

Damia: Data Mashups for Intranet Applications
David E. Simmen, Mehmet Altinel, Volker Markl, Sriram Padmanabhan, Ashutosh Singh

IBM Almaden Research Center
650 Harry Road

 San Jose, CA 95120, USA
{simmen, maltinel, marklv, srp, asingh}@us.ibm.com

ABSTRACT
Increasingly large numbers of situational applications are being
created by enterprise business users as a by-product of solving
day-to-day problems. In efforts to address the demand for such
applications, corporate IT is moving toward Web 2.0
architectures. In particular, the corporate intranet is evolving into
a platform of readily accessible data and services where
communities of business users can assemble and deploy
situational applications. Damia is a web style data integration
platform being developed to address the data problem presented
by such applications, which often access and combine data from a
variety of sources. Damia allows business users to quickly and
easily create data mashups that combine data from desktop, web,
and traditional IT sources into feeds that can be consumed by
AJAX, and other types of web applications. This paper describes
the key features and design of Damia's data integration engine,
which has been packaged with Mashup Hub, an enterprise feed
server currently available for download on IBM alphaWorks.
Mashup Hub exposes Damia's data integration capabilities in the
form of a service that allows users to create hosted data mashups.

Categories and Subject Descriptors
H.m [Information Systems]: Miscellaneous

General Terms
Design

Keywords
Information Integration, XML, Data Feed

1. INTRODUCTION
There are two important trends motivating the need for a new type
of enterprise information integration architecture, aimed primarily
at satisfying the information integration requirements of
situational business applications [1].

The first trend is happening inside the enterprise where there is an
increasing demand by enterprise business leaders to be able to
exploit information residing outside traditional IT silos in efforts
to react to situational business needs. The predominant share of
enterprise business data resides on desktops, departmental files

systems, and corporate intranets in the form of spreadsheets,
presentations, email, web services, HTML pages, etc. There is a
wealth of valuable information to be gleaned from such data;
consequently, there is an increasing demand for applications that
can consume it, combine it with data in corporate databases,
content management systems, and other IT managed repositories,
and then to transform the combined data into timely information.

Consider, for example, a scenario where a prudent bank manager
wants to be notified when a recent job applicant's credit score dips
below 500, so that she might avoid a potentially costly hiring
mistake by dropping an irresponsible applicant from
consideration. Data on recent applicants resides on her desktop, in
a personal spreadsheet. Access to credit scores is available via a
corporate database. She persuades a contract programmer in the
accounting department to build her a web application that
combines the data from these two sources on demand, producing
an ATOM feed that she can view for changes via her feed reader.

There are a large number of such situational applications being
created by business users and departmental IT staff as an offshoot
of solving day-to-day problems. These applications typically
target a small community of users, and a specialized business
need. In contrast, typical enterprise applications are developed by
corporate IT staff for a large number of generic users, and a
general purpose. Situational applications represent the "long-tail"
of enterprise application development; consequently, there is a
significant opportunity for IT researchers and professionals to
create innovations that facilitate their development.

The second trend is happening outside the enterprise where the
Web has evolved from primarily a publication platform to a
participatory platform, spurred by Web 2.0 paradigms and
technologies that are fueling an explosion in collaboration,
communities, and the creation of user-generated content. The
main drivers propelling this advancement of the Web as an
extensible development platform is the plethora of valuable data
and services being made available, along with the lightweight
programming and deployment technologies those allow these
"resources" to be mixed and published in innovative new ways.

Standard data interchange formats such as XML and JSON, as
well as prevalent syndication formats such as RSS and ATOM,
allow resources to be published in formats readily consumed by
web applications, while lightweight access protocols, such as
REST, simplify access to these resources. Furthermore, web-
oriented programming technologies like AJAX, PHP, and Ruby
on Rails enable quick and easy creation of "mashups", which is a
term that has been popularized to refer to composite web
applications that use resources from multiple sources [2].

The Damia project aims to seize upon the aforementioned
opportunities to aid situational application development by
harnessing many of the Web 2.0 paradigms and technologies that

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGMOD’08, June 9–12, 2008, Vancouver, BC, Canada.
Copyright 2008 ACM 978-1-60558-102-6/08/06...$5.00.

1171

have spurred the innovation in assembly manifested by the
mashup phenomenon. We envision corporate IT steadily moving
toward web style architectures. In particular, we envision the
corporate intranet steadily evolving into a platform of readily
consumable resources, and lightweight integration technologies,
which can be exploited by business users to create "enterprise
mashups" in response to situational business needs. The lines
between the intranet and Web will progressively blur as enterprise
mashups reach outside the corporate firewall to exploit data and
services on the Web.

Enterprise mashups present a data problem, as they can access,
filter, join, and aggregate data from multiple sources; however,
these data machinations are often done in the application, mixed
with business and presentation logic. In Damia, we are developing
an enterprise-oriented data mashup platform on which such
applications can be built quickly and easily, by enabling a clean
separation between the data machination logic and the business
logic. In particular, the Damia data mashup platform (1) enables
secure access to data from a variety of desktop, departmental, and
web sources both inside and outside the corporate firewall (2)
provides the capability to filter, standardize, join, aggregate, and
otherwise augment the structured and unstructured data retrieved
from those sources (3) allows for the delivery of the transformed
data to AJAX, or other types of web applications on demand (4)
exposes these capabilities via lightweight programmatic and
administrative APIs that allows users with minimal programming
expertise to complete integration tasks.

We are still in the early stages of Damia's evolution; however, we
have developed a rather sophisticated prototype of Damia's
integration capabilities that we deployed in the context of a feed
server, which was made available as a service on IBM's corporate
intranet. In addition to exposing Damia's integration capabilities,
which allowed users to create hosted data mashups, the service
also provided a directory where the Damia community can tag,
rate, and share data mashups, as well as other information assets
that might be consumed by data mashups. A browser based user-
interface exposed these capabilities in a way that allowed users
with minimal programming expertise to take advantage of them.

The Damia data integration technology, along with key aspects of
the original Damia feed server such as its user-interface and
directory services design, have since been made available for
download on IBM alphaWorks [3] in the context of Mashup Hub,
an enterprise feed server that the Damia research team is jointly
developing with IBM Software Group. Mashup Hub is a key
technology of IBM's Information 2.0 initiative [4], which aims to
extend the reach of the enterprise information fabric into the
desktop, Web and other new data sources, and to provide tooling
that facilitates situational application development.

1.1 Paper Organization
In this paper, we will describe the key features and design of
Damia, focusing primarily on the data integration technology. The
remainder of the paper is organized as follows. In section 2, we
give an overview of the architecture of the Damia feed server that
was deployed on the IBM Intranet1. In section 3, we present the
data model, data manipulation operators, the data mashup

1 The architecture of the original feed server we describe here

closely resembles that of Mashup Hub

compiler, and other details of the Damia integration engine. In
section 4, we illustrate Damia's capabilities with use cases.
Sections 5 and 6 discuss related and future work, respectively.

2. DAMIA FEED SERVER
This section provides a general overview of the Damia feed server
architecture. The integration engine, which is the primary focus of
the Damia project, is discussed in greater detail in Section 3.

