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Chapter 18: Concurrency Control 

          T1    T2    …    Tn 

DB 
(consistency 
constraints) 
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Example: 

T1:  Read(A)   T2:  Read(A) 
  A ← A+100   A ← A×2 
  Write(A)    Write(A) 
  Read(B)    Read(B) 
  B ← B+100   B ← B×2 
  Write(B)    Write(B) 

Constraint:  A=B 
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Schedule A 

T1     T2 
Read(A); A ← A+100; 
Write(A); 
Read(B); B ← B+100; 
Write(B); 

           Read(A);A ← A×2; 
           Write(A); 
               Read(B);B ← B×2; 
           Write(B); 

    

A  B 
25  25 

125 

 125 

250 

 250 
250  250 
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Schedule B 

T1     T2 
     Read(A);A ← A×2; 
     Write(A); 
     Read(B);B ← B×2; 
     Write(B); 

Read(A); A ← A+100 
Write(A); 
Read(B); B ← B+100; 
Write(B); 

         

A  B 
25  25 

50 

 50 

150 

 150 
150  150 
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Schedule C 

T1     T2 
Read(A); A ← A+100 
Write(A); 

     Read(A);A ← A×2; 
     Write(A); 

Read(B); B ← B+100; 
Write(B); 

         Read(B);B ← B×2; 
     Write(B); 

    

A  B 
25  25 

125 

250 

 125 

 250 
250  250 
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Schedule D 

T1     T2 
Read(A); A ← A+100 
Write(A); 

     Read(A);A ← A×2; 
     Write(A); 
         Read(B);B ← B×2; 
     Write(B); 

Read(B); B ← B+100; 
Write(B); 

    

A  B 
25  25 

125 

250 

 50 

 150 
250  150 
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Schedule E 

T1     T2’ 
Read(A); A ← A+100 
Write(A); 

     Read(A);A ← A×1; 
     Write(A); 
         Read(B);B ← B×1; 
     Write(B); 

Read(B); B ← B+100; 
Write(B); 

    

A  B 
25  25 

125 

125 

 25 

 125 
125  125 

Same as Schedule D 
but with new T2’ 
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•  Want schedules that are “good”,   
 regardless of 

–  initial state and 
–  transaction semantics 

•  Only look at order of read and writes 

Example:  
Sc=r1(A)w1(A)r2(A)w2(A)r1(B)w1(B)r2(B)w2(B) 
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Sc’=r1(A)w1(A) r1(B)w1(B)r2(A)w2(A)r2(B)w2(B) 

       T1               T2 

Example:  
Sc=r1(A)w1(A)r2(A)w2(A)r1(B)w1(B)r2(B)w2(B) 
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However, for Sd: 
Sd=r1(A)w1(A)r2(A)w2(A) r2(B)w2(B)r1(B)w1(B) 

•  as a matter of fact, 
       T2 must precede T1  
        in any equivalent schedule, 
        i.e.,  T2 → T1 
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T1    T2   Sd cannot be rearranged 
     into a serial schedule 
    Sd is not “equivalent” to 
     any serial schedule 
    Sd is “bad” 

•    T2 → T1  
•    Also, T1 → T2 
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Returning to Sc 

Sc=r1(A)w1(A)r2(A)w2(A)r1(B)w1(B)r2(B)w2(B) 

   T1 → T2          T1 → T2 

 no cycles ⇒ Sc is “equivalent” to a 
    serial schedule 
    (in this case T1,T2) 
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Concepts 

Transaction: sequence of ri(x), wi(x) actions 
Conflicting actions:  r1(A)     w2(A)    w1(A) 

             w2(A)    r1(A)     w2(A) 
Schedule: represents chronological order 

  in which actions are executed 
Serial schedule: no interleaving of actions 

   or transactions 
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What About Concurrent Actions? 

