
1

CSE 562
Database Systems

Concurrency Control

UB CSE 562

Some slides are based or modified from originals by
Database Systems: The Complete Book,

Pearson Prentice Hall 2nd Edition
©2008 Garcia-Molina, Ullman, and Widom

UB CSE 562 2

Chapter 18: Concurrency Control

 T1 T2 … Tn

DB
(consistency
constraints)

UB CSE 562 3

Example:

T1: Read(A) T2: Read(A)
 A ← A+100 A ← A×2
 Write(A) Write(A)
 Read(B) Read(B)
 B ← B+100 B ← B×2
 Write(B) Write(B)

Constraint: A=B

UB CSE 562 4

Schedule A

T1 T2
Read(A); A ← A+100;
Write(A);
Read(B); B ← B+100;
Write(B);

 Read(A);A ← A×2;
 Write(A);
 Read(B);B ← B×2;
 Write(B);

A B
25 25

125

 125

250

 250
250 250

2

UB CSE 562 5

Schedule B

T1 T2
 Read(A);A ← A×2;
 Write(A);
 Read(B);B ← B×2;
 Write(B);

Read(A); A ← A+100
Write(A);
Read(B); B ← B+100;
Write(B);

A B
25 25

50

 50

150

 150
150 150

UB CSE 562 6

Schedule C

T1 T2
Read(A); A ← A+100
Write(A);

 Read(A);A ← A×2;
 Write(A);

Read(B); B ← B+100;
Write(B);

 Read(B);B ← B×2;
 Write(B);

A B
25 25

125

250

 125

 250
250 250

UB CSE 562 7

Schedule D

T1 T2
Read(A); A ← A+100
Write(A);

 Read(A);A ← A×2;
 Write(A);
 Read(B);B ← B×2;
 Write(B);

Read(B); B ← B+100;
Write(B);

A B
25 25

125

250

 50

 150
250 150

UB CSE 562 8

Schedule E

T1 T2’
Read(A); A ← A+100
Write(A);

 Read(A);A ← A×1;
 Write(A);
 Read(B);B ← B×1;
 Write(B);

Read(B); B ← B+100;
Write(B);

A B
25 25

125

125

 25

 125
125 125

Same as Schedule D
but with new T2’

3

UB CSE 562 9

•  Want schedules that are “good”,
 regardless of

–  initial state and
–  transaction semantics

•  Only look at order of read and writes

Example:
Sc=r1(A)w1(A)r2(A)w2(A)r1(B)w1(B)r2(B)w2(B)

UB CSE 562 10

Sc’=r1(A)w1(A) r1(B)w1(B)r2(A)w2(A)r2(B)w2(B)

 T1 T2

Example:
Sc=r1(A)w1(A)r2(A)w2(A)r1(B)w1(B)r2(B)w2(B)

UB CSE 562 11

However, for Sd:
Sd=r1(A)w1(A)r2(A)w2(A) r2(B)w2(B)r1(B)w1(B)

•  as a matter of fact,
 T2 must precede T1
 in any equivalent schedule,
 i.e., T2 → T1

UB CSE 562 12

T1 T2 Sd cannot be rearranged
 into a serial schedule
 Sd is not “equivalent” to
 any serial schedule
 Sd is “bad”

•  T2 → T1
•  Also, T1 → T2

4

UB CSE 562 13

Returning to Sc

Sc=r1(A)w1(A)r2(A)w2(A)r1(B)w1(B)r2(B)w2(B)

 T1 → T2 T1 → T2

 no cycles ⇒ Sc is “equivalent” to a
 serial schedule
 (in this case T1,T2)

UB CSE 562 14

Concepts

Transaction: sequence of ri(x), wi(x) actions
Conflicting actions: r1(A) w2(A) w1(A)

 w2(A) r1(A) w2(A)
Schedule: represents chronological order

 in which actions are executed
Serial schedule: no interleaving of actions

 or transactions

UB CSE 562 15

What About Concurrent Actions?