The main components of the Damia feed server are depicted in
Figure 1. In addition to the Damia integration engine, the server is
further comprised of a directory services component, a storage
services component, and a rich client browser interface.

Figure 1 - Feed Server Architecture

2.1 Integration Engine
Damia provides a powerful collection of set-oriented feed
manipulation operators for importing, filtering, merging,
grouping, and otherwise manipulating feeds. These operators
manipulate a general model of a feed, which can accommodate
prevalent feed formats such as RSS and ATOM, as well as other
XML formats. Data mashups are comprised of a network, or flow,
of feed manipulation operators. The browser-based client
interface provides a GUI for designing flows.

A flow is presented to the integration engine in the form of an
XML document that depicts its flow representation in a serialized
format. The flow is compiled into a set of lower level primitives
that can be executed. A given feed manipulation operator might
compile into number of lower level primitives.

A compiled data mashup has an associated URL; hence, the result
of the data mashup can be retrieved via a simple REST call.

2.2 Directory Services
The feed server allows for general information assets to be
cataloged, uploaded, and stored. Examples of information assets
include data mashups, public spreadsheets, and URLs to
interesting external feeds that might be used in data mashups. The
directory services component provides capabilities to search, tag,
rate, execute, and otherwise manage these information assets. In
effect, it provides a Web 2.0 style framework for community-
oriented information management. It also manages user profiles,
authentication, and access control for assets. The directory
services component uses the storage services component to store
assets and metadata.

Storage
Services

Directory
Services

Damia Server

Design
Operations

Integration
Engine

Damia GUI Other
Apps

(B)

(D)

(C)

(A)

Data
Sources

Execution
Requests / Results

1172

2.3 Storage Services
The storage services component handles the storage and retrieval of
data and metadata needed by other Damia components. For
example, it is used by the directory services component to store
community information assets and associated metadata. The storage
services component is also used by the metadata services
component of the Damia integration engine to execute data mashups
effectively.

2.4 Client Interface
Situational applications are typically created by departmental users
with little programming knowledge; consequently providing an
intuitive interface where data mashups can be composed visually
was a critical design point for Damia. Toward this goal, we
developed a browser-based user interface that provides facilities for
composing, editing, and debugging data mashups graphically.
Figure 2 shows a snapshot of the data mashup editor.

Figure 2 -Snapshot of the Damia GUI
The GUI allows users to drag and drop boxes, representing Damia
operators, onto a canvas and to connect them with edges
representing the flow of data between those operators. Users can use
a preview feature to see the result of the data flow at any point in the
process. This approach makes the development process more natural
and less error prone. Once the data mashup design is completed, the
result is serialized as an XML document and delivered to the server
for further processing. It communicates with the server through a set
of REST API interfaces, as illustrated in Figure 1. The client also
provides an interface to directory services capabilities, thus allowing
users to search for, and manage information assets from the same
client interface that they use to compose data mashups.

2.5 Implementation
The Damia feed server was implemented with a LAMP stack. In
particular, the integration engine, directory services, and other
components are implemented in PHP. There were a few basic
libraries from the LAMP ecosystem that we exploited. For example,
we exploited the Zend Framework for caching. The storage services
component makes use of a relational database to store resources and
metadata. We currently support either DB2, or MySQL. The client
interface is an AJAX application implemented using the Dojo

toolkit [5]. The features of PHP used by the data integration engine
are described in section 3.3.

3. DAMIA INTEGRATION ENGINE
The Damia integration engine compiles and executes data mashups.
Figure 3 depicts the overall architecture and relevant APIs. The
integration engine is comprised of a flow compiler, metadata
services, and an augmentation engine.

Figure 3: Damia Data Integrate Architecture
The flow compiler receives an XML specification of a data mashup
and translates it into an augmentation flow, which is the
manifestation of the data mashup that is executed by the
augmentation engine. The XML specification represents the data
mashup in terms of the conceptual feed-oriented data model and
feed manipulation operators presented to end users; hence, it is the
flow compiler that effectively implements the feed abstraction.

Metadata services stores the augmentation flow and the original
XML representation of the data mashup, associating it with a
resource identifier that can be used in subsequent execute, edit, and
delete operations. Metadata services also manages metadata and
functions needed by the flow compiler and augmentation engine in
order to perform their tasks. For example, it manages ingestion
functions, which are needed to map imported data resources to
equivalent XML representations.

The augmentation engine executes a data mashup. It receives the
resource identifier of the corresponding augmentation flow, which it
retrieves from metadata services and evaluates. Typical result
formats are ATOM, RSS, or general XML. The data manipulation
primitives comprising an augmentation flow are implemented in
PHP; thus, at its most basic level, an augmentation flow is simply a
PHP script that is interpreted by a PHP engine.

The augmentation engine is conceptually divided into an ingestion
layer, augmentation layer, and publication layer. The ingestion layer
is responsible for importing data and for mapping imported data into
an instance of the augmentation-level data model. It also contains a
resource cache from which it can serve resources in order to avoid
accessing data sources. The augmentation layer is responsible for
manipulating instances of the augmentation-level data model in
order to produce the data mashup result. It is comprised of
augmentation operators that can evaluate xpath expressions;
perform sorts, joins, grouping, construction, and low level
manipulations. The publication layer is responsible for transforming

PHP
Code

Layers:

• Publication
• Augmentation
• Ingestion

Augmentation Engine

Metadata
Manager

Execution
Requests

Results
(XML, RSS, Atom)

XML, RSS, Atom

Flow
XML

Compiler
Enterprise

Data

Personal
Assets

LOB
Data

Web
Content

Data
Sources

P
H
P

1173

an instance of the augmentation-level data model to a specific
format like RSS, ATOM, or JSON, which it then serializes for
consumption by web applications.

The following subsections describe the data models, and the various
components and layers of the Damia integration engine in greater
detail.

3.1 Data Model
Feeds formats like RSS [6] and ATOM [7] are prevalent XML data
interchange formats. Feeds often represent a set of data objects such
as stock quotes, real estate listings, or employee records, which have
been serialized for transport across a network. Damia provides a
powerful collection of set-oriented feed manipulation operators for
importing, filtering, merging, grouping, and otherwise manipulating
feeds. The feed-oriented data model that forms the basis for such
manipulation can easily represent standard feed formats like RSS
and ATOM, but is designed to handle more general XML data
formats that have repeating fragments that can be mapped to the
model.

Data mashups are built by end users and applications in terms of the
feed-oriented data model and feed manipulation operators; however,
these are logical constructs that have no direct physical
implementation. Feed manipulation operators are compiled into
augmentation operators, which are lower level data manipulation
primitives that can be executed by the integration engine. The
augmentation-level data model, which forms the basis for data
manipulation by augmentation operators, is a derivative of the
Xquery data model (XDM) [8]. It is somewhat simpler than XDM,
however. For example, it does not support node identity, or the full
complement of data types.

