores + normalize 

e.g.: Match on common word not as  
 useful as match on rare words... 
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•  Conventional index 
–  Basic Ideas: sparse, dense, multi-level… 
–  Duplicate Keys 
–  Deletion/Insertion 
–  Secondary indexes 

•  Buckets of Postings List 

Summary of Indexing So Far 
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Advantage: 
   - Simple algorithms 
   - Index is sequential file 
     good for scans 

Disadvantage: 
   - Inserts expensive, and/or 
   - Lose sequentiality, 
     reorganizations are needed 

Conventional Indexes 
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Example   Index (sequential) 
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  free space 
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overflow area 
(not sequential) 
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•  Conventional indexes 
•  B-Trees    ⇒ NEXT 
•  Hashing schemes 

Topics 
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•  NEXT: Another type of index 
– Give up on sequentiality of index 
– Try to get “balance” 



15 

UB CSE 562 57 

Root 

B+Tree Example     n=3 
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Sample non-leaf 

to keys  to keys   to keys   to keys 

< 57   57≤ k<81   81≤k<95   ≥95 
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Sample leaf node: 

     From non-leaf node 

       to next leaf 
       in sequence 57
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In textbook’s notation   n=3 

Leaf: 

Non-leaf: 

30
 

35
 

30
 

30 35 

30 
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Size of nodes:   n+1 pointers 
     n keys   

(fixed) 
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Don’t want nodes to be too empty 

•  Non-root nodes have to be at least half-full 
•  Use at least 

Non-leaf:  ⎡(n+1)/2⎤  pointers 

Leaf:   ⎣(n+1)/2⎦  pointers to data 
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    Full node   min. node 

Non-leaf 

Leaf 
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B+Tree rules  tree of order n 

(1) All leaves at same lowest level   
  (balanced tree) 

(2) Pointers in leaves point to records  
  except for “sequence pointer” 
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(3) Number of pointers/keys for B+Tree 

Non-leaf 
(non-root) n+1 n ⎡(n+1)/2⎤  ⎡(n+1)/2⎤- 1 

Leaf 
(non-root) n+1 n 

Root n+1 n 1 1 

Max   Max  Min             Min  
ptrs   keys  ptrs→data    keys 

⎣(n+1)/2⎦  ⎣(n+1)/2⎦ 

Counting 
sequence 
pointer also  
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Insert into B+Tree 

(a) simple case 
–  space available in leaf 

(b) leaf overflow 
(c) non-leaf overflow 
(d) new root 
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(a) Insert key = 32 n=3 
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(a) Insert key = 7 n=3 
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(c) Insert key = 160 n=3 
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(d) New root,  insert 45 n=3 
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(a) Simple case - no example 

(b) Coalesce with neighbor (sibling) 

(c) Re-distribute keys 
(d) Cases (b) or (c) at non-leaf 

Deletion from B+Tree 
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(b) Coalesce with sibling 
– Delete 50 
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(c) Redistribute keys 
– Delete 50 
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B+Tree deletions in practice 

– Often, coalescing is not implemented 
–  Too hard and not worth it! 
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Comparison: B-Trees vs. static  
   indexed sequential file 

Ref #1:   Held & Stonebraker 
   “B-Trees Re-examined” 
   CACM, Feb. 1978 
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Ref # 1 claims: 
 - Concurrency control harder in B-Trees 

   - B-Tree consumes more space 

For their comparison: 
 block = 512 bytes 
 key = pointer = 4 bytes 
 4 data records per block 
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Example: 1 block static index 

          

127 keys 

(127+1)4 = 512 Bytes 
-> pointers in index implicit!   up to 127 

       blocks 

k1 

k2 

k3 

k1 

k2 

k3 

1 data 
block 

UB CSE 562 79 

Example: 1 block B-Tree 

          

63 keys 

63x(4+4)+8 = 512 Bytes 
-> pointers needed in B-Tree   up to 63 

 blocks because index is    blocks 
 not contiguous 

k1 

k2 

... 

k63 

k1 

k2 

k3 

1 data 
block 

next 
- 
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     Static Index                   B-Tree 
# data      # data 
blocks     height     blocks   height 

2 -> 127   2     2 -> 63        2 
128 -> 16,129   3       64 -> 3,968             3 
16,130 -> 2,048,383  4     3,969 -> 250,047          4 

        250,048 -> 15,752,961    5 
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Ref. #1 analysis claims 

•  For an 8,000 block file,    
 after 32,000 inserts 

  after 16,000 lookups 
  ⇒ Static index saves enough accesses  

 to allow for reorganization 

Ref. #1 conclusion Static index better!! 
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Ref #2:   M. Stonebraker,  
   “Retrospective on a database  

   system,”   TODS, June 1980 

Ref. #2 conclusion B-Trees better!! 
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•  DBA does not know when to reorganize 
•  DBA does not know how full to load  

 pages of new index 

Ref. #2 conclusion B-Trees better!! 
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•  Buffering 
– B-Tree: has fixed buffer requirements 
– Static index: must read several overflow

    blocks to be efficient
     (large & variable 
size       buffers 
needed for this) 

Ref. #2 conclusion B-Trees better!! 
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•  Speaking of buffering… 
  Is LRU a good policy  for B+Tree buffers? 