Ti issues System Input(X) t ← x
read(x,t) issues completes
 input(x)

time

T2 issues
write(B,S)

System
issues

input(B)

input(B)
completes

B ← S

System
issues

output(B)
output(B)
completes

UB CSE 562 16

So net effect is either
•  S=…r1(x)…w2(B)… or
•  S=…w2(B)…r1(x)…

5

UB CSE 562 17

•  Assume equivalent to either r1(A) w2(A)
 or w2(A) r1(A)

• ⇒ low level synchronization mechanism
•  Assumption called “atomic actions”

What about conflicting, concurrent actions
on same object?

 start r1(A) end r1(A)

start w2(A) end w2(A) time

UB CSE 562 18

Definition

UB CSE 562 19

Definition

A schedule is conflict serializable if it is
conflict equivalent to some serial
schedule.

UB CSE 562 20

Precedence Graph P(S) (S is schedule)

Nodes: transactions in S
Arcs: Ti → Tj whenever
 - pi(A), qj(A) are actions in S
 - pi(A) <S qj(A)
 - at least one of pi, qj is a write

6

UB CSE 562 21

Exercise:

•  What is P(S) for
S = w3(A) w2(C) r1(A) w1(B) r1(C) w2(A) r4(A) w4(D)

•  Is S serializable?

UB CSE 562 22

Another Exercise:

•  What is P(S) for
S = w1(A) r2(A) r3(A) w4(A) ?

UB CSE 562 23

Lemma

S1, S2 conflict equivalent ⇒ P(S1)=P(S2)

Proof:
Assume P(S1) ≠ P(S2)
⇒ ∃ Ti: Ti → Tj in S1 and not in S2
⇒ S1 = …pi(A)… qj(A)… pi, qj
 S2 = …qj(A)…pi(A)… conflict

⇒ S1, S2 not conflict equivalent

UB CSE 562 24

Note: P(S1)=P(S2) ⇒ S1, S2 conflict equivalent

Counter example:

S1=w1(A) r2(A) w2(B) r1(B)

S2=r2(A) w1(A) r1(B) w2(B)

7

UB CSE 562 25

Theorem

P(S1) acyclic ⇐⇒ S1 conflict serializable

(⇐) Assume S1 is conflict serializable
⇒ ∃ Ss: Ss, S1 conflict equivalent
⇒ P(Ss) = P(S1)
⇒ P(S1) acyclic since P(Ss) is acyclic

UB CSE 562 26

(⇒) Assume P(S1) is acyclic
Transform S1 as follows:
(1) Take T1 to be transaction with no incident arcs
(2) Move all T1 actions to the front

 S1 = …… qj(A) …… p1(A) …

(3) we now have S1 = < T1 actions ><... rest ...>
(4) repeat above steps to serialize rest!

T1

T2 T3

 T4

P(S1) acyclic ⇐⇒ S1 conflict serializable

Theorem

UB CSE 562 27

How to Enforce Serializable Schedules?

•  Option 1: run system, recording P(S);
 at end of day, check for P(S)
 cycles and declare if execution
 was good

UB CSE 562 28

How to Enforce Serializable Schedules?

•  Option 2: prevent P(S) cycles from
 occurring

 T1 T2 … Tn

Scheduler

DB

8

UB CSE 562 29

A Locking Protocol

Two new actions:
 lock (exclusive): li (A)

 unlock: ui (A)

scheduler

T1 T2

lock
table

UB CSE 562 30

Rule #1: Well-Formed Transactions

Ti: … li(A) … pi(A) … ui(A) …

UB CSE 562 31

Rule #2: Legal Scheduler

S = ……… li(A) …………… ui(A) ………

 no lj(A)

UB CSE 562 32

•  What schedules are legal?
What transactions are well-formed?
S1 = l1(A)l1(B)r1(A)w1(B)l2(B)u1(A)u1(B)
r2(B)w2(B)u2(B)l3(B)r3(B)u3(B)

S2 = l1(A)r1(A)w1(B)u1(A)u1(B)
l2(B)r2(B)w2(B)l3(B)r3(B)u3(B)

