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Query Processing: 
Physical Operators 

UB CSE 562 Spring 2009 
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Outline – Query Optimization 

•  Overview 
•  Relational algebra level 

–  Algebraic Transformations 

•  Detailed query plan level 
–  Estimate Costs 

–  Estimating size of results 
–  Estimating # of IOs 

–  Generate and compare plans 
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Algorithms for Algebra Operators 

•  Three primary techniques 
–  Sorting 
–  Hashing 
–  Indexing 

•  Three degrees of difficulty 
–  data small enough to fit in memory 
–  too large to fit in main memory but small enough to be 

handled by a “two-pass” algorithm 
–  so large that “two-pass” methods have to be 

generalized  to “multi-pass” methods (quite unlikely 
nowadays) 
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Estimating IOs 

•  Count # of disk blocks that must be read (or 
written) to execute query plan 
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Additional Cost Estimation Parameters 

•  B(R) = # of blocks containing R tuples 
•  f(R)  = max # of tuples of R per block 
•  M     = # memory blocks available 

•  HT(i) = # levels in index i 
•  LB(i) = # of leaf blocks in index i 
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Clustering Index 

•  Index that allows tuples to be read in an order 
that corresponds to physical order 

      A 

A 
index 

10 
15 
17 

19 
35 
37 
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Clustering Can Radically Change Cost 

•  Clustered file organization 

       … 

•  Clustered relation 

       … 

•  Clustering index 

R1 R2 S1 S2 R3 R4 S3 S4 

R1 R2 R3 R4 R5 R5 R7 R8 
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Example 

R1      R2 over common attribute C  

T(R1)   = 10,000 
T(R2)   = 5,000 
S(R1) = S(R2) = 1/10 block 
Memory available = 101 blocks 

 → Metric:  # of IOs   
   (ignoring writing of result) 
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Caution!     

This may not be the best way to compare 
•  ignoring CPU costs 
•  ignoring timing 
•  ignoring double buffering requirements 
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Options 

•  Transformations: R1      R2,  R2      R1 
•  Join algorithms: 

–  Iteration (nested loops) 
–  Merge join 
–  Join with index 
–  Hash join 
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Example 

•  Iteration Join (conceptually – without taking 
into account disk block issues) 
  for each r ∈ R1 do 
      for each s ∈ R2 do 
   if r.C = s.C then output r,s pair 
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Example 

•  Merge Join (conceptually) 
(1) if R1 and R2 not sorted, sort them 
(2) i ← 1; j ← 1; 

  While (i ≤ T(R1)) ∧  (j ≤ T(R2)) do 
      if R1{ i }.C = R2{ j }.C then outputTuples 
      else if R1{ i }.C > R2{ j }.C then j ← j+1 
      else if R1{ i }.C < R2{ j }.C then i ← i+1 
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Example 

Procedure outputTuples 

 While (R1{ i }.C = R2{ j }.C) ∧ (i ≤ T(R1)) do 
     [ jj ← j; 
       while (R1{ i }.C = R2{ jj }.C) ∧ (jj ≤ T(R2)) do 
   [ output pair R1{ i }, R2{ jj }; 
     jj ← jj+1 ] 
       i ← i+1 ] 
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Example 

 i      R1{i}.C  R2{j}.C   j 
 1   10        5   1 
 2   20       20   2 
 3   20       20   3 
 4   30       30   4 
 5   40       30   5 
         50   6 
         52   7 
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Example 

•  Join with Index (Conceptually) 

 For each r ∈ R1 do 
  [ X  ←  index (R2, C, r.C) 
    for each s ∈ X do 
   output r,s pair ] 

Assume R2.C index 

Note:  X ← index(rel, attr, value) 
  then X = set of rel tuples with attr = value 
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Example 

•  Hash Join (Conceptual) 
–  Hash function h, range 0 → k 
–  Buckets for R1: G0, G1, ... Gk 
–  Buckets for R2: H0, H1, ... Hk 

 Algorithm 
1)  Hash R1 tuples into G buckets 
2)  Hash R2 tuples into H buckets 
3)  For i = 0 to k do 

  match tuples in Gi, Hi buckets 
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hash: even/odd 

 R1  R2     Buckets 

  2   5   Even:  
  4   4        R1     R2 
  3   12   Odd:  
  5   3 
  8   13 
  9   8 
   11 
   14 

Simple Example 

2 4 8 4 12 8 14 

3 5 9 5 3 13 11 
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Factors that Affect Performance 

(1)  Tuples of relation stored physically together? 