→ Of course not! 
→ Should try to keep root in memory 

  at all times 
(and perhaps some nodes from second level) 
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Interesting problem: 

 For B+Tree, how large should n be? 

… 

n is number of keys / node 
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Sample assumptions: 
(1) Time to read node from disk is   

 (S+Tn) msec. 
(2) Once block in memory, use binary  

 search to locate key:     
 (a + b LOG2 n) msec. 

  For some constants a,b;   Assume a << S 

(3) Assume B+Tree is full, i.e.,   
 # nodes to examine is LOGn N  
 where N = # records 
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➸Can get: 
   f(n) = time to find a record 

f(n)  

      
       nopt    n 
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➸ FIND nopt by f’(n) = 0 

 Answer should be nopt = “few hundred” 

➸ What happens to nopt  as 

•  Disk gets faster? 
•  CPU get faster? 
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Variation on B+Tree: B-Tree (no +) 

•  Idea: 
– Avoid duplicate keys 
– Have record pointers in non-leaf nodes 
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        to record      to record       to record 
        with K1      with K2       with K3 

  to keys         to keys         to keys      to keys 
 < K1        K1<x<K2       K2<x<k3                >k3 

K1 P1 K2 P2 K3 P3 
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B-Tree example     n=2 
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•  sequence pointers 
  not useful now! 
  (but keep space for simplicity) 
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Note on inserts 

•  Say we insert record with key = 25 
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30
 n=3 

leaf 
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– 20
 

– 

25
 

30
 

•  Afterwards: 
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So, for B-Trees: 

    MAX   MIN 
   Tree    Rec  Keys    Tree    Rec          Keys 
   Ptrs  Ptrs      Ptrs     Ptrs 

Non-leaf 
non-root  n+1  n  n       ⎡(n+1)/2⎤   ⎡(n+1)/2⎤-1  ⎡(n+1)/2⎤-1 
Leaf 
non-root  1  n  n    1     ⎣(n+1)/2⎦      ⎣(n+1)/2⎦ 
Root 
non-leaf  n+1  n  n    2          1                1 
Root 
Leaf   1  n  n    1          1                1 
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 B-Trees have faster lookup than B+Trees 

  in B-Tree, non-leaf & leaf different sizes 
  in B-Tree, smaller fan-out 
 in B-Tree, deletion more complicated 

➨ B+Trees preferred! 

Tradeoffs 
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But note: 

•  If blocks are fixed size     
 (due to disk and buffering restrictions) 

   Then lookup for B+Tree is    
 actually better!! 
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Example: 
 - Pointers  4 bytes 
 - Keys   4 bytes 
 - Blocks  100 bytes (just example) 
 - Look at full 2 level tree 
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Root has 8 keys + 8 record pointers  
    + 9 son pointers 

   = 8x4 + 8x4 + 9x4 = 100 bytes 

B-Tree:  

Each of 9 sons: 12 rec. pointers (+12 keys) 
   = 12x(4+4) + 4 = 100 bytes 

2-level B-Tree, Max # records = 
   12x9 + 8 = 116 
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Root has 12 keys + 13 son pointers 
   = 12x4 + 13x4 = 100 bytes 

B+Tree:  

Each of 13 sons: 12 rec. ptrs (+12 keys) 
   = 12x(4 +4) + 4 = 100 bytes 

2-level B+Tree, Max # records 
   = 13x12 = 156 
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So... 

  ooooooooooooo        ooooooooo 
         156 records     108 records 

      Total = 116 

B+ B 

8 records 

•  Conclusion: 
– For fixed block size, 
– B+Tree is better because it is bushier 
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•  What is a good index structure when: 
–  records tend to be inserted with keys 

that are larger than existing values? 
(e.g., banking records with growing data/time) 

– we want to remove older data 

An Interesting Problem... 
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•  Example: I1, I2 

day         days indexed       days indexed 
                     I1                      I2 
10   1,2,3,4,5   6,7,8,9,10 
11   11,2,3,4,5   6,7,8,9,10 
12   11,12,3,4,5  6,7,8,9,10 
13   11,12,13,4,5  6,7,8,9,10 

• advantage: deletions/insertions from smaller index 
• disadvantage: query multiple indexes 

One Solution: Multiple Indexes 
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day   I1   I2   I3   I4 
10   1,2,3   4,5,6   7,8,9   10 
11   1,2,3   4,5,6   7,8,9   10,11 
12   1,2,3   4,5,6   7,8,9   10,11, 12 
13   13   4,5,6   7,8,9   10,11, 12 
14   13,14   4,5,6   7,8,9   10,11, 12 
15   13,14,15  4,5,6   7,8,9   10,11, 12 
16   13,14,15  16   7,8,9   10,11, 12 

• advantage: no deletions 
• disadvantage: approximate windows 

Another Solution (Wave Indexes) 
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•  Conventional Indexes 
– Chapter 14: 14.1 

• Sparse vs. dense 
• Primary vs. secondary 

•  B-Trees 
– Chapter 14: 14.2 

• B+Trees vs. B-Trees vs. indexed sequential 

This Time 


