
1

CSE 562
Database Systems

Query Processing:
Physical Operators

UB CSE 562 Spring 2009

Some slides are based or modified from originals by
Database Systems: The Complete Book,

Pearson Prentice Hall 2nd Edition
©2008 Garcia-Molina, Ullman, and Widom

UB CSE 562 Spring 2009 2

Outline – Query Optimization

•  Overview
•  Relational algebra level

–  Algebraic Transformations

•  Detailed query plan level
–  Estimate Costs

–  Estimating size of results
–  Estimating # of IOs

–  Generate and compare plans

UB CSE 562 Spring 2009 3

Algorithms for Algebra Operators

•  Three primary techniques
–  Sorting
–  Hashing
–  Indexing

•  Three degrees of difficulty
–  data small enough to fit in memory
–  too large to fit in main memory but small enough to be

handled by a “two-pass” algorithm
–  so large that “two-pass” methods have to be

generalized to “multi-pass” methods (quite unlikely
nowadays)

UB CSE 562 Spring 2009 4

Estimating IOs

•  Count # of disk blocks that must be read (or
written) to execute query plan

2

UB CSE 562 Spring 2009 5

Additional Cost Estimation Parameters

•  B(R) = # of blocks containing R tuples
•  f(R) = max # of tuples of R per block
•  M = # memory blocks available

•  HT(i) = # levels in index i
•  LB(i) = # of leaf blocks in index i

UB CSE 562 Spring 2009 6

Clustering Index

•  Index that allows tuples to be read in an order
that corresponds to physical order

 A

A
index

10
15
17

19
35
37

UB CSE 562 Spring 2009 7

Clustering Can Radically Change Cost

•  Clustered file organization

 …

•  Clustered relation

 …

•  Clustering index

R1 R2 S1 S2 R3 R4 S3 S4

R1 R2 R3 R4 R5 R5 R7 R8

UB CSE 562 Spring 2009 8

Example

R1 R2 over common attribute C

T(R1) = 10,000
T(R2) = 5,000
S(R1) = S(R2) = 1/10 block
Memory available = 101 blocks

 → Metric: # of IOs
 (ignoring writing of result)

3

UB CSE 562 Spring 2009 9

Caution!

This may not be the best way to compare
•  ignoring CPU costs
•  ignoring timing
•  ignoring double buffering requirements

UB CSE 562 Spring 2009 10

Options

•  Transformations: R1 R2, R2 R1
•  Join algorithms:

–  Iteration (nested loops)
–  Merge join
–  Join with index
–  Hash join

UB CSE 562 Spring 2009 11

Example

•  Iteration Join (conceptually – without taking
into account disk block issues)
 for each r ∈ R1 do
 for each s ∈ R2 do
 if r.C = s.C then output r,s pair

UB CSE 562 Spring 2009 12

Example

•  Merge Join (conceptually)
(1) if R1 and R2 not sorted, sort them
(2) i ← 1; j ← 1;

 While (i ≤ T(R1)) ∧ (j ≤ T(R2)) do
 if R1{ i }.C = R2{ j }.C then outputTuples
 else if R1{ i }.C > R2{ j }.C then j ← j+1
 else if R1{ i }.C < R2{ j }.C then i ← i+1

4

UB CSE 562 Spring 2009 13

Example

Procedure outputTuples

 While (R1{ i }.C = R2{ j }.C) ∧ (i ≤ T(R1)) do
 [jj ← j;
 while (R1{ i }.C = R2{ jj }.C) ∧ (jj ≤ T(R2)) do
 [output pair R1{ i }, R2{ jj };
 jj ← jj+1]
 i ← i+1]

UB CSE 562 Spring 2009 14

Example

 i R1{i}.C R2{j}.C j
 1 10 5 1
 2 20 20 2
 3 20 20 3
 4 30 30 4
 5 40 30 5
 50 6
 52 7

UB CSE 562 Spring 2009 15

Example

•  Join with Index (Conceptually)

 For each r ∈ R1 do
 [X ← index (R2, C, r.C)
 for each s ∈ X do
 output r,s pair]