(2)  Relations sorted by join attribute? 

(3)  Indexes exist? 
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Disk-Oriented Computation Model 

•  There are M main memory buffers 
–  Each buffer has the size of a disk block 

•  The input relation is read one block at a time 
•  The cost is the number of blocks read 
•  The output buffers are not part of the M buffers 

mentioned above 
–  Pipelining allows the output buffers of an operator to be 

the input of the next one 
–  We do not count the cost of writing the output 
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Notation 

•  B(R) = number of blocks that R occupies 
•  T(R) = number of tuples of R 
•  V(R,[a1, a2 ,…, an]) = number of distinct tuples 

in the projection of R on a1, a2 ,…, an 
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One-Pass Main Memory Algorithms for 
Unary Operators 

•  Assumption: Enough memory to keep the relation 
•  Projection and selection: 

–  Scan the input relation R and apply operator one tuple 
at a time 

–  Cost depends on 
– clustering of R  
– whether the blocks are consecutive 

•  Duplicate elimination and aggregation 
–  create one entry for each group and compute the 

aggregated value of the group 
–  it becomes hard to assume that CPU cost is negligible 

– main memory data structures are needed 
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•  Assume B(R) is less than M 
•  Tuples of R should be stored in an efficient 

lookup structure 
•  Exercise: Find the cost of the algorithm below 

 for each block Br of R do 
  store tuples of Br in main memory 
 for each each block Bs of S do 
  for each tuple s of Bs 
      join tuples of s with matching tuples of R 

One-Pass Nested Loop Join 
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Generalization of Nested-Loops 

for each chunk of M-1 blocks Br of R do 
   store tuples of Br in main memory 
   for each block Bs of S do 
      for each tuple s of Bs 
         join tuples of s with matching tuples of R 

Exercise: Compute the cost of the above algorithm 
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Simple Sort-Merge Join 

•  Assume natural join on C 
•  Sort R on C using the two-

phase multiway merge sort 
–  if not already sorted 

•  Sort S on C 
•  Merge (opposite side)  

–  assume two pointers Pr,Ps 
to tuples on disk, initially 
pointing at the start 

–  sets R’, S’ in memory 
•  Remarks: 

–  Very low average memory 
requirement during 
merging (but no guarantee 
on how much is needed) 

–  Cost:  

while Pr!=EOF and Ps!=EOF 
  if *Pr[C] == *Ps[C] 
    do_cart_prod(Pr,Ps) 
  else if *Pr[C] > *Ps[C] 
    Ps++ 
  else if *Ps[C] > *Pr[C] 
    Pr++ 

function do_cart_prod(Pr,Ps) 
  val = *Pr[C] 
  while *Pr[C] == val 
    store tuple *Pr in set R’ 
  while *Ps[C] == val 
    store tuple *Ps in set S’ 
  output R’ x S’ // product 



7 

UB CSE 562 Spring 2009 25 

Efficient Sort-Merge Join 

•  Idea: Save two disk I/O’s per block by combining the 
second pass of sorting with the “merge” 

•  Step 1: 
  Create sorted sublists of size M for R and S 

•  Step 2: 
  Bring the first block of each sublist to a buffer 

–  assume no more than M sublists in all 

•  Step 3: 
  Repeatedly find the least C value c among the first 
tuples of each sublist. Identify all tuples with join value c 
and join them. 