Ti issues  System  Input(X)     t ← x 
read(x,t)  issues  completes 
   input(x) 

time 

T2 issues 
write(B,S) 

System 
issues 

input(B) 

input(B) 
completes 

B ← S 

System 
issues 

output(B) 
output(B) 
completes 

UB CSE 562 16 

So net effect is either 
•   S=…r1(x)…w2(B)…  or 
•   S=…w2(B)…r1(x)… 
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•  Assume equivalent to either r1(A) w2(A) 
     or  w2(A) r1(A) 

• ⇒ low level synchronization mechanism 
•  Assumption called “atomic actions” 

What about conflicting, concurrent actions 
on same object? 

  start r1(A)   end r1(A) 

start w2(A)   end w2(A) time 
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Definition 
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Definition 

A schedule is conflict serializable if it is 
conflict equivalent to some serial 
schedule. 
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Precedence Graph P(S)  (S is schedule) 

Nodes: transactions in S 
Arcs:  Ti → Tj whenever 
   - pi(A), qj(A) are actions in S 
   - pi(A) <S  qj(A) 
   - at least one of pi, qj is a write 
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Exercise: 

•  What is P(S) for 
S = w3(A) w2(C) r1(A) w1(B) r1(C) w2(A) r4(A) w4(D) 

•  Is S serializable? 
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Another Exercise: 

•  What is P(S) for 
S = w1(A) r2(A) r3(A) w4(A) ? 
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Lemma 

S1, S2 conflict equivalent ⇒ P(S1)=P(S2) 

Proof: 
Assume P(S1) ≠ P(S2) 
⇒ ∃ Ti: Ti → Tj in S1 and not in S2 
⇒ S1 = …pi(A)… qj(A)…   pi, qj 
   S2 = …qj(A)…pi(A)…   conflict 

⇒ S1, S2 not conflict equivalent  
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Note: P(S1)=P(S2) ⇒ S1, S2 conflict equivalent 

Counter example: 

S1=w1(A) r2(A)     w2(B) r1(B) 

S2=r2(A) w1(A)      r1(B) w2(B)  
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Theorem 

P(S1) acyclic ⇐⇒ S1 conflict serializable 

(⇐) Assume S1 is conflict serializable 
⇒ ∃ Ss: Ss, S1 conflict equivalent 
⇒ P(Ss) = P(S1)  
⇒ P(S1) acyclic since P(Ss) is acyclic 

UB CSE 562 26 

(⇒) Assume P(S1) is acyclic 
Transform S1 as follows: 
(1) Take T1 to be transaction with no incident arcs 
(2) Move all T1 actions to the front 

  S1 = …… qj(A) …… p1(A) … 

(3) we now have S1 = < T1 actions ><... rest ...> 
(4) repeat above steps to serialize rest! 

T1 

T2    T3 

   T4 

P(S1) acyclic ⇐⇒ S1 conflict serializable 

Theorem 
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How to Enforce Serializable Schedules? 

•  Option 1:  run system, recording P(S); 
      at end of day, check for P(S)
      cycles and declare if execution 
      was good 
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How to Enforce Serializable Schedules? 

•  Option 2:  prevent P(S) cycles from  
      occurring 

     T1  T2 …    Tn 

Scheduler 

DB 
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A Locking Protocol 

Two new actions: 
 lock (exclusive):  li (A) 

   unlock:   ui (A) 

scheduler 

T1     T2 

lock 
table 
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Rule #1:  Well-Formed Transactions 

Ti:  … li(A) … pi(A) … ui(A) … 
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Rule #2: Legal Scheduler 

S = ……… li(A) …………… ui(A) ……… 

 no lj(A) 
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•  What schedules are legal? 
What transactions are well-formed? 
S1 = l1(A)l1(B)r1(A)w1(B)l2(B)u1(A)u1(B) 
r2(B)w2(B)u2(B)l3(B)r3(B)u3(B) 

S2 = l1(A)r1(A)w1(B)u1(A)u1(B) 
l2(B)r2(B)w2(B)l3(B)r3(B)u3(B) 

S3 = l1(A)r1(A)u1(A)l1(B)w1(B)u1(B) 
l2(B)r2(B)w2(B)u2(B)l3(B)r3(B)u3(B) 