S3 = l1(A)r1(A)u1(A)l1(B)w1(B)u1(B)
l2(B)r2(B)w2(B)u2(B)l3(B)r3(B)u3(B)

Exercise:

9

UB CSE 562 33

Schedule F

T1 T2
l1(A);Read(A)
A A+100;Write(A);u1(A)

 l2(A);Read(A)
 A Ax2;Write(A);u2(A)
 l2(B);Read(B)
 B Bx2;Write(B);u2(B)

l1(B);Read(B)
B B+100;Write(B);u1(B)

UB CSE 562 34

Schedule F

T1 T2 25 25
l1(A);Read(A)
A A+100;Write(A);u1(A) 125

 l2(A);Read(A)
 A Ax2;Write(A);u2(A) 250
 l2(B);Read(B)
 B Bx2;Write(B);u2(B) 50

l1(B);Read(B)
B B+100;Write(B);u1(B) 150

 250 150

A B

UB CSE 562 35

Rule #3: Two Phase Locking (2PL)
 for Transactions

Ti = …… li(A) ………… ui(A) ……

no unlocks no locks

UB CSE 562 36

locks
held by
Ti

 Time
 Growing Shrinking
 Phase Phase

10

UB CSE 562 37

Schedule G

delayed

UB CSE 562 38

Schedule G

delayed

UB CSE 562 39

Schedule G

delayed

UB CSE 562 40

Schedule H (T2 reversed)

delayed delayed

11

UB CSE 562 41

•  Assume deadlocked transactions are
rolled back
– They have no effect
– They do not appear in schedule

E.g., Schedule H =
 This space intentionally
 left blank!

UB CSE 562 42

Next Step:

Show that rules #1,2,3 ⇒ conflict-
 serializable
 schedules

UB CSE 562 43

Conflict rules for li(A), ui(A):

•  li(A), lj(A) conflict
•  li(A), uj(A) conflict

Note: no conflict <ui(A), uj(A)>, <li(A), rj(A)>,...

UB CSE 562 44

Theorem Rules #1,2,3 ⇒ conflict
 (2PL) serializable
 schedule

To help in proof:
Definition Shrink(Ti) = SH(Ti) = first unlock

 action of Ti

12

UB CSE 562 45

Lemma
Ti → Tj in S ⇒ SH(Ti) <S SH(Tj)

Proof of lemma:
Ti → Tj means that
 S = … pi(A) … qj(A) …; p,q conflict

By rules 1,2:
 S = … pi(A) … ui(A) … lj(A) ... qj(A) …

By rule 3: SH(Ti) SH(Tj)

So, SH(Ti) <S SH(Tj)

UB CSE 562 46

Proof:
(1) Assume P(S) has cycle
 T1 → T2 →…. Tn → T1

(2) By lemma: SH(T1) < SH(T2) <…< SH(T1)
(3) Impossible, so P(S) acyclic
(4) ⇒ S is conflict serializable

Theorem Rules #1,2,3 ⇒ conflict
 (2PL) serializable
 schedule

UB CSE 562 47

2PL Subset of Serializable

2PL
Serializable

UB CSE 562 48

S1: w1(x) w3(x) w2(y) w1(y)

•  S1 cannot be achieved via 2PL:
The lock by T1 for y must occur after w2
(y), so the unlock by T1 for x must occur
after this point (and before w3(x)). Thus,
w3(x) cannot occur under 2PL where
shown in S1 because T1 holds the x lock
at that point.

•  However, S1 is serializable
(equivalent to T2, T1, T3).