–  When a buffer has no more tuple that has not already been 
considered load another block into this buffer 
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Efficient Sort-Merge Join Example 

•  Assume that after first phase of 
multiway sort we get 4 sublists,  
2 for R and 2 for S 

•  Also assume that each block 
contains two tuples 

C   RA  
1   r1 
2   r2 
3   r3 

20 r20 

R 

C   SA  
1   s1 

5   s5 
16 s16 

20 s20 

S 
3  7  8 10 11 13 14 16 17 18 
1  2  4  5   6  9  12 15 19 20 

R 

1  3  5  17   
2  4 16 18 19 20 

S 

…
…

…
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Two-Pass Hash-Based Algorithms 

•  General Idea: Hash the tuples of the input arguments in 
such a way that all tuples that must be considered 
together will have hashed to the same hash value 
–  If there are M buffers pick M-1 as the number of hash buckets 

•  Example: Duplicate Elimination 
–  Phase 1: Hash each tuple of each input block into one 

of the M-1 bucket/buffers. When a buffer fills, save to 
disk 

–  Phase 2: For each bucket: 
–  load the bucket in main memory 
–  treat the bucket as a small relation and eliminate 

duplicates  
–  save the bucket back to disk 

–  Catch: Each bucket has to be less than M 
–  Cost: 
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Hash-Join Algorithms 

•  Assuming natural join, use a hash function that 
–  is the same for both input arguments R and S 
–  uses only the join attributes 

•  Phase 1: Hash each tuple of R into one of the M-1 buckets 
Ri and similar each tuple of S into one of Si 

•  Phase 2:  For i=1…M-1 
         load Ri and Si in memory 

         join them and save result to disk 

•  Question: What is the maximum size of buckets? 
•  Question: Does hashing maintain sorting? 
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Index-Based Join: Simplest Version 

•  Assume that we do natural join of R(A,B) and S(B,C) and 
there is an index on S 

 for each Br in R do 
    for each tuple r of Br with B value b 
       use index of S to find 
         tuples {s1 ,s2 ,...,sn} of S with B=b 

       output {rs1 ,rs2 ,...,rsn} 

•  Cost: Assuming R is clustered and non-sorted and the 
index on S is clustered on B then 
B(R)+T(R)B(S)/V(S,B) + some for reading index 
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Opportunities in Joins Using Sorted 
Indexes 

•  Do a conventional Sort-Join avoiding the sorting 
of one or both of the input operands 
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Example 1(a) 

Iteration Join R1     R2 
•  Relations not contiguous 
•  Recall  T(R1) = 10,000 

   T(R2) = 5,000 
   S(R1) = S(R2) = 1/10 block  
   MEM = 101 blocks 

Cost: for each R1 tuple: 
            [Read tuple + Read R2] 

Total =10,000 [1+5000]=50,010,000 IOs 
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Can we do better? 

Use our memory 
(1)  Read 100 blocks of R1 
(2)  Read all of R2 (using 1 block) + join 
(3)  Repeat until done 
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•  for each R1 chunk: 
  Read chunk: 1000 IOs 
  Read R2    5000 IOs 
      6000 

  Total = 10,000  x 6000 = 60,000 IOs 
      1,000 

Cost 
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•  Reverse Join Order: R2      R1 

  Total = 5000  x (1000 + 10,000) = 
      1000 

     5 x 11,000 = 55,000 IOs 

Can we do better? 
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Example 1(b) 

Iteration Join  R2      R1 
•  Relations contiguous 

Cost 
For each R2 chunk: 

  Read chunk: 100 IOs 
  Read R1:      1000 IOs 
      1,100 

Total = 5 chunks x 1,100 = 5,500 IOs 
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Merge Join 
•  Both R1, R2 ordered by C; relations contiguous 

  Total cost: Read R1 cost + read R2 cost 
     = 1000 + 500 = 1,500 IOs 

Example 1(c) 

Memory 

R1 

R2 

… 

… 

R1 

R2 
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Example 1(d) 

Merge Join 
•  R1, R2 not ordered, but contiguous 

→ Need to sort R1, R2 first… HOW? 
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One Way to Sort 

Merge Sort 
(i) For each 100 block chunk of R: 

  - Read chunk 
  - Sort in memory 
  - Write to disk 

        sorted 
        chunks 

      Memory 

R1 

R2 ..
. 
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One Way to Sort 

Merge Sort 
(ii) Read all chunks + merge + write out 

  Sorted file     Memory 

         Sorted 
         Chunks ..