Exercise: 
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Schedule F 

T1     T2     
l1(A);Read(A) 
A   A+100;Write(A);u1(A)   

     l2(A);Read(A) 
     A   Ax2;Write(A);u2(A) 
     l2(B);Read(B) 
     B   Bx2;Write(B);u2(B) 

l1(B);Read(B) 
B   B+100;Write(B);u1(B)   
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Schedule F 

T1     T2           25   25   
l1(A);Read(A) 
A   A+100;Write(A);u1(A)  125 

     l2(A);Read(A) 
     A   Ax2;Write(A);u2(A)    250 
     l2(B);Read(B) 
     B   Bx2;Write(B);u2(B)     50 

l1(B);Read(B) 
B   B+100;Write(B);u1(B)  150 

  250 150 

A    B 
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Rule #3: Two Phase Locking (2PL) 
      for Transactions 

Ti = …… li(A) ………… ui(A) …… 

no unlocks    no locks 
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# locks 
held by 
Ti 

        Time 
         Growing       Shrinking 
           Phase          Phase 
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Schedule G 

delayed 
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Schedule G 

delayed 
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Schedule G 

delayed 
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Schedule H    (T2 reversed) 

delayed delayed 
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•  Assume deadlocked transactions are 
rolled back 
– They have no effect 
– They do not appear in schedule 

E.g., Schedule H = 
     This space intentionally 
     left blank! 
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Next Step: 

Show that rules #1,2,3 ⇒ conflict- 
         serializable 
         schedules 
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Conflict rules for  li(A), ui(A): 

•  li(A), lj(A) conflict  
•  li(A), uj(A) conflict 

Note: no conflict <ui(A), uj(A)>, <li(A), rj(A)>,... 
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Theorem  Rules #1,2,3  ⇒  conflict 
        (2PL)       serializable 
          schedule   

To help in proof: 
Definition Shrink(Ti) = SH(Ti) = first unlock 

         action of Ti 
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Lemma 
Ti → Tj in S ⇒ SH(Ti) <S  SH(Tj) 

Proof of lemma: 
Ti → Tj means that 
 S = … pi(A) …  qj(A) …;    p,q conflict 

By rules 1,2: 
 S = … pi(A) … ui(A) … lj(A) ... qj(A) … 

By rule 3:    SH(Ti)     SH(Tj) 

So,  SH(Ti) <S SH(Tj) 
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Proof: 
(1) Assume P(S) has cycle  
   T1 → T2 →…. Tn → T1 

(2) By lemma: SH(T1) < SH(T2) <…< SH(T1) 
(3) Impossible, so P(S) acyclic 
(4) ⇒ S is conflict serializable 

Theorem  Rules #1,2,3  ⇒  conflict 
        (2PL)       serializable 
          schedule   
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2PL Subset of Serializable 

2PL 
Serializable 
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S1: w1(x) w3(x) w2(y) w1(y) 

•  S1 cannot be achieved via 2PL: 
The lock by T1 for y must occur after w2
(y), so the unlock by T1 for x must occur 
after this point (and before w3(x)). Thus, 
w3(x) cannot occur under 2PL where 
shown in S1 because T1 holds the x lock 
at that point. 

•  However, S1 is serializable 
(equivalent to T2, T1, T3). 
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•  Beyond this simple 2PL protocol, it is all 
a matter of improving performance and 
allowing more concurrency…. 
– Shared locks 
– Multiple granularity 
– Inserts, deletes and phantoms 
– Other types of C.C. mechanisms 

UB CSE 562 50 

Shared Locks 

So far: 
S = ...l1(A) r1(A) u1(A) … l2(A) r2(A) u2(A) … 

    Do not conflict 

Instead: 
S=... ls1(A) r1(A) ls2(A) r2(A) …. us1(A) us2(A)  
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Lock actions 
l-ti(A): lock A in t mode (t is S or X) 
u-ti(A): unlock t mode (t is S or X) 

Shorthand: 
ui(A): unlock whatever modes  
   Ti has locked A 
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Rule #1: Well Formed Transactions 

Ti =... l-S1(A) … r1(A) …  u1 (A) … 
Ti =... l-X1(A) … w1(A) …  u1 (A) … 
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•  What about transactions that read and 
write same object? 