13

UB CSE 562 49

•  Beyond this simple 2PL protocol, it is all
a matter of improving performance and
allowing more concurrency….
– Shared locks
– Multiple granularity
– Inserts, deletes and phantoms
– Other types of C.C. mechanisms

UB CSE 562 50

Shared Locks

So far:
S = ...l1(A) r1(A) u1(A) … l2(A) r2(A) u2(A) …

 Do not conflict

Instead:
S=... ls1(A) r1(A) ls2(A) r2(A) …. us1(A) us2(A)

UB CSE 562 51

Lock actions
l-ti(A): lock A in t mode (t is S or X)
u-ti(A): unlock t mode (t is S or X)

Shorthand:
ui(A): unlock whatever modes
 Ti has locked A

UB CSE 562 52

Rule #1: Well Formed Transactions

Ti =... l-S1(A) … r1(A) … u1 (A) …
Ti =... l-X1(A) … w1(A) … u1 (A) …

14

UB CSE 562 53

•  What about transactions that read and
write same object?

Option 1: Request exclusive lock
Ti = ...l-X1(A) … r1(A) ... w1(A) ... u(A) …

UB CSE 562 54

Think of
- Get 2nd lock on A, or
- Drop S, get X lock

•  What about transactions that read and
write same object?

Option 2: Upgrade
(E.g., need to read, but don’t know if will write…)

Ti=…l-S1(A)…r1(A)…l-X1(A)…w1(A)…u(A)…

UB CSE 562 55

Rule #2: Legal Scheduler

S = … l-Si(A) … … ui(A) …

 no l-Xj(A)

S = … l-Xi(A) … … ui(A) …

 no l-Xj(A)
 no l-Sj(A)

UB CSE 562 56

A Way To Summarize Rule #2

Compatibility Matrix

Comp S X
 S true false
 X false false

15

UB CSE 562 57

Rule #3: 2PL Transactions

No change except for upgrades:
(I) If upgrade gets more locks
 (e.g., S → {S, X}) then no change!

(II) If upgrade releases read (shared)
 lock (e.g., S → X)

 - can be allowed in growing phase

UB CSE 562 58

Theorem Rules 1,2,3 ⇒ Conf.serializable
 for S/X locks schedules

Proof: similar to X locks case

Detail:
l-ti(A), l-rj(A) do not conflict if comp(t,r)
l-ti(A), u-rj(A) do not conflict if comp(t,r)

UB CSE 562 59

Lock Types Beyond S/X

Examples:
 (1) increment lock
 (2) update lock

UB CSE 562 60

Example (1): Increment Lock

•  Atomic increment action: INi(A)
 {Read(A); A ← A+k; Write(A)}

•  INi(A), INj(A) do not conflict!

 A=7
A=5 A=17
 A=15

INi(A)

+2

INj(A)

+10
+10

INj(A)

+2

INi(A)

16

UB CSE 562 61

Comp S X I
 S
 X
 I

UB CSE 562 62

Comp S X I
 S T F F
 X F F F
 I F F T

UB CSE 562 63

Update Locks

UB CSE 562 64

Solution

If Ti wants to read A and knows it
may later want to write A, it requests
update lock (not shared)

17

UB CSE 562 65

Comp S X U
 S
 X
 U

Lock
already
held in

New request

UB CSE 562 66

Comp S X U
 S T F T
 X F F F
 U TorF F F

 -> symmetric table?

Lock
already
held in

New request

UB CSE 562 67

Note: object A may be locked in different
 modes at the same time...

S1=…l-S1(A)…l-S2(A)…l-U3(A)… l-S4(A)…?
 l-U4(A)…?

•  To grant a lock in mode t, mode t must
be compatible with all currently held
locks on object

UB CSE 562 68

How Does Locking Work in Practice?

•  Every system is different
 (E.g., may not even provide
 CONFLICT-SERIALIZABLE schedules)

•  But here is one (simplified) way...

18

UB CSE 562 69

(1) Don’t trust transactions to
 request/release locks

(2) Hold all locks until transaction
 commits

locks

time

Sample Locking System

UB CSE 562 70

 Ti
 Read(A),Write(B)

 l(A),Read(A),l(B),Write(B)…

 Read(A),Write(B)

Scheduler, part I

Scheduler, part II

DB

lock
table

UB CSE 562 71

Lock Table: Conceptually

A Λ
B
C

Λ

...