. ..
. 
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One Way to Sort 

Cost: Sort 
  Each tuple is read, written, 
      read, written 
 so... 
  Sort cost R1:  4 x 1,000 = 4,000 
  Sort cost R2:  4 x 500    = 2,000 
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Example 1(d) (Cont.) 

Merge Join 
•  R1,R2 contiguous, but unordered 

 Total cost = sort cost + join cost 
    =  6,000 + 1,500 = 7,500  IOs 

  But: Iteration cost = 5,500 
  so merge joint does not pay off! 
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Example 1(d) (Cont.) 

But say  R1 = 10,000 blocks    contiguous 
   R2 = 5,000 blocks      not ordered 

Iterate:  5000 x (100+10,000) = 50 x 10,100 
       100 

                    = 505,000 IOs 

Merge join: 5(10,000+5,000) = 75,000 IOs 

       Merge Join (with sort) WINS! 
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Merge Sort 

How much memory do we need for merge sort? 

E.g: Say I have 10 memory blocks 

        10 

    100 chunks ⇒ to merge,  
       need 100 blocks! 

    

..
. R1 

UB CSE 562 Spring 2009 44 

In General 

Say  k blocks in memory 
  x blocks for relation sort 

  # chunks = (x/k) 
  size of chunk = k 

  # chunks < buffers available for merge 

   so...   (x/k) ≤ k 
   or  k2 ≥ x  or  k ≥ √x 
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In Our Example 

R1 is 1000 blocks,  k ≥ 31.62 
R2 is 500 blocks,    k ≥ 22.36 

 Need at least 32 buffers 
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Can we improve on merge join? 

Hint: do we really need the fully sorted files? 

R1 

R2 

Join? 

sorted runs 
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Cost of Improved Merge Join 

 C =  Read R1 + write R1 into runs 
    + read R2 + write R2 into runs 
    + join 
    = 2000 + 1000 + 1500 = 4500 

→ Memory requirement? 

UB CSE 562 Spring 2009 48 

Example 1(e) 

Index Join 
•  Assume R1.C index exists; 2 levels 
•  Assume R2 contiguous, unordered 

•  Assume R1.C index fits in memory 
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Example 1(e) (Cont.) 

Cost: Reads: 500 IOs   
  for each R2 tuple: 
   - probe index - free 
   - if match, read R1 tuple: 1 IO 
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Example 1(e) (Cont.) 

What is expected # of matching tuples? 
(a) say R1.C is key, R2.C is foreign key 

  then expect = 1 
(b) say V(R1,C) = 5000,  T(R1) = 10,000 

  with uniform assumption 
  expect = 10,000/5,000 = 2 
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Total Cost with Index Join 

(a)  Total cost = 500+5000(1)1 = 5,500 

(b)  Total cost = 500+5000(2)1 = 10,500 
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What if index does not fit in memory? 

Example: say R1.C index is 201 blocks 

•  Keep root + 99 leaf nodes in memory 
•  Expected cost of each probe is 

  E = (0) 99  + (1)101 ≈ 0.5 
     200         200 



14 

UB CSE 562 Spring 2009 53 

Total Cost (including probes) 

 = 500 + 5000 [Probe + get records] 
 = 500 + 5000 [0.5 + 2]     uniform assumption 
 = 500 + 12,500 = 13,000     (case b) 
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So Far 

      Iterate R2      R1  55,000 (best) 
      Merge Join   _______ 
      Sort+ Merge Join  _______ 
      R1.C Index   _______ 
      R2.C Index   _______ 

      Iterate R2      R1  5500 
      Merge join   1500 
      Sort+Merge Join  7500 → 4500 
      R1.C Index   5500 
      R2.C Index   ________ co

n
ti
g
u
o
u
s 

n
o
t 

co
n
ti
g
u
o
u
s 
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Example 1(f) 

Hash Join 
•  R1, R2 contiguous (un-ordered) 

→ Use 100 buckets 

→ Read R1, hash, + write buckets 

 R1 → 

..
. 