3.1.1 Augmentation-level Data Model
The augmentation-level data model (ADM) is comprised of nodes,
atomic values, items, sequences, and tuples. A node is the root node
of a tree of nodes. A node can be an element node, attribute node,
text node, or any other type of XDM node. An atomic value
corresponds to an instance of a simple data type like a string,
integer, or date. An item is either a node or an atomic value. A
sequence is a named list of zero or more items. Finally, a tuple is a
non-empty set of sequences.

Augmentation operators are closed under ADM. They consume one
or more sets of tuples, or tuple streams, and produce a tuple stream.
One class of operator works at the sequence level, extending tuples
with new sequences derived from other sequences. For example, a
Union operator creates a new sequence by combining the items of
two or more sequences. Another class of operator works at the tuple
level. For example, the Sort operator reorders the tuple stream based
on the values of specified sequences that define the ordering key.

An augmentation flow is a network of augmentation operators that is
executed using a data flow paradigm. The expressive power of an
augmentation flow is analogous to that of an Xquery FLWOR
expression. Consider Figure 4, which illustrates the relationship. It
shows a simple Xquery FLWOR expression that creates a feed
whose entries contain information about hotels in Vancouver joined
with their reviews. Hotel information is coming from an ATOM
feed provided by www.hotels.xyz, while hotel reviews come from
an RSS feed provided by www.reviews.xyz.

Figure 4 Augmentation Flow

Figure 4 depicts an abstract representation of an augmentation flow
that is equivalent to the Xquery. The Import, Iterate, Filter, and
Construct augmentation operators perform similar functions as the
Xquery doc function, for clause, where clause, and return clause,
respectively. The Extract operator evaluates xpath expressions. The
graph shows sequence names flowing as tuples along the edges
between augmentation operators. These sequences correspond to the
sequence variables in the Xquery, which flow as binding tuples
between FLWOR operations

The steps of retrieving the hotel feed, extracting feed entries,
iterating each entry, and extracting the hotel name from an entry, as
carried out in lines 2, 3, 4, and 5 of the Xquery, is implemented by
the similarly numbered Import, Extract, Iterate, and Extract
operators. Note that each of the operators projects sequences that are
not needed in the data flow. For example, the Extract operator drops
sequence $a, which contains the entire ATOM feed retrieved from
www.hotels.xyz, after it has extracted all of the feed entries to form
sequence $b.

The Fuse operator joins the tuple streams generated from the series
of operations applied to the individual feeds retrieved from the two
sources. The Group operator aggregates tuples into sequences, as is
required in the example to turn the set of output tuples from the
FLWOR expression into a sequence. In addition to implementing
the Xquery return clause, the Construct operator is also used to
construct the final result document from the result sequence. In
general, a Construct operator is used to construct new sequences by
substituting specified input sequences into a supplied XML
template.

Damia has a number of other augmentation operators besides those
required to implement a simple Xquery FLWOR expression. For
example, the Hsjoin operator can perform a symmetric join
comparable to a relational hash join.

Our objective is not to develop an implementation of Xquery in our
augmentation layer, as we did not want to confine ourselves strictly

 1) <results>{
 2) let $a := doc (http://www.hotels.xyz?city='Vancouver')
 3) let $b := $a//entry
 4) for $c := $b
 5) let $d = $c//hotel/name
 6) let $e := doc (http://ww.reviews.xyz?city='Vancouver')
 7) let $f = $e //item
 8) for $g := $f
 9) let $h= $g//review/hotel
10) where $d = $h
11) let $i = $c//hotel, $j = $g//review
12) return <entry>{$i}{$j}</entry>
 }</results>

($a
)

($c, $d)

 12) Group

12)Construc

8) Iterate

7) Extract

2) Import

1)Construct

($b)

($e)

($c) ($g)

($c, $d, $g, $h)

($k)

($l)

3) Extract

6) Import

10) Filter

9) Extract

11) Extract

($f)

($c, $g)

 Fuse

($i, $j)

4) Iterate

5) Extract
($g, $h)

1174

to the operations and semantics that the standard defines; however,
there were definitely benefits to patterning our augmentation-level
data model and corresponding augmentation operators after XDM
and Xquery. Most importantly, it provided us with a strong semantic
foundation for the manipulation of XML data. Further, it provided
us with a guiding context in which to make extensions. For
example, we came across a proposal for adding direct support for
grouping to Xquery which helped influence the design of our Group
operator [9]. Section 3.3.1 discusses the Group operator and other
Damia augmentation operators in more detail.

3.1.2 Feed-oriented Data Model
The feed-oriented data model is comprised of containers, payloads,
feeds, and tuples. A container is a special root node of a tree of
nodes. Child nodes of a container node are restricted to element
nodes; however, other nodes in the sub-tree rooted at the container
node can be any XDM node. The term payload refers to the list of
zero or more child nodes of a container node. A feed is a named list
of zero or more containers. A tuple is a non-empty set of feeds.
 The mapping of RSS and ATOM formatted XML documents to
this model is straightforward, and handled automatically by Damia.
One container node is created per RSS item, or ATOM entry,
element. The payload of each container node is comprised of the
element nodes that are children of the corresponding item or entry
nodes. Damia feeds can be derived from other types of XML
documents as well. All that is required is an xpath expression that
identifies the payload. For example, the payload for a Damia feed
that represents a set of real estate listings might be extracted from an
XML document via the xpath expression //listing. Multiple
instances of the feed-oriented data model can be extracted from the
same document in this way. The process of mapping an XML
document to a Damia feed maintains the payload in the same
relative order as per the original document. The Import-Feed
operator is responsible for mapping an XML document to an
instance of the feed-oriented data model.

Feed manipulation operators are closed under the feed-oriented data
model. Each operator consumes one or more feeds and produces a
feed. For example, the Filter-feed operator takes a feed and a
predicate as input, producing a new feed that is essentially a copy of
the input feed, sans containers whose payload did not satisfy the
specified predicate. A Merge-feeds operator, which is analogous to a
symmetric relational join operation, concatenates payloads from two
different input feeds that match according to a specified join
predicate.

A data mashup is represented as a data flow graph of feed
manipulation operators. Nodes in the graph represent operators, and
edges represent the flow of feeds between operators. Feeds are
packaged into tuples, which represent the unit of flow between
operators. We introduced the notion of tuples into the feed-oriented
data model in order to allow multiple versions of feeds to flow
between operators. This capability enables different result feeds to
be created for different subscribers, all in the same data mashup.

Feed manipulation operators are implemented by augmentation
flows. Feeds manifest at the augmentation level as sequences whose
items are rooted by a special container node. The child elements of
the container node are its payload. In general, feed manipulation
operators iterate over the container nodes of a sequence and perform
filtering, joins, aggregation, and other set manipulations that involve
the extraction and comparison of attribute and element values of the
payload. The implementation of a data mashup is constructed by

first expanding each individual feed manipulation operator into a
subgraph of equivalent augmentation operators. A global
optimization step is subsequently performed in order to transform
the initial graph representation into one that can be executed more
efficiently. Section 3.5 discusses feed manipulation operators in
more detail. Section 3.6 details the process by which feed
manipulation operators are compiled into augmentation flows.