Option 1:  Request exclusive lock 
Ti = ...l-X1(A) … r1(A) ... w1(A) ... u(A) … 
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Think of 
- Get 2nd lock on A, or 
- Drop S, get X lock 

•  What about transactions that read and 
write same object? 

Option 2: Upgrade 
(E.g.,  need to read, but don’t know if will write…) 

Ti=…l-S1(A)…r1(A)…l-X1(A)…w1(A)…u(A)… 
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Rule #2: Legal Scheduler 

S = … l-Si(A)  …  …  ui(A) … 

      no l-Xj(A) 

S = … l-Xi(A)  …  …  ui(A) … 

      no l-Xj(A) 
      no l-Sj(A) 
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A Way To Summarize Rule #2 

Compatibility Matrix 

Comp      S   X 
    S     true       false 
    X  false      false 
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Rule #3: 2PL Transactions 

No change except for upgrades: 
(I)  If upgrade gets more locks 
  (e.g., S → {S, X})  then no change! 

(II) If upgrade releases read (shared)  
 lock (e.g., S → X) 

  - can be allowed in growing phase 
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Theorem  Rules 1,2,3  ⇒  Conf.serializable 
   for S/X locks           schedules 

Proof: similar to X locks case 

Detail: 
l-ti(A), l-rj(A) do not conflict if comp(t,r) 
l-ti(A), u-rj(A) do not conflict if comp(t,r) 
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Lock Types Beyond S/X 

Examples: 
   (1) increment lock 
   (2) update lock 
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Example (1): Increment Lock 

•  Atomic increment action: INi(A) 
  {Read(A); A ← A+k; Write(A)} 

•  INi(A), INj(A) do not conflict! 

    A=7 
A=5      A=17 
    A=15 

INi(A) 

+2 

INj(A) 

+10 
+10 

INj(A) 

+2 

INi(A) 
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Comp    S  X   I 
    S   
    X   
    I   
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Comp    S  X   I 
    S  T  F   F 
    X  F  F   F 
    I  F  F   T 

UB CSE 562 63 

Update Locks 
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Solution 

If Ti wants to read A and knows it 
may later want to write A, it requests 
update lock (not shared) 



17 

UB CSE 562 65 

Comp    S  X   U 
    S   
    X   
    U    

Lock  
already 
held in 

New request 
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Comp    S  X   U 
    S  T  F   T 
    X  F  F   F 
    U   TorF  F   F 

        -> symmetric table? 

Lock  
already 
held in 

New request 
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Note: object A may be locked in different 
   modes at the same time... 

S1=…l-S1(A)…l-S2(A)…l-U3(A)…  l-S4(A)…? 
  l-U4(A)…?  

•  To grant a lock in mode t, mode t must 
be compatible with all currently held 
locks on object 
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How Does Locking Work in Practice? 

•  Every system is different 
 (E.g., may not even provide  
    CONFLICT-SERIALIZABLE schedules) 

•  But here is one (simplified) way... 
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(1) Don’t trust transactions to   
  request/release locks 

(2) Hold all locks until transaction   
  commits 

# 
locks 

time 

Sample Locking System 
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   Ti 
      Read(A),Write(B) 

      l(A),Read(A),l(B),Write(B)… 

      Read(A),Write(B) 

Scheduler, part I 

Scheduler, part II 

DB 

lock 
table 
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Lock Table: Conceptually 

A Λ 
B 
C 

Λ 

... 

Lock info for B 

Lock info for C 

If null, object is unlocked 

E
ve

ry
 p

o
ss

ib
le

 o
b
je

ct
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But Use Hash Table: 

A 

If object not found in hash table, it is 
unlocked 

Lock info for A A 

... 
... 