Assume R2.C index

Note: X ← index(rel, attr, value)
 then X = set of rel tuples with attr = value

UB CSE 562 Spring 2009 16

Example

•  Hash Join (Conceptual)
–  Hash function h, range 0 → k
–  Buckets for R1: G0, G1, ... Gk
–  Buckets for R2: H0, H1, ... Hk

 Algorithm
1)  Hash R1 tuples into G buckets
2)  Hash R2 tuples into H buckets
3)  For i = 0 to k do

 match tuples in Gi, Hi buckets

5

UB CSE 562 Spring 2009 17

hash: even/odd

 R1 R2 Buckets

 2 5 Even:
 4 4 R1 R2
 3 12 Odd:
 5 3
 8 13
 9 8
 11
 14

Simple Example

2 4 8 4 12 8 14

3 5 9 5 3 13 11

UB CSE 562 Spring 2009 18

Factors that Affect Performance

(1) Tuples of relation stored physically together?

(2) Relations sorted by join attribute?

(3) Indexes exist?

UB CSE 562 Spring 2009 19

Disk-Oriented Computation Model

•  There are M main memory buffers
–  Each buffer has the size of a disk block

•  The input relation is read one block at a time
•  The cost is the number of blocks read
•  The output buffers are not part of the M buffers

mentioned above
–  Pipelining allows the output buffers of an operator to be

the input of the next one
–  We do not count the cost of writing the output

UB CSE 562 Spring 2009 20

Notation

•  B(R) = number of blocks that R occupies
•  T(R) = number of tuples of R
•  V(R,[a1, a2 ,…, an]) = number of distinct tuples

in the projection of R on a1, a2 ,…, an

6

UB CSE 562 Spring 2009 21

One-Pass Main Memory Algorithms for
Unary Operators

•  Assumption: Enough memory to keep the relation
•  Projection and selection:

–  Scan the input relation R and apply operator one tuple
at a time

–  Cost depends on
– clustering of R
– whether the blocks are consecutive

•  Duplicate elimination and aggregation
–  create one entry for each group and compute the

aggregated value of the group
–  it becomes hard to assume that CPU cost is negligible

– main memory data structures are needed

UB CSE 562 Spring 2009 22

•  Assume B(R) is less than M
•  Tuples of R should be stored in an efficient

lookup structure
•  Exercise: Find the cost of the algorithm below

 for each block Br of R do
 store tuples of Br in main memory
 for each each block Bs of S do
 for each tuple s of Bs
 join tuples of s with matching tuples of R

One-Pass Nested Loop Join

UB CSE 562 Spring 2009 23

Generalization of Nested-Loops

for each chunk of M-1 blocks Br of R do
 store tuples of Br in main memory
 for each block Bs of S do
 for each tuple s of Bs
 join tuples of s with matching tuples of R

Exercise: Compute the cost of the above algorithm

UB CSE 562 Spring 2009 24

Simple Sort-Merge Join

•  Assume natural join on C
•  Sort R on C using the two-

phase multiway merge sort
–  if not already sorted

•  Sort S on C
•  Merge (opposite side)

–  assume two pointers Pr,Ps
to tuples on disk, initially
pointing at the start

–  sets R’, S’ in memory
•  Remarks:

–  Very low average memory
requirement during
merging (but no guarantee
on how much is needed)

–  Cost:

while Pr!=EOF and Ps!=EOF
 if *Pr[C] == *Ps[C]
 do_cart_prod(Pr,Ps)
 else if *Pr[C] > *Ps[C]
 Ps++
 else if *Ps[C] > *Pr[C]
 Pr++

function do_cart_prod(Pr,Ps)
 val = *Pr[C]
 while *Pr[C] == val
 store tuple *Pr in set R’
 while *Ps[C] == val
 store tuple *Ps in set S’
 output R’ x S’ // product

7

UB CSE 562 Spring 2009 25

Efficient Sort-Merge Join

•  Idea: Save two disk I/O’s per block by combining the
second pass of sorting with the “merge”

•  Step 1:
 Create sorted sublists of size M for R and S

•  Step 2:
 Bring the first block of each sublist to a buffer

–  assume no more than M sublists in all

•  Step 3:
 Repeatedly find the least C value c among the first
tuples of each sublist. Identify all tuples with join value c
and join them.