3.2 Ingestion Layer
The Damia ingestion layer is comprised of connectors, ingestion
functions, an Import operator, and a resource cache.

A connector is essentially a wrapper that implements an http
interface to a particular data source. For example, a custom
connector might be created to wrap "the DB2 database for
department K55", or the "Acme Finance" website. Connectors
understand the access protocols and APIs of the data source, they
handle authentication, and take care of other detailed aspects of data
source access. A connector can return files with any of the MIME
types currently understood by the Damia ingestion layer. An
example of a built-in connector is a simple file upload connector
that allows users to upload spreadsheets, and other desktop data,
thereby making it http accessible for reference in data mashups. The
set of built-in connectors was designed to be extended by the Damia
community.

An ingestion function maps a file of a specific MIME type to an
XML representation. For example, Damia currently supports a built-
in ingestion function for mapping comma separated files of MIME
type text/csv to an ATOM feed representation. The set of built-in
ingestion functions can also be extended by the Damia community.

The Import operator maps a resource provided by a data source into
an instance of the augmentation-level data model by (1) invoking
connectors or other web services to retrieve resources; (2) applying
the appropriate ingestion function to a resource based on the MIME
type of the resource; (3) parsing and mapping the XML
representation of the resource into the data model. Although the
Import operator is conceptually part of the ingestion layer, it
supports the same iterator protocol as other augmentation operators,
so we defer a more detailed discussion to section 3.3.

The resource cache provides basic caching of imported resources. It
supports a simple put and get interface to insert and retrieve
resources. The URL of the resource serves as the resource identifier
for those calls. Caching is only in effect for the leaf nodes of a data
mashup and the Import operator is the object that interacts with the
cache. A cache policy requirement can be provided with a cache get
call. We currently support only a freshness cache policy, which sets
a limit, in terms of number of seconds, as to how stale a returned
resource can be. More sophisticated policies will certainly be
needed as we consider new scenarios. Resources are aged out of the
cache in a cyclic fashion, with older resources evicted first.

3.3 Augmentation Layer
The Damia augmentation layer is comprised of a set of
augmentation operators that are closed under the augmentation-level
data model, as was described in section 3.1. Data mashups are
compiled into augmentation flows, which are networks of
augmentation operators that execute in a demand-driven data flow
fashion. Augmentation operators produce and consume tuples
according to an iterator protocol [10]. As such, each operator
supports bind-in, open, close, and next interfaces, which are used by

1175

other operators to initialize and uninitialize the operator, and to
iteratively consume the tuple stream that the operator produces.

Operators have arguments which define input operands, as well as
the operator's relationship to other operators in an augmentation
flow. Augmentation operators execute within a bind-in context
which provides values for variables that are referenced in
arguments. For example, a URL parameter that returns the price for
a given stock would contain a variable reference to the stock in the
URL, which it would pull from the bind-in context. The bind-in
context for all operators is initialized with the attribute-value pairs in
the HTTP context passed to the data mashup when it is executed;
hence, variables can be passed to operators from outside the data
mashup. Nested loop operations can extend the bind-in context of
inner loop operators with attribute-value pairs passed from the outer
loop. An operator's bind-in method, which provides and operator
with its bind-in context, must be executed before an operator is
opened.

3.3.1 Implementation
Augmentation operators are implemented as PHP classes. Data
mashups are essentially compiled into PHP scripts that are
interpreted by the PHP engine. The augmentation operators rely on
a couple of basic PHP features such as PHP DOM support for
parsing XML documents and for executing xpath statements, as
well as PHP Curl libraries for importing resources via HTTP.

Figure 5 shows PHP pseudo code of an augmentation flow, which
joins stocks from a specified portfolio with the current stock prices.
Operators are wired together, and get their arguments; by setting
class properties. Every operator class provides methods to set
arguments. For example, the setInOp method of Iterate identifies the
Extract operator as its input operator. All classes implement the
bind-in, open, next, and close methods of the iterator protocol. To
start the execution flow, the bind-in, open, and next methods of the
topmost operator of the augmentation flow (the Construct operator
in the example) are executed. Such requests cascade down through
the augmentation flow, tuples flow from the Import operators back
up through the augmentation flow, and the execution continues until
all tuples are drained from the pipeline. Variable references use PHP
naming conventions (e.g. $pname variable in line 2). The values for
these variables are pulled from the bind-in context. In this example,
the bind-in context is initialized from the HTTP context (see line
22).

1) $import1 = new Import ();
2) $import1()->setURL(
'http://myportfolio.com?name=$pname’)
;
3) $import1()->setOutSeq('$assets');

4) $extract = new Extract();
5) $extract->setInOp($import1);
6) $extract->setXpathEntry(array(
'$assets' ,'//iterate/text()', $tickers'));

8) $iterate = new Iterate();
9) $iterate->setInOp($extract);
10) $iterate->setInSeq($tickers);
11) $iterate->seOutSeq($ticker);

12) $import2 = new Import ();
13) $import2->setURL(
'http://stockprice.com?ticker=$ticker’);
14) $import()->setOutSeq('$prices);

15) $fuse = new Fuse();
16) $fuse->setOuterOp($iterate);
17) $fuse->setInnerOp($import2);

18) $cons = new Construct();
19) $cons->setInOp($fuse);
20) $cons->setTemplate(
'<res><tick>$ticker</tick>$prices</res>')
;
21) $cons->setOutSeq($construct);

22) $cons->bindIn($_REQUEST);
23) $cons->open();
24) while ($tuple=$cons->next()
 != EOS) {
25) echo ($tuple->getSequence($cons)->
getItem(0)->serialize()) . '\n'); }

Figure 5 -PHP Representation of Augmentation Flow

3.3.2 Augmentation Operators
This section offers a short description of the augmentation
operators currently supported by Damia:
Import
The Import operator maps a resource from a data source into an
instance of the augmentation-level data model (ADM). It is
analogous to an Xquery doc function. The Import operator takes a
resource, cache policy, and output sequence as arguments. The
resource argument represents the resource to be imported. It can
be a string, file path, or a URL. The Import operator imports the
specified resource and makes a call to the metadata services
component to retrieve the appropriate ingestion function for
rendering the resource into an XML representation. The step of
retrieving a URL specified resource is handled by the PHP Curl
library. This step can be avoided if the cache manager has a
cached version of the resource that satisfies the specified cache
policy. The imported and transformed resource is mapped to a
PHP DOM and associated with the sequence name provided by
the output sequence argument.
Iterate
The Iterate operator iterates over each item of a target sequence. It
is analogous to the for clause of an Xquery FLWOR expression.
The Iterate operator takes an input operator, input sequence, and
output sequence as arguments. The Iterate operator iterates each
item of the input sequence, producing one new tuple per item.
Each output tuple contains all sequences of the input tuple, plus a
new sequence representing the iterated item. The output sequence
argument provides the name of this new sequence.
Filter
The Filter operator drops tuples from a tuple stream that do not
satisfy a specified predicate. It is analogous to the where clause of
an Xquery FLWOR expression. The Filter operator takes an
input-operator and predicate as arguments. The specified
predicate compares sequences of the input tuple using Xquery
semantics. For example, the predicate $S = 10, where $S is the
names of a sequence of the input data stream, would qualify
tuples based on existential semantics.
Extract
The Extract operator applies a set of xpath expressions to a tuple
stream. The Extract operator takes an input operator and xpath
array as input. The xpath array argument is an array that supplies
an input sequence, xpath expression, and output sequence with
each entry. The Extract operator applies all xpath expressions in
the xpath array argument. The xpath expression attribute of each
array entry provides the xpath expression to apply, while the input
sequence attribute indicates the sequence to apply it to, and the
output sequence attribute indicates the name of the result
sequence.
Expression
The Expression operator generates new sequences by evaluating a
set of expressions. It takes an input operator, and an expressions
array as input. Each entry in the expressions array identifies an
expression to apply, and the output sequence names the result. For
example, an expression of the form COUNT($S), where $S is a
sequence of the input tuple, would return an output sequence that
represented the number of items in $S. Currently, the classes of
expressions supported include (1) aggregate functions like sum,
and count (2) string functions that perform concatenation, form
substrings, or evaluate regular expressions.