H 
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Lock Info for A: Example 

                tran mode wait? Nxt T_link 

Object:A 
Group mode:U 
Waiting:yes 
List: 

T1 S no 

T2 U no 

T3 yes Λ 

To other T3  
records 
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What Are The Objects We Lock? 

         

        ? 

Relation A 

Relation B 

... 

Tuple A 
Tuple B 
Tuple C 

... 

Disk  
block 

A 

Disk  
block 

B 

... 

DB DB DB 
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•  Locking works in any case, but should we 
choose small or large objects? 

•  If we lock large objects (e.g., Relations) 
– Need few locks 
– Low concurrency 

•  If we lock small objects (e.g., tuples, fields) 
– Need more locks 
– More concurrency 
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We Can Have It Both Ways!! 

Ask any janitor to give you the solution... 

hall 

Stall 1 Stall 2 Stall 3 Stall 4 

restroom 
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Example 

R1 

t1 
t2 t3 

t4 

T1(IS) 

T1(S) 

, T2(S) 
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, T2(IX) 

T2(IX) 

Example 

R1 

t1 
t2 t3 

t4 

T1(IS) 

T1(S) 
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Multiple Granularity 

Comp    Requestor 
      IS   IX   S  SIX  X 
       IS 

      Holder   IX 
        S 

     SIX 

        X 
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Comp    Requestor 
      IS   IX   S  SIX  X 
       IS 

      Holder   IX 
        S 

     SIX 

        X 

T T T T F 
F 
F 
F 
F F F F F 

F F F T 
F T F T 
F F T T 

Multiple Granularity 
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Parent     Child can be 
locked in     locked in 

 IS 
 IX 
 S 
 SIX 
 X 

P 

C 
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Parent     Child can be 
locked in     locked in 

 IS 
 IX 
 S 
 SIX 
 X 

P 

C 

IS, S 
IS, S, IX, X, SIX 
[S, IS] not necessary 
X, IX, [SIX] 
none 
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Rules 

(1) Follow multiple granularity comp function 
(2) Lock root of tree first, any mode 
(3) Node Q can be locked by Ti in S or IS only if       
     parent(Q) locked by Ti in IX or IS 
(4) Node Q can be locked by Ti in X,SIX,IX only  
     if parent(Q) locked by Ti in IX,SIX 
(5) Ti is two-phase 
(6) Ti can unlock node Q only if none of Q’s       
     children are locked by Ti 
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Exercise: 

•  Can T2 access object f2.2 in X mode? 
What locks will T2 get? 

R1 

t1 
t2 t3 

t4 T1(IX) 

f2.1 f2.2 f3.1 f3.2 

T1(IX) 

T1(X) 
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Exercise: 

•  Can T2 access object f2.2 in X mode? 
What locks will T2 get? 

R1 

t1 
t2 t3 

t4 

f2.1 f2.2 f3.1 f3.2 

T1(IX) 

T1(X) 
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Exercise: 

•  Can T2 access object f3.1 in X mode? 
What locks will T2 get? 

R1 

t1 
t2 t3 

t4 T1(S) 

f2.1 f2.2 f3.1 f3.2 

T1(IS) 
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Exercise: 

•  Can T2 access object f2.2 in S mode? 
What locks will T2 get? 

R1 

t1 
t2 t3 

t4 T1(IX) 

f2.1 f2.2 f3.1 f3.2 

T1(SIX) 

T1(X) 
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Exercise: 

•  Can T2 access object f2.2 in X mode? 
What locks will T2 get? 

R1 

t1 
t2 t3 

t4 

f2.1 f2.2 f3.1 f3.2 
T1(X) 

T1(IX) 

T1(SIX) 
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Insert + Delete Operations 

Insert 

A 

Z 

α	


... 
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Modifications To Locking Rules: 

(1)  Get exclusive lock on A before  
 deleting A 

(2)  At insert A operation by Ti, 
 Ti is given exclusive lock on A 
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Example: relation R (E#,name,…) 
   constraint: E# is key 
   use tuple locking 

R   E#  Name   … 
  o1  55  Smith   
  o2  75  Jones   
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T1: Insert <04,Kerry,…> into R 
T2: Insert <04,Bush,…> into R 

T1         T2 
S1(o1)        S2(o1) 
S1(o2)        S2(o2) 
Check Constraint      Check Constraint 

Insert o3[04,Kerry,..] 
         Insert o4[04,Bush,..] 