–  When a buffer has no more tuple that has not already been
considered load another block into this buffer

UB CSE 562 Spring 2009 26

Efficient Sort-Merge Join Example

•  Assume that after first phase of
multiway sort we get 4 sublists,
2 for R and 2 for S

•  Also assume that each block
contains two tuples

C RA
1 r1
2 r2
3 r3

20 r20

R

C SA
1 s1

5 s5
16 s16

20 s20

S
3 7 8 10 11 13 14 16 17 18
1 2 4 5 6 9 12 15 19 20

R

1 3 5 17
2 4 16 18 19 20

S

…
…

…

UB CSE 562 Spring 2009 27

Two-Pass Hash-Based Algorithms

•  General Idea: Hash the tuples of the input arguments in
such a way that all tuples that must be considered
together will have hashed to the same hash value
–  If there are M buffers pick M-1 as the number of hash buckets

•  Example: Duplicate Elimination
–  Phase 1: Hash each tuple of each input block into one

of the M-1 bucket/buffers. When a buffer fills, save to
disk

–  Phase 2: For each bucket:
–  load the bucket in main memory
–  treat the bucket as a small relation and eliminate

duplicates
–  save the bucket back to disk

–  Catch: Each bucket has to be less than M
–  Cost:

UB CSE 562 Spring 2009 28

Hash-Join Algorithms

•  Assuming natural join, use a hash function that
–  is the same for both input arguments R and S
–  uses only the join attributes

•  Phase 1: Hash each tuple of R into one of the M-1 buckets
Ri and similar each tuple of S into one of Si

•  Phase 2: For i=1…M-1
 load Ri and Si in memory

 join them and save result to disk

•  Question: What is the maximum size of buckets?
•  Question: Does hashing maintain sorting?

8

UB CSE 562 Spring 2009 29

Index-Based Join: Simplest Version

•  Assume that we do natural join of R(A,B) and S(B,C) and
there is an index on S

 for each Br in R do
 for each tuple r of Br with B value b
 use index of S to find
 tuples {s1 ,s2 ,...,sn} of S with B=b

 output {rs1 ,rs2 ,...,rsn}

•  Cost: Assuming R is clustered and non-sorted and the
index on S is clustered on B then
B(R)+T(R)B(S)/V(S,B) + some for reading index

UB CSE 562 Spring 2009 30

Opportunities in Joins Using Sorted
Indexes

•  Do a conventional Sort-Join avoiding the sorting
of one or both of the input operands

UB CSE 562 Spring 2009 31

Example 1(a)

Iteration Join R1 R2
•  Relations not contiguous
•  Recall T(R1) = 10,000

 T(R2) = 5,000
 S(R1) = S(R2) = 1/10 block
 MEM = 101 blocks

Cost: for each R1 tuple:
 [Read tuple + Read R2]

Total =10,000 [1+5000]=50,010,000 IOs

UB CSE 562 Spring 2009 32

Can we do better?

Use our memory
(1) Read 100 blocks of R1
(2) Read all of R2 (using 1 block) + join
(3) Repeat until done

9

UB CSE 562 Spring 2009 33

•  for each R1 chunk:
 Read chunk: 1000 IOs
 Read R2 5000 IOs
 6000

 Total = 10,000 x 6000 = 60,000 IOs
 1,000

Cost

UB CSE 562 Spring 2009 34

•  Reverse Join Order: R2 R1

 Total = 5000 x (1000 + 10,000) =
 1000

 5 x 11,000 = 55,000 IOs

Can we do better?

UB CSE 562 Spring 2009 35

Example 1(b)

Iteration Join R2 R1
•  Relations contiguous

Cost
For each R2 chunk:

 Read chunk: 100 IOs
 Read R1: 1000 IOs
 1,100

Total = 5 chunks x 1,100 = 5,500 IOs

UB CSE 562 Spring 2009 36

Merge Join
•  Both R1, R2 ordered by C; relations contiguous

 Total cost: Read R1 cost + read R2 cost
 = 1000 + 500 = 1,500 IOs

Example 1(c)

Memory

R1

R2

…

…

R1

R2

10

UB CSE 562 Spring 2009 37

Example 1(d)

Merge Join
•  R1, R2 not ordered, but contiguous

→ Need to sort R1, R2 first… HOW?