1176

Construct
The Construct operator generates a new sequence according to an
XML template. It is analogous to the return clause of an Xquery
FLWOR expression. The Construct operator takes an input
operator, template, substitutions array, and output sequence as
input. Each input tuple is extended with a new sequence formed
by substituting nodes and values from input sequences, into the
output template. Information in the substitutions array argument
identifies how to make the substitutions. It specifies input
sequence names and associated xpath expressions that identify
locations in the template where the substitution should be made.
Group
The Group operator partitions and aggregates a tuple stream
according to specified grouping key. The Group operator takes an
input operator, group sequences array, and nest sequences array
as input. It partitions the tuples of the input data stream according
to the values of input sequences identified by the group sequences
argument, and aggregates tuples of a partition by combining the
sequences identified in the nest sequences array argument. The
sequences identified in group sequences array must have a single
item. The string values of those items together determine the
partition that the tuple belongs to. The Group operator returns a
single output tuple per partition. If the group sequence array is
empty, the group operator collapses the data stream into a single
tuple. If the nest sequences array is empty, it does the equivalent
of a distinct operation with respect to the grouping key sequences.
Sort
The Sort operator sorts a tuple stream according to specified
sorting key. The Sort operator takes an input operator, and sort
sequences array as input. The sort-sequences array identifies the
input sequences whose values will form the sort key, plus an
ascending or descending ordering attribute. The Sort operator
exploits built in PHP sort routines. The sort key values are
extracted from an input tuple similar to how the Group operator
extracts partitioning key values.
Fuse
The Fuse operator joins two input tuple streams using a basic
nested-loops join algorithm. The Fuse operator takes an outer
loop operator and inner loop operator as input. The operator
identified by the inner loop operator argument is executed in the
context of each tuple of the outer loop tuple stream. The inner
loop context is formed by adding the sequences of the current
outer loop tuple to Fuse's bind-in context. Tuples produced in the
context of a current outer tuple are concatenated with the outer
tuple. Multiple tuples might be returned per inner tuple. The Fuse
operator is used to drive access to sources that depend on another
source for input values. For example, a review site providing
hotel reviews might require a hotel name as a URL parameter. A
Fuse operator would progressively drive an Import operator that
returned reviews for a given hotel.

Hsjoin
The Hsjoin operator joins two tuple streams using a simple hash
join algorithm. The Hsjoin operator takes a build operator, probe
operator, build sequences array, and probe sequences array as
input. The build operator argument identifies the operator
providing the tuples to build the hash table. The probe operator
argument identifies the operator providing the data stream that
probes the hash table. The sequences used to form the hash keys
for the build data stream and probe data stream are provided by
the build sequences and probe sequences arguments, respectively.

The hash keys are formed from input sequences in the same way
that the grouping key is formed by the Group operator.

Union
The Union operator forms a new sequence by appending the items
of multiple input sequences. The Union operator takes an input
operator, and union sequences array, and an output sequence
name as input. The union sequences array identifies the input
sequences whose items are appended together to form the output
sequence.

3.4 Publication Layer
The publication layer transforms an instance of the augmentation-
level data model into a specific representation, like ATOM, RSS,
CSV, or JSON, and then serializes the result for HTTP transfer.
Currently, the publication layer uses construction as the means for
mapping from our internal sequences representation to the
specific target representation. For this, it relies on a set of
standard templates made available through metadata services (e.g.
there is standard construction template for formatting ATOM
feeds). The publication layer has recently undergone a major
enhancement related to newly added support for streams,
continuous data mashups, and syndication, which is currently
prototyped but not yet available for download.

3.5 Feed Manipulation Operators
Feed manipulation operators are closed under the feed-oriented
data model described in section 3.1.2. Data mashups are
comprised of a network of feed manipulation operators that
execute in a data flow fashion. The operators have arguments
which define input operands, and their relationship to other
operators in the data mashup. Feed manipulation operators
operate on one or more feeds and produce a feed. The names of
the input and output feeds are provided as arguments. If the name
of the output feed is different from that of the input feeds, then the
operator essentially creates a new version of the input feed. All
versions of feeds flow in a single tuple from one operator to the
next. This section provides a brief description of the feed
manipulation operators which are currently available. The
compilation process whereby these logical operators are translated
into augmentation flows is described in section 3.6.
Import-Feed
The Import-feed operator imports XML data into an instance of
the feed-oriented data model. It takes a feed type, source URL,
repeating element, and cache policy as input. The source URL
identifies the XML resource to import. The feed type argument
can identify XML, RSS, or ATOM. If XML is specified, then the
repeating element argument is used to identify the payload from
the input XML document. The Import-feed operator has built-in
capability to extract payload for RSS and ATOM formatted input.
The cache-policy parameter indicates the freshness criteria for
serving data from the ingestion layer cache.
Filter-Feed
The Filter-feed operator removes containers from a feed that fail
to satisfy a filter condition. It takes an input operator, input feed
name, filter condition array, and output feed name as arguments.
The filter condition array argument identifies a set of filter
conditions that are applied as conjuncts. Each filter condition
specifies an xpath expression, comparison operator, and a value.
The xpath expression identifies the data in each container that is
compared to the value using the comparison operator.