..
. 

10 blocks 

100 
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Example 1(f) (Cond.) 

→ Same for R2 
→ Read one R1 bucket; build memory hash table 
→ Read corresponding R2 bucket + hash probe 

R1 

→ Then repeat for all buckets 

R2 

..
. 

R1 

memory ..
. 
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Cost 

•  “Bucketize:”  Read R1 + write 
       Read R2 + write 

•  Join:   Read R1, R2 

•  Total cost = 3 x [1000+500] = 4500 

Note: this is an approximation since   
buckets will vary in size and  

we have to round up to blocks 
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Minimum Memory Requirements 

•  Size of R1 bucket = (x/k) 
  k = number of memory buffers 
  x = number of R1 blocks 

•  So… (x/k) < k 

•  k > √x   need: k+1 total memory buffers 
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Trick 

Keep Some Buckets in Memory 
E.g., k’=33  R1 buckets = 31 blocks 

        keep 2 in memory           
memory 

G0 

G1 

in 

..
. 

31 

33-2=31 

R1 

Memory use: 
G0   31 buffers 
G1   31 buffers 

Output  33-2 buffers 
R1 input    1 buffer 
Total   94 buffers 

 6 buffers to spare!! 

called hybrid hash-join 
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Next 

Bucketize R2 
•  R2 buckets =500/33= 16 blocks 
•  Two of the R2 buckets joined immediately with 

G0,G1           

memory 

G0 

G1 

in 

..
. 

16 

33-2=31 

R2 

..
. 

31 

33-2=31 

R2 buckets R1 buckets 
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Finally 

Join remaining buckets 
•  for each bucket pair: 

–  read one of the buckets into memory 
–  join with second bucket          

memory 

Gi 
out 

..
. 

16 

33-2=31 

ans 

..
. 

31 

33-2=31 

R2 buckets R1 buckets one full R2 
bucket 

one R1 
buffer 
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Cost 

•  Bucketize R1 = 1000 + 31 × 31 = 1961 
•  To bucketize R2, only write 31 buckets: 

 so, cost = 500 + 31 × 16 = 996 
•  To compare join (2 buckets already done)  

  read 31 × 31 + 31 × 16 = 1457 

Total cost = 1961 + 996 + 1457 = 4414 
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How Many Buckets in Memory? 

memory 

G0 

G1 

in R1 

memory 

G0 
in R1 

OR... 

→ See textbook for answer... 

?
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Another Hash Join Trick 

•  Only write into buckets     
 <val,ptr> pairs 

•  When we get a match in join phase,  
 must fetch tuples 
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Another Hash Join Trick (Cont.) 

•  To illustrate cost computation, assume: 
–  100 <val,ptr> pairs/block 
–  expected number of result tuples is 100 

•  Build hash table for R2 in memory 
 5000 tuples → 5000/100 = 50 blocks 

•  Read R1 and match 
•  Read ~ 100 R2 tuples 

•  Total cost =  Read R2:   500 
    Read R1:   1000 
    Get tuples:   100 
       1600 
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So Far 

  Iterate    5500 
  Merge join    1500 
  Sort+merge joint  7500 
  R1.C index    5500 → 550 
  R2.C index    _____ 
  Build R.C index   _____ 
  Build S.C index   _____ 
  Hash join    4500+ 
     with trick,R1 first  4414 
     with trick,R2 first  _____ 
  Hash join, pointers  1600 

co
nt

ig
uo

us
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Summary 

•  Iteration ok for “small” relations 
 (relative to memory size) 

•  For equi-join, where relations not 
 sorted and no indexes exist, 
 hash join usually best 

•  Sort + merge join good for 
 non-equi-join (e.g., R1.C > R2.C) 

•  If relations already sorted, use 
 merge join 

•  If index exists, it could be useful 
   (depends on expected result size) 