UB CSE 562 Spring 2009 38

One Way to Sort

Merge Sort
(i) For each 100 block chunk of R:

 - Read chunk
 - Sort in memory
 - Write to disk

 sorted
 chunks

 Memory

R1

R2 ..
.

UB CSE 562 Spring 2009 39

One Way to Sort

Merge Sort
(ii) Read all chunks + merge + write out

 Sorted file Memory

 Sorted
 Chunks ..

. ..
.

UB CSE 562 Spring 2009 40

One Way to Sort

Cost: Sort
 Each tuple is read, written,
 read, written
 so...
 Sort cost R1: 4 x 1,000 = 4,000
 Sort cost R2: 4 x 500 = 2,000

11

UB CSE 562 Spring 2009 41

Example 1(d) (Cont.)

Merge Join
•  R1,R2 contiguous, but unordered

 Total cost = sort cost + join cost
 = 6,000 + 1,500 = 7,500 IOs

 But: Iteration cost = 5,500
 so merge joint does not pay off!

UB CSE 562 Spring 2009 42

Example 1(d) (Cont.)

But say R1 = 10,000 blocks contiguous
 R2 = 5,000 blocks not ordered

Iterate: 5000 x (100+10,000) = 50 x 10,100
 100

 = 505,000 IOs

Merge join: 5(10,000+5,000) = 75,000 IOs

 Merge Join (with sort) WINS!

UB CSE 562 Spring 2009 43

Merge Sort

How much memory do we need for merge sort?

E.g: Say I have 10 memory blocks

 10

 100 chunks ⇒ to merge,
 need 100 blocks!

..
. R1

UB CSE 562 Spring 2009 44

In General

Say k blocks in memory
 x blocks for relation sort

 # chunks = (x/k)
 size of chunk = k

 # chunks < buffers available for merge

 so... (x/k) ≤ k
 or k2 ≥ x or k ≥ √x

12

UB CSE 562 Spring 2009 45

In Our Example

R1 is 1000 blocks, k ≥ 31.62
R2 is 500 blocks, k ≥ 22.36

 Need at least 32 buffers

UB CSE 562 Spring 2009 46

Can we improve on merge join?

Hint: do we really need the fully sorted files?

R1

R2

Join?

sorted runs

UB CSE 562 Spring 2009 47

Cost of Improved Merge Join

 C = Read R1 + write R1 into runs
 + read R2 + write R2 into runs
 + join
 = 2000 + 1000 + 1500 = 4500

→ Memory requirement?

UB CSE 562 Spring 2009 48

Example 1(e)

Index Join
•  Assume R1.C index exists; 2 levels
•  Assume R2 contiguous, unordered

•  Assume R1.C index fits in memory

13

UB CSE 562 Spring 2009 49

Example 1(e) (Cont.)

Cost: Reads: 500 IOs
 for each R2 tuple:
 - probe index - free
 - if match, read R1 tuple: 1 IO

UB CSE 562 Spring 2009 50

Example 1(e) (Cont.)

What is expected # of matching tuples?
(a) say R1.C is key, R2.C is foreign key

 then expect = 1
(b) say V(R1,C) = 5000, T(R1) = 10,000

 with uniform assumption
 expect = 10,000/5,000 = 2

UB CSE 562 Spring 2009 51

Total Cost with Index Join

(a) Total cost = 500+5000(1)1 = 5,500

(b) Total cost = 500+5000(2)1 = 10,500

UB CSE 562 Spring 2009 52

What if index does not fit in memory?

Example: say R1.C index is 201 blocks

•  Keep root + 99 leaf nodes in memory
•  Expected cost of each probe is

 E = (0) 99 + (1)101 ≈ 0.5
 200 200

14

UB CSE 562 Spring 2009 53

Total Cost (including probes)

 = 500 + 5000 [Probe + get records]
 = 500 + 5000 [0.5 + 2] uniform assumption
 = 500 + 12,500 = 13,000 (case b)

UB CSE 562 Spring 2009 54

So Far

 Iterate R2 R1 55,000 (best)
 Merge Join _______
 Sort+ Merge Join _______
 R1.C Index _______
 R2.C Index _______

 Iterate R2 R1 5500
 Merge join 1500
 Sort+Merge Join 7500 → 4500
 R1.C Index 5500
 R2.C Index ________ co

n
ti
g
u
o
u
s

n
o
t

co
n
ti
g
u
o
u
s

UB CSE 562 Spring 2009 55

Example 1(f)

Hash Join
•  R1, R2 contiguous (un-ordered)

→ Use 100 buckets

→ Read R1, hash, + write buckets

 R1 →

..
.