1177

Merge-Feeds
A Merge-feeds operator is analogous to a symmetric relational
join operation. It concatenates payloads from two different input
feeds that match according to a specified merge condition. It takes
a left operator, left feed name, right operator, right feed name,
merge condition array, and output feed name as arguments. The
left feed name and right feed name identify the input feeds being
merged. All combinations of left feed and right feed containers
are compared. The merge condition array identifies a set of match
conditions that are applied as conjuncts. Each match condition
specifies a left xpath expression, comparison operator and right
xpath expression. The left xpath expression and right xpath
expression identifies the data from the left feed and right feed
payloads that are compared using the comparison operator.
Payloads from container combinations that match are
concatenated into an output feed container.
Augment-Feed
An Augment-feed operator concatenates payloads of an outer feed
container with inner feed containers produced in its context. It
takes an outer operator, outer loop feed name, inner operator,
inner loop feed name, bindings array, and output feed name as
arguments. The Augment-feed operator works similar to a Fuse
augmentation operator, but with feed entries, as opposed to tuples,
as the unit of manipulation. The bindings array is used to form the
bind-in context for the inner operator. It consists of a set of xpath
expressions that are applied to the current outer feed container.
One result container is constructed per combination of outer feed
container and inner feed container produced in its context.
Transform-Feed
The Transform-feed operator restructures an input feed using a
specified template. It takes an input operator, input feed name,
template, substitutions array, bindings array, expressions array,
and an output feed name as arguments. It is analogous to mapping
the return clause of an Xquery FLWOR expression over each
input feed container. The template and substitutions array play a
similar role here as they do in the Construct augmentation
operator discussed in section 3.3. The bindings array is used to
extract values from the payload of each input feed container. The
expressions array computes additional values using these
extracted values. The set of values computed from extraction and
expression computation are then substituted into the template
according to the substitutions array.
Group-Feed
The Group-feed operator partitions the payload of incoming feed
containers according to specified grouping key bindings,
producing one feed entry per partition, which is formed by
concatenating the corresponding payload of containers in the
same partition. It takes an input operator, input feed name, group
key bindings, nest key bindings, and an output feed name as
arguments. Group-feed is analogous to the Group augmentation
operator but with feed containers the unit of manipulation. The
group key bindings are extracted from each input feed container
to extract the values that determine the output partition for the
container. The nest expression bindings determine which
fragments of the payload are extracted and added to the
corresponding output feed entry for the partition.

Sort-Feed
The Sort-feed operator reorders the containers of an incoming
feed according to a specified sort key. It takes an input operator,
input feed name, sort key, and an output feed name as arguments.
Sort-feed is analogous to the Sort augmentation operator but with

feed containers the unit of manipulation. The sort key is
comprised of a list of sort expressions and ordering attributes.
The sort expression is basically an xpath expression that extracts a
value for a sort key component from a payload. The ordering
attribute determines if containers are ordered in ascending or
descending order relative to that sort key component.

Union-Feed
The Union-feed operator forms a single output feed by appending
the containers of multiple input feeds. It takes an input operators
array, input feeds array, and output feed name as arguments. The
Union-feed operator first concatenates all input tuples coming
from the operators specified in the input operators array. It then
takes the feeds specified by the input feed array and appends their
containers to form the output feed.
Publish-Feed
The Publish-feed operator transforms an instance of the feed-
oriented data model into a specific XML format. It takes an input
operator name, input feed name, output feed type, feed bindings,
and output feed name as arguments. The feed type can specify a
format such as RSS, ATOM, or XML. The feed bindings supply
feed header data for the output feed, which depends upon the
specified feed type. For example, an ATOM feed has "title" and
"id" fields. The operator emits all container items in a feed
format, with header and repeating containers. There are standard
templates for RSS and ATOM. For XML feed types, users
provide the header and specify the element name used for
repeating container elements.

Figure 6 Data Mashup and Augmentation Flow

 ($m)

 Corresponding

 Augmentation

 Flow

3) Merge-Feeds

 Data

Mashup

1) Import-feed 2) Import-feed

 1)

 3)

 Import

 Extract

 2) Construct

 Iterate

 Extract

$a//entry

http://www.hotels.xyz

 for $b

$c//*

<d:entry>{$d}<d:entry

<d:entry>{$k}{$l}<d:entry>

($a)

($b)

($c)

($d)

($e)

 4) Extract

 3) Iterate

 2)Extract

 for $e6) Iterate
($f)

$f/hotel/name
7) Extract

($i)

($i, $j) $i/review/hname($f,

 $g = $j 10) Hsjoin

 1) Import

11) Extract $f//* ; $i/*

($k,$l)

($e) ($h)

($h)

($f, $i)

 ($m)

 Publish-feed

12)Construct

 for $h

9) Extract

8) Iterate

1178

3.6 Flow Compiler
The Damia compiler is responsible for mapping a data mashup
comprised of feed manipulation operators into an augmentation
flow. Figure 6 illustrates the relationship between feed
manipulation operators and augmentation flows. It depicts a data
mashup representation that implements the Xquery expression in
Figure 4, as well as augmentation flow representations that
correspond to the feed manipulation operators in the data mashup.
The Import-feed operators of the data mashup are responsible for
mapping the ATOM and RSS feeds containing hotel and review
information into an instance of the feed-oriented data model. The
Merge-feeds operation concatenates the payloads of the imported
feeds that agree on hotel name. The Publish-feed operator
transforms the output of the Merge-feeds operator from its
representation in the feed-oriented data model, to a serialized
format that can be readily consumed by web applications, such as
RSS or ATOM.
The augmentation flow subgraph that implements a given feed
manipulation operator is contained in the rectangle that shares the
same number as the corresponding operator. Edges are annotated
with the names of the sequences produced by an operator.
Annotations next to an operator indicate arguments to the
operator. Import-feed operator (1) is implemented by the Import
(1), Extract (2), Iterate (3), Extract (4), and Construct (5)
augmentation operators. This sequence of operations maps the
ATOM feed imported from www.hotels.xyz into sequence $e,
which represents an instance of the feed-oriented data model. The
mapping is accomplished by iterating each entry of the imported
ATOM feed, and essentially moving the entire payload of each
entry under a special container node, denoted as <d:entry> in the
example. A similar series of augmentation operators implements
Import-feed operator (2), which maps the RSS feed from
www.reviews.xyz into sequence $h, which represents another
instance of the feed-oriented data model.

The Merge-feeds (3) operator is implemented by iterating over the
containers of sequences $e and $f, which were produced by the
operators corresponding to Import-Feed (1) and Import-feed (2),
extracting hotel names from their payloads into sequences $g and
$j, and using the Hsjoin operator to join tuples that contain input
feed entries which agree on hotel name. The Extract (11) and
Construct (12) operators then map the payloads of the matching
input feed entries from sequences $f and $i, into a new result
container.

3.6.1 Flow Compiler Overview
The flow compiler takes an XML document describing the data
mashup, and emits a PHP script comprised of augmentation
operator classes organized into an augmentation flow. The flow
compiler consists of three modules as shown in Figure 7. A parser
module parses the XML representation of a data mashup into an
augmentation graph representing an initial augmentation flow. A
rewrite module transforms the augmentation graph into a more
efficient representation. Finally, a code generation module
traverses the augmentation graph and emits a PHP script.

Figure 7: Mashup and Augmentation Flow

3.6.2 Parser Module
A data mashup is presented to the flow compiler as a set of XML
elements that represent feed manipulation operators. Connections
between operators are represented using id references, i.e. the
structure of the document is flat. Other attributes and child
elements are understood by the parser as arguments of the feed
manipulation operator. The parser translates each element into a
subgraph of the initial augmentation graph. Each node in the
graph represents a single augmentation operator. Figure 6
illustrated the correspondence between feed manipulation
operators and a subgraph of augmentation operators.