... ... 
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Solution 

•  Use multiple granularity tree 
•  Before insert of node Q, 
   lock parent(Q) in 
   X mode 

R1 

t1 
t2 t3 
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Back To Example 

delayed 
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Instead of Using R, Can Use Index on R 

Example: 

R 

Index 
0<E#<100 

Index 
100<E#<200 

E#=2 E#=5 E#=107 E#=109 ... 

... 

... 
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•  This approach can be generalized to 
multiple indexes… 
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Next: 

•  Tree-based concurrency control 
•  Validation concurrency control 
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Example 

A 

B C 

D 

E F 

•  all objects accessed 
  through root, 
  following pointers 

T1 lock 

T1 lock T1 lock 

 can we release A lock 
    if we no longer need A?? 
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Idea: Traverse Like “Monkey Bars” 

A 

B C 

D 

E F 

T1 lock 

T1 lock T1 lock 

T1 lock 
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Why Does This Work? 

•  Assume all Ti start at root; exclusive lock 
•  Ti → Tj  ⇒ Ti locks root before Tj 

•  Actually works if we don’t always 
   start at root 

Root 

Q   Ti → Tj 
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Rules: Tree Protocol (exclusive locks) 

(1) First lock by Ti may be on any item 
(2) After that, item Q can be locked by Ti 

 only if parent(Q) locked by Ti 
(3) Items may be unlocked at any time 
(4) After Ti unlocks Q, it cannot relock Q 
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•  Tree-like protocols are used typically for 
B-tree concurrency control 

E.g., during insert, do not release parent lock, 
until you are certain child does not have to split 

Root 
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Tree Protocol with Shared Locks 

•  Rules for shared & exclusive locks? 

A 

B C 

D 

E F 

T1 S lock(released) 

T1 S lock (held) 

T1 X lock (released) 

T1 X lock (will get) 
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Tree Protocol with Shared Locks 

•  Rules for shared & exclusive locks? 

A 

B C 

D 

E F 

T1 S lock(released) 

T1 S lock (held) 

T1 X lock (released) 

T1 X lock (will get) 

T2 reads: 
•  B modified by T1 
•  F not yet modified by T1 
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•  Need more restrictive protocol 
•  Will this work?? 

– Once T1 locks one object in X mode, 
all further locks down the tree must be 
in X mode 

Tree Protocol with Shared Locks 
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Validation 

Transactions have 3 phases: 
(1) Read 

– all DB values read 
– writes to temporary storage 
– no locking 

(2) Validate 
–  check if schedule so far is serializable 

(3) Write 
–  if validate ok, write to DB 
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Key Idea 

•  Make validation atomic 
•  If T1, T2, T3,… is validation order, then 

resulting schedule will be conflict 
equivalent to Ss = T1 T2 T3… 

UB CSE 562 108 

To implement validation, system keeps 
two sets: 

•  FIN = transactions that have finished  
  phase 3 (and are all done) 

•  VAL = transactions that have   
  successfully finished phase 2   
 (validation) 
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Example of What Validation Must 
Prevent: 

  RS(T2)={B}    RS(T3)={A,B} 
  WS(T2)={B,D}   WS(T3)={C} 

time 

T2 
start 

T2 
validated 

T3 
validated T3 

start 

∩ ≠ ∅ 
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  RS(T2)={B}    RS(T3)={A,B} 
  WS(T2)={B,D}   WS(T3)={C} 

Example of What Validation Must 
Prevent: 

T2 
finish 

phase 3 

Allow 

T3 
start time 

T2 
start 

T2 
validated 

T3 
validated T3 

start 

∩ ≠ ∅ 
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Another Thing Validation Must Prevent: 