..
.

10 blocks

100

UB CSE 562 Spring 2009 56

Example 1(f) (Cond.)

→ Same for R2
→ Read one R1 bucket; build memory hash table
→ Read corresponding R2 bucket + hash probe

R1

→ Then repeat for all buckets

R2

..
.

R1

memory ..
.

15

UB CSE 562 Spring 2009 57

Cost

•  “Bucketize:” Read R1 + write
 Read R2 + write

•  Join: Read R1, R2

•  Total cost = 3 x [1000+500] = 4500

Note: this is an approximation since
buckets will vary in size and

we have to round up to blocks

UB CSE 562 Spring 2009 58

Minimum Memory Requirements

•  Size of R1 bucket = (x/k)
 k = number of memory buffers
 x = number of R1 blocks

•  So… (x/k) < k

•  k > √x need: k+1 total memory buffers

UB CSE 562 Spring 2009 59

Trick

Keep Some Buckets in Memory
E.g., k’=33 R1 buckets = 31 blocks

 keep 2 in memory
memory

G0

G1

in

..
.

31

33-2=31

R1

Memory use:
G0 31 buffers
G1 31 buffers

Output 33-2 buffers
R1 input 1 buffer
Total 94 buffers

 6 buffers to spare!!

called hybrid hash-join

UB CSE 562 Spring 2009 60

Next

Bucketize R2
•  R2 buckets =500/33= 16 blocks
•  Two of the R2 buckets joined immediately with

G0,G1

memory

G0

G1

in

..
.

16

33-2=31

R2

..
.

31

33-2=31

R2 buckets R1 buckets

16

UB CSE 562 Spring 2009 61

Finally

Join remaining buckets
•  for each bucket pair:

–  read one of the buckets into memory
–  join with second bucket

memory

Gi
out

..
.

16

33-2=31

ans

..
.

31

33-2=31

R2 buckets R1 buckets one full R2
bucket

one R1
buffer

UB CSE 562 Spring 2009 62

Cost

•  Bucketize R1 = 1000 + 31 × 31 = 1961
•  To bucketize R2, only write 31 buckets:

 so, cost = 500 + 31 × 16 = 996
•  To compare join (2 buckets already done)

 read 31 × 31 + 31 × 16 = 1457

Total cost = 1961 + 996 + 1457 = 4414

UB CSE 562 Spring 2009 63

How Many Buckets in Memory?

memory

G0

G1

in R1

memory

G0
in R1

OR...

→ See textbook for answer...

?

UB CSE 562 Spring 2009 64

Another Hash Join Trick

•  Only write into buckets
 <val,ptr> pairs

•  When we get a match in join phase,
 must fetch tuples

17

UB CSE 562 Spring 2009 65

Another Hash Join Trick (Cont.)

•  To illustrate cost computation, assume:
–  100 <val,ptr> pairs/block
–  expected number of result tuples is 100

•  Build hash table for R2 in memory
 5000 tuples → 5000/100 = 50 blocks

•  Read R1 and match
•  Read ~ 100 R2 tuples

•  Total cost = Read R2: 500
 Read R1: 1000
 Get tuples: 100
 1600

UB CSE 562 Spring 2009 66

So Far

 Iterate 5500
 Merge join 1500
 Sort+merge joint 7500
 R1.C index 5500 → 550
 R2.C index _____
 Build R.C index _____
 Build S.C index _____
 Hash join 4500+
 with trick,R1 first 4414
 with trick,R2 first _____
 Hash join, pointers 1600

co
nt

ig
uo

us

UB CSE 562 Spring 2009 67

Summary

•  Iteration ok for “small” relations
 (relative to memory size)

•  For equi-join, where relations not
 sorted and no indexes exist,
 hash join usually best

•  Sort + merge join good for
 non-equi-join (e.g., R1.C > R2.C)

•  If relations already sorted, use
 merge join

•  If index exists, it could be useful
 (depends on expected result size)