Lock info for B

Lock info for C

If null, object is unlocked

E
ve

ry
 p

o
ss

ib
le

 o
b
je

ct

UB CSE 562 72

But Use Hash Table:

A

If object not found in hash table, it is
unlocked

Lock info for A A

...
...

H

19

UB CSE 562 73

Lock Info for A: Example

 tran mode wait? Nxt T_link

Object:A
Group mode:U
Waiting:yes
List:

T1 S no

T2 U no

T3 yes Λ

To other T3
records

UB CSE 562 74

What Are The Objects We Lock?

 ?

Relation A

Relation B

...

Tuple A
Tuple B
Tuple C

...

Disk
block

A

Disk
block

B

...

DB DB DB

UB CSE 562 75

•  Locking works in any case, but should we
choose small or large objects?

•  If we lock large objects (e.g., Relations)
– Need few locks
– Low concurrency

•  If we lock small objects (e.g., tuples, fields)
– Need more locks
– More concurrency

UB CSE 562 76

We Can Have It Both Ways!!

Ask any janitor to give you the solution...

hall

Stall 1 Stall 2 Stall 3 Stall 4

restroom

20

UB CSE 562 77

Example

R1

t1
t2 t3

t4

T1(IS)

T1(S)

, T2(S)

UB CSE 562 78

, T2(IX)

T2(IX)

Example

R1

t1
t2 t3

t4

T1(IS)

T1(S)

UB CSE 562 79

Multiple Granularity

Comp Requestor
 IS IX S SIX X
 IS

 Holder IX
 S

 SIX

 X

UB CSE 562 80

Comp Requestor
 IS IX S SIX X
 IS

 Holder IX
 S

 SIX

 X

T T T T F
F
F
F
F F F F F

F F F T
F T F T
F F T T

Multiple Granularity

21

UB CSE 562 81

Parent Child can be
locked in locked in

 IS
 IX
 S
 SIX
 X

P

C

UB CSE 562 82

Parent Child can be
locked in locked in

 IS
 IX
 S
 SIX
 X

P

C

IS, S
IS, S, IX, X, SIX
[S, IS] not necessary
X, IX, [SIX]
none

UB CSE 562 83

Rules

(1) Follow multiple granularity comp function
(2) Lock root of tree first, any mode
(3) Node Q can be locked by Ti in S or IS only if
 parent(Q) locked by Ti in IX or IS
(4) Node Q can be locked by Ti in X,SIX,IX only
 if parent(Q) locked by Ti in IX,SIX
(5) Ti is two-phase
(6) Ti can unlock node Q only if none of Q’s
 children are locked by Ti

UB CSE 562 84

Exercise:

•  Can T2 access object f2.2 in X mode?
What locks will T2 get?

R1

t1
t2 t3

t4 T1(IX)

f2.1 f2.2 f3.1 f3.2

T1(IX)

T1(X)

22

UB CSE 562 85

Exercise:

•  Can T2 access object f2.2 in X mode?
What locks will T2 get?

R1

t1
t2 t3

t4

f2.1 f2.2 f3.1 f3.2

T1(IX)

T1(X)

UB CSE 562 86

Exercise:

•  Can T2 access object f3.1 in X mode?
What locks will T2 get?

R1

t1
t2 t3

t4 T1(S)

f2.1 f2.2 f3.1 f3.2

T1(IS)

UB CSE 562 87

Exercise:

•  Can T2 access object f2.2 in S mode?
What locks will T2 get?

R1

t1
t2 t3

t4 T1(IX)

f2.1 f2.2 f3.1 f3.2

T1(SIX)

T1(X)

UB CSE 562 88

Exercise:

•  Can T2 access object f2.2 in X mode?
What locks will T2 get?

R1

t1
t2 t3

t4

f2.1 f2.2 f3.1 f3.2
T1(X)

T1(IX)

T1(SIX)

23

UB CSE 562 89

Insert + Delete Operations

Insert

A

Z

α	

...