  RS(T2)={A}      RS(T3)={A,B} 
  WS(T2)={D,E}  WS(T3)={C,D} 

time 

T2 
validated 

T3 
validated 

finish 
T2 

BAD:  w3(D)  w2(D) 
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  RS(T2)={A}      RS(T3)={A,B} 
  WS(T2)={D,E}  WS(T3)={C,D} 

finish 
T2 

Another Thing Validation Must Prevent: 

time 

T2 
validated 

T3 
validated 

Allow 

finish 
T2 
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Validation Rules For Tj: 

(1) when Tj starts phase 1:  
  ignore(Tj) ← FIN 

(2) at Tj Validation: 
   if check (Tj) then   
    [ VAL ← VAL U {Tj}; 
      do write phase; 
      FIN  ←FIN U {Tj} ] 
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Check (Tj): 

 For Ti ∈ VAL – IGNORE (Tj)  DO 

  IF [WS(Ti) ∩ RS(Tj) ≠ ∅ OR Ti ∉ FIN] 

   RETURN false; 

 RETURN true; 

Is this check too restrictive ? 
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Improving Check(Tj) 

For Ti ∈ VAL – IGNORE (Tj)  DO  

 IF [ WS(Ti) ∩  RS(Tj) ≠ ∅ OR 

  (Ti ∉ FIN AND WS(Ti) ∩ WS(Tj) ≠ ∅)] 

   RETURN false; 

RETURN true;  
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Exercise: 

T: RS(T)={A,B} 
     WS(T)={A,C} 

V: RS(V)={B} 
     WS(V)={D,E} 

U: RS(U)={B} 
        WS(U)={D} 

W: RS(W)={A,D} 
       WS(W)={A,C} 

start 
validate 
finish 
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Is Validation = 2PL? 

2PL 
Val 

2PL 
Val 

2PL 
Val 

Val 
2PL 
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S2:  w2(y)  w1(x)  w2(x) 

•  S2 can be achieved with 2PL: 
l2(y) w2(y) l1(x) w1(x) u1(x)  l2(x) w2(x) u2(y) u2(x) 

•  S2 cannot be achieved by validation: 
The validation point of T2, val2 must occur before w2
(y) since transactions do not write to the database 
until after validation. Because of the conflict on x, 
val1 < val2, so we must have something like 
      S2:  val1  val2  w2(y)  w1(x)  w2(x) 
With the validation protocol, the writes of T2 should 
not start until T1 is all done with its writes, which is 
not the case.  
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Validation Subset of 2PL? 

•  Possible proof (Check!): 
– Let S be validation schedule 
– For each T in S insert lock/unlocks, get S’: 

– At T start: request read locks for all of RS(T) 
– At T validation: request write locks for WS(T); 

release read locks for read-only objects 
– At T end: release all write locks 

– Clearly transactions well-formed and 2PL 
– Must show S’ is legal (next page) 
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•  Say S’ not legal: 
S’: … l1(x)     w2(x)  r1(x)   val1 u2(x) … 
–  At val1: T2 not in Ignore(T1); T2 in VAL 
–  T1 does not validate: WS(T2) ∩ RS(T1) ≠ ∅ 
–  contradiction! 

•  Say S’ not legal: 
S’: … val1 l1(x)     w2(x)  w1(x)   u2(x) … 
–  Say T2 validates first (proof similar in other case) 
–  At val1: T2 not in Ignore(T1); T2 in VAL 
–  T1 does not validate: 

T2 ∉ FIN  AND WS(T1) ∩ WS(T2) ≠ ∅) 
–  contradiction! 
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Validation (also called optimistic 
concurrency control) is useful in some 
cases: 
  - Conflicts rare 
  - System resources plentiful 
  - Have real time constraints 
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Summary 

Have studied concurrency control 
mechanisms used in practice 
 - 2PL 
 - Multiple granularity 
 - Tree (index) protocols 
 - Validation 