3.6.3 Rewrite Module
The rewrite module performs a series of rule-based
transformations to the initial augmentation graph. The rules are
currently based on heuristics. There are currently no cost-based
transformations. The rule engine is extensible. New rules are
added by implementing an abstract class that defines common
methods and properties. Rules can be turned on or off. The
current prototype implements a small number of rewrite rules. For
example, there is a rewrite rule for removing redundant sequences
of Group and Iterate operators, which result from the myopic
expansion of an individual feed operator into an augmentation
subgraph. Figure 8 illustrates the scenario.

Figure 8: Rewrite Rule Example
We are planning to extend this core set of rewrite rules as we
observe more common usage patterns.

3.6.4 Code Generation Module
The code generation module performs a topological sort of the
augmentation graph to form an ordered list of augmentation
nodes. It then generates an augmentation operator class instance
per list entry, setting properties of each class instance in order to
wire the operators together, and to set other input arguments, as
per the example shown in Figure 5. All code segments are then
appended, and appropriate headers added, to form the final script.

3.7 Integration Engine Interfaces
All interfaces to the integration engine are made available via a
REST protocol. Damia supports client interfaces for compiling a
data mashup, previewing the results of a partially built data
mashup, and for executing a compiled data mashup. Damia also
supports administrative interfaces that provide metrics on data
mashup execution, server diagnostics, and so on. Such metrics are
maintained as feeds that can be used as sources for data mashups.

Iterate Aug. Ops Aug. Ops GroupBy

Pa
rs

er

R
ew

rit
e

C
od

e
G

en
.

Feed
Ops

Aug.
Graph

Aug.
Graph

PHP
Code

Flow
XML

1179

4. USAGE SCENARIOS
In this section, we examine two usage scenarios that illustrate
how Damia enables business and departmental users to integrate
and visualize enterprise, departmental, and external data sources.

4.1.1 Customer Service Application
Customer service is a familiar enterprise application. The
customer service application is typically a pre-built package with
well defined interfaces for accessing appropriate data and for
logging the details of each customer interaction. For our scenario,
imagine that Cassie is a customer service representative for JK
Enterprises who is fielding a call from customer Bob regarding a
dispute in his credit billing statement. Apparently, Bob has been
billed twice on a purchase of an appliance item and is calling to
complain about this error. In this scenario, Cassie needs to
perform the following tasks:

• Validate the customer details
• Pull up the customer profile and transaction details
• View the billing statements
• Validate the dispute
• Process a dispute resolution workflow

Now, imagine we are adding new features to the application in
order to verify customer information faster or to provide specific
promotions to the customer. For example, IBM has introduced a
new capability called IBM Global Name Recognizer (GNR)
which can find matching names from a dictionary of names. How
might this capability be introduced into the application?
Damia technology provides an easy way to enable this extension.
The first step is to create a REST service from GNR that
generates a list of phonetically matching names given a roughly
spelled input name. For instance, if Cassie was to type "Denis
Mastersen", the GNR service might return the entries in Figure 9.

Figure 9 GNR Service Output Feed
Once we have this service available, the next step is to create a
Damia data mashup that can combine GNR service output with
the matching customer accounts in JK Enterprise's customer
database. Figure 10 shows the mashup that performs this task.

Figure 10: Damia Mashup of GNR and Customer Data
Cassie is expected to enter the rough customer name as input to
the GNR source operator in the data mashup. The GNR service
returns the list of matching names similar to what is shown in
Figure 9. The Damia data mashup then massages this output,
extracts the relevant last and first names and performs a lookup
against the JK Enterprises customer database. The names that
match in the customer database are published in an output feed,
shown in Figure 11. Cassie can then choose the matching

customer using attributes such as address or phone number and
proceed to her next task.

Figure 11 Customer Feed with GNR Lookup Capability

4.1.2 Real Time Situational Monitoring
Real-time situational applications (emergency co-ordination or
tracking) are very good candidates for Damia mashup capabilities.
In the following example, we consider the situation where a
hurricane is bearing down on a region and an insurance agent is
assessing the potential claim damage exposure from this
hurricane. We believe that there are many situational applications
similar to this one (imagine the home improvement retailers in the
same region etc.) who would be able to work with such a
technology to improve their forecasting or response capabilities.

Figure 12: Weather Alerts and Insurance policy data
In this insurance scenario, the agent launches her mashup
application upon notice of any severe weather alerts. Figure 12
shows the mashup flow. The agent takes her client policy
information from a personal spreadsheet database. We note that
personal information that might be in an analyst’s or agent’s
workspace is important information that needs to be integrated
into mashup applications. In Damia, this is done by uploading
such spreadsheets into the data mashup server and using these
spreadsheets as data feed sources. The second source input for
this mashup is the National Weather Service which provides a
feed of severe weather alerts for a particular region or state. In
our example, the data mashup extracts city codes from the
spreadsheet and the weather feeds and performs a merge
operation. The output is a list of insurance policy holders who are
likely to be affected by the severe weather. This output can then
be used to show a rich interactive view of affected cities and
estimated personal property damage. Figure 13 shows a rendering
of such a rich interactive application using JustSystems XFY [11]
tool that utilizes the Damia feed output. In this figure, notice the
storm tracker can be manipulated by the agent so that the storm
path changes can trigger the processing of the Damia mashup in
order to present a concise output of the potential storm damage.
This storm damage is shown visually using the map and charting
widgets.

Import
(Weather)

Import
(Excel)

Filter-
Feed

Transform

Merge-
Feeds

Transform-
Feed

Publish-
Feed

Import
(GNR) Augment-

Feed
Transform-

Feed

Publish-Feed
Import

(IMSDB)

Transform-
Feed

<Names>
 <Name> Dennis Masters </Name>
 <Name> Dennis Masterson </Name>
 <Name> Denise Masterson</Name>
 <Name> Denise Masters </Name>
 <Name> Deny Masterton </Name>
</Names>

1180

Figure 13: Storm Tracker Application with Damia Input

5. RELATED WORK
Traditional enterprise integration architectures, such as EII and
ETL architectures, are not designed to satisfy the integration
requirements of enterprise mashups. First of all, these
architectures were designed primarily to handle a large amount of
structured data made available by a small set of familiar and fairly
static enterprise sources. Secondly, they typically require the
services of a highly knowledgeable information architect capable
of defining complex schema mappings, views, or ETL flows.
Conversely, an enterprise mashup platform is comprised of a large
and dynamically changing set of data sources. The dynamic
nature of a web platform makes it especially hard to impart the
necessary structure and semantics to data before it is manipulated.
Moreover, the developers of enterprise mashups are not
information architects, but departmental users with minimal
programming expertise. Damia is designed for a large and
changing number of data sources that make available both
structured and unstructured information, and to enable less skilled
users to complete complex integration tasks.
Damia is focused on the data problem presented by situational
applications; hence, it uses a data flow model to represent a
mashup, leaving the control flow aspects to the application. In
contrast, the Google Mashup Editor [12] and Microsoft PopFly
[13] bring application logic into the equation along with the data
manipulation logic. The Mash-O-matic [14] project focuses more
on the behavioral aspect of assembling mashups by enabling
mashup builders to select input data from web pages. Intel's
MashMaker [15] has a principled programming model based on a
functional language that allows users to create mashups while
surfing the web. None of these projects focuses squarely on the
data aspects of the problem.
To our knowledge, the only other service that provides a data
flow oriented platform is Yahoo Pipes [16]. Pipes allows data
mashups that combine RSS, ATOM, or RDF formatted feeds.
Further, it provides a GUI that allows data mashups to be
specified graphically. Pipes focuses on the transformation of feeds
via web service calls (e.g., language translation, location
extraction). Damia goes beyond Yahoo Pipes in several ways: (1)
Damia has a principled lower level data model for manipulating
XML data and a more general feed manipulation model for
composing data mashups (2) Damia is targeting enterprise