UB CSE 562 90

Modifications To Locking Rules:

(1) Get exclusive lock on A before
 deleting A

(2) At insert A operation by Ti,
 Ti is given exclusive lock on A

UB CSE 562 91

Example: relation R (E#,name,…)
 constraint: E# is key
 use tuple locking

R E# Name …
 o1 55 Smith
 o2 75 Jones

UB CSE 562 92

T1: Insert <04,Kerry,…> into R
T2: Insert <04,Bush,…> into R

T1 T2
S1(o1) S2(o1)
S1(o2) S2(o2)
Check Constraint Check Constraint

Insert o3[04,Kerry,..]
 Insert o4[04,Bush,..]

... ...

24

UB CSE 562 93

Solution

•  Use multiple granularity tree
•  Before insert of node Q,
 lock parent(Q) in
 X mode

R1

t1
t2 t3

UB CSE 562 94

Back To Example

delayed

UB CSE 562 95

Instead of Using R, Can Use Index on R

Example:

R

Index
0<E#<100

Index
100<E#<200

E#=2 E#=5 E#=107 E#=109 ...

...

...

UB CSE 562 96

•  This approach can be generalized to
multiple indexes…

25

UB CSE 562 97

Next:

•  Tree-based concurrency control
•  Validation concurrency control

UB CSE 562 98

Example

A

B C

D

E F

•  all objects accessed
 through root,
 following pointers

T1 lock

T1 lock T1 lock

 can we release A lock
 if we no longer need A??

UB CSE 562 99

Idea: Traverse Like “Monkey Bars”

A

B C

D

E F

T1 lock

T1 lock T1 lock

T1 lock

UB CSE 562 100

Why Does This Work?

•  Assume all Ti start at root; exclusive lock
•  Ti → Tj ⇒ Ti locks root before Tj

•  Actually works if we don’t always
 start at root

Root

Q Ti → Tj

26

UB CSE 562 101

Rules: Tree Protocol (exclusive locks)

(1) First lock by Ti may be on any item
(2) After that, item Q can be locked by Ti

 only if parent(Q) locked by Ti
(3) Items may be unlocked at any time
(4) After Ti unlocks Q, it cannot relock Q

UB CSE 562 102

•  Tree-like protocols are used typically for
B-tree concurrency control

E.g., during insert, do not release parent lock,
until you are certain child does not have to split

Root

UB CSE 562 103

Tree Protocol with Shared Locks

•  Rules for shared & exclusive locks?

A

B C

D

E F

T1 S lock(released)

T1 S lock (held)

T1 X lock (released)

T1 X lock (will get)

UB CSE 562 104

Tree Protocol with Shared Locks

•  Rules for shared & exclusive locks?

A

B C

D

E F

T1 S lock(released)

T1 S lock (held)

T1 X lock (released)

T1 X lock (will get)

T2 reads:
•  B modified by T1
•  F not yet modified by T1

27

UB CSE 562 105

•  Need more restrictive protocol
•  Will this work??

– Once T1 locks one object in X mode,
all further locks down the tree must be
in X mode

Tree Protocol with Shared Locks

UB CSE 562 106

Validation

Transactions have 3 phases:
(1) Read

– all DB values read
– writes to temporary storage
– no locking

(2) Validate
–  check if schedule so far is serializable

(3) Write
–  if validate ok, write to DB

UB CSE 562 107

Key Idea

•  Make validation atomic
•  If T1, T2, T3,… is validation order, then

resulting schedule will be conflict
equivalent to Ss = T1 T2 T3…

UB CSE 562 108

To implement validation, system keeps
two sets:

•  FIN = transactions that have finished
 phase 3 (and are all done)

•  VAL = transactions that have
 successfully finished phase 2
 (validation)

28

UB CSE 562 109

Example of What Validation Must
Prevent:

 RS(T2)={B} RS(T3)={A,B}
 WS(T2)={B,D} WS(T3)={C}

time

T2
start

T2
validated

T3
validated T3

start

∩ ≠ ∅

UB CSE 562 110

 RS(T2)={B} RS(T3)={A,B}
 WS(T2)={B,D} WS(T3)={C}

Example of What Validation Must
Prevent:

T2
finish

phase 3

Allow

T3
start time

T2
start

T2
validated

T3
validated T3

start

∩ ≠ ∅

UB CSE 562 111

Another Thing Validation Must Prevent:

 RS(T2)={A} RS(T3)={A,B}
 WS(T2)={D,E} WS(T3)={C,D}

time

T2
validated

T3
validated

finish
T2

BAD: w3(D) w2(D)

UB CSE 562 112

 RS(T2)={A} RS(T3)={A,B}
 WS(T2)={D,E} WS(T3)={C,D}

finish
T2

Another Thing Validation Must Prevent:

time

T2
validated

T3
validated

Allow

finish
T2

29

UB CSE 562 113

Validation Rules For Tj:

(1) when Tj starts phase 1:
 ignore(Tj) ← FIN

(2) at Tj Validation:
 if check (Tj) then
 [VAL ← VAL U {Tj};
 do write phase;
 FIN ←FIN U {Tj}]

UB CSE 562 114

Check (Tj):

 For Ti ∈ VAL – IGNORE (Tj) DO

 IF [WS(Ti) ∩ RS(Tj) ≠ ∅ OR Ti ∉ FIN]

 RETURN false;

 RETURN true;

Is this check too restrictive ?

UB CSE 562 115

Improving Check(Tj)

For Ti ∈ VAL – IGNORE (Tj) DO

 IF [WS(Ti) ∩ RS(Tj) ≠ ∅ OR

 (Ti ∉ FIN AND WS(Ti) ∩ WS(Tj) ≠ ∅)]

 RETURN false;

RETURN true;

UB CSE 562 116

Exercise:

T: RS(T)={A,B}
 WS(T)={A,C}

V: RS(V)={B}
 WS(V)={D,E}

U: RS(U)={B}
 WS(U)={D}

W: RS(W)={A,D}
 WS(W)={A,C}

start
validate
finish

30

UB CSE 562 117

Is Validation = 2PL?

2PL
Val

2PL
Val

2PL
Val

Val
2PL

UB CSE 562 118

S2: w2(y) w1(x) w2(x)

•  S2 can be achieved with 2PL:
l2(y) w2(y) l1(x) w1(x) u1(x) l2(x) w2(x) u2(y) u2(x)

•  S2 cannot be achieved by validation:
The validation point of T2, val2 must occur before w2
(y) since transactions do not write to the database
until after validation. Because of the conflict on x,
val1 < val2, so we must have something like
 S2: val1 val2 w2(y) w1(x) w2(x)
With the validation protocol, the writes of T2 should
not start until T1 is all done with its writes, which is
not the case.

UB CSE 562 119

Validation Subset of 2PL?

•  Possible proof (Check!):
– Let S be validation schedule
– For each T in S insert lock/unlocks, get S’:

– At T start: request read locks for all of RS(T)
– At T validation: request write locks for WS(T);

release read locks for read-only objects
– At T end: release all write locks

– Clearly transactions well-formed and 2PL
– Must show S’ is legal (next page)

UB CSE 562 120

•  Say S’ not legal:
S’: … l1(x) w2(x) r1(x) val1 u2(x) …
–  At val1: T2 not in Ignore(T1); T2 in VAL
–  T1 does not validate: WS(T2) ∩ RS(T1) ≠ ∅
–  contradiction!

•  Say S’ not legal:
S’: … val1 l1(x) w2(x) w1(x) u2(x) …
–  Say T2 validates first (proof similar in other case)
–  At val1: T2 not in Ignore(T1); T2 in VAL
–  T1 does not validate:

T2 ∉ FIN AND WS(T1) ∩ WS(T2) ≠ ∅)
–  contradiction!

31

UB CSE 562 121

Validation (also called optimistic
concurrency control) is useful in some
cases:
 - Conflicts rare
 - System resources plentiful
 - Have real time constraints

UB CSE 562 122

Summary

Have studied concurrency control
mechanisms used in practice
 - 2PL
 - Multiple granularity
 - Tree (index) protocols
 - Validation