business users. As such, it must support a more powerful set of
data manipulation operators such as those that do general joins,
aggregation, and other sophisticated transformations that Yahoo
Pipes does not offer. (3) Damia has to deal with enterprise sources
and data types such as Lotus Notes data (email), Excel
spreadsheets, and corporate relational databases, in addition to the
web feeds the Yahoo! Pipes focuses on. (4) Security is a major
concern of Damia. Access control and authentication are required
for premium sources inside the firewall, as well as those emerging
on the web through information marketplaces like StrikeIron [17].

6. FUTURE WORK
The Damia project is progressing simultaneously on both research
and product fronts. The research team has developed a blueprint
for web style data integration that is guiding its current agenda.
This section describes some of the current focus areas.

Data Standardization
Data standardization is an important current focus of ours, as the
quality of any integration engine is reflected by how effectively it
can combine data from different sources. Toward this goal, we are
seeking to exploit text annotation services (e.g. ClearForest [18],
UIMA [19]), master data management technology (e.g. IBM
Master Data Management Server [20]), and other available
services (e.g. Yahoo! Geocoding API [21]) both inside and
outside the corporate firewall in order to add structure to feeds,
and to reconcile differences in how entities are represented by the
diverse data sources that Damia aims to support. One of the
distinguishing aspects of our approach lies in our use of
folksonomy to attain the metadata used in performing entity
resolution. This technique allows us to harness the collective
intelligence of the Damia community in order to progressively
improve the fidelity of our data standardization algorithms.

Continuous Data Mashups
Another area of early focus has been on "publish and subscribe"
enterprise mashup scenarios wherein data mashups run
continuously, syndicating new results to subscribers whenever
relevant data is available from input sources. Toward these goals,
we have recently added support for streams, windows, continuous
data mashups, and subscribers to Damia.

Data Ingestion
Data fodder for enterprise data mashups exists in forms other than
nice web feeds, such as office documents, email, relational
databases, and HTML pages. It is critical to provide tooling that
facilitates access to such data. We have recently prototyped a
general purpose "screen scraping" (e.g. Kapow [22], Lixto [23]),
engine that produces feeds from the valuable data locked within
HTML pages. An important next step involves making the scraper
self-repairing in response to changes in web page format.

Search
Mashup applications are created by large numbers of small
communities. An effective search capability must be provided in
order to promote sharing of data feeds amongst communities. We
believe that such a search mechanism must not only look at
metadata associated with a data mashup, but it must also look at
its data and data manipulation logic.

Data Quality
What kind of business decisions should one make based on a feed
that combines a premium Dun and Bradstreet financial feed with
John Doe's blog of financial musings? We believe that it is

1181

important to make lineage information available with a feed so
that users might assess its quality.

7. CONCLUSION
There is a significant market opportunity for technology that can
help business leaders exploit information from desktops, the web,
and other non-traditional enterprise sources, in order to react to
situational business needs. IBM's Information 2.0 initiative [4] is
targeting that opportunity. It aims to provide technology that can
help extend the reach of the enterprise information fabric and help
IT departments provision and manage situational applications
built by enterprise business users. The initiative includes Mashup
Hub, an enterprise feed server that facilitates the creation and
management of data feeds that can be used by situational
applications. The Damia data integration engine described in this
paper is a key component of Mashup Hub [3]. Damia enables the
creation of data mashups that combine data from desktop, web,
and traditional IT sources into feeds that can be consumed by
AJAX, and other types of web applications. Damia presents data
mashup creators with a set of data manipulation operators that
allow data mashups to be created from a data flow perspective,
around a generalization of the familiar notion of a feed. A set of
connectors, ingestion functions, and powerful data manipulation
operators based on a principled XML data model; provide the
underlying implementation of this data mashup abstraction. The
Damia data integration technology is currently available for
download on IBM alphaWorks via Mashup Hub.

8. ACKNOWLEDGMENTS
We thank Paul Brown, Susan Cline, Ken Coar, Sunitha
Kambhampati, Rajesh Kartha, Eric Louie, Sridhar Mangalore,
Louis Mau, Yip-Hing Ng, Kathy Saunders, and the other IBM
colleagues that helped develop Damia. Special thanks to Anant
Jhingran and Hamid Pirahesh for valuable discussions. Thanks
also to Fatma Ozcan for reviewing an early draft of the paper.

9. REFERENCES
[1] A. Jhingran, “Enterprise Information Mashups: Integrating

Information, Simply”, VLDB 2006: 3-4.

[2] Programmable Web, http://www.programmableweb.com/
[3] IBM Mashup Starter Kit

http://www.alphaworks.ibm.com/tech/ibmmsk
[4] IBM Info 2.0 http://www-306.ibm.com/software/data/info20/
[5] Dojo, the Javascript toolkit, http://dojotoolkit.org/
[6] RSS http://cyber.law.harvard.edu/rss/rss.html
[7] The ATOM Syndication Format,

http://tools.ietf.org/html/rfc4287
[8] M. F. Fernandez, A. Malhotra, J. Marsh, M. Nagy and N.

Walsh, “XQuery 1.0 and XPath 2.0 Data Model ”, January
2007, http://www.w3.org/TR/xpath-datamodel/

[9] K. S. Beyer, Kevin S. Beyer, D. D. Chamberlin, L. S. Colby
F. Ozcan, H. Pirahesh, Y. Xu, "Extending Xquery for
Analytics" SIGMOD Conference 2005: 503-514

[10] G. Graefe "Query Evaluation Techniques for Large
Databases" ACM Comput. Surv. 25(2): 73-170 (1993)

[11] Just Systems http://www.xfy.com
[12] Google Mashup Editor, http://code.google.com/gme/
[13] Microsoft PopFly, http://www.popfly.ms/
[14] Mash-o-Matic, http://sparce.cs.pdx.edu/mash-o-matic/
[15] Intel Mash Maker, http://mashmaker.intel.com/
[16] Yahoo Pipes, http://pipes.yahoo.com/pipes/
[17] Strikeiron Inc., http://www.strikeiron.com/
[18] Clearforest Inc., http://www.clearforest.com/
[19] Unstructured Information Management Architecture

(UIMA), IBM Research, www.research.ibm.com/UIMA/.
[20] IBM Master Data Management Server

www306.ibm.com/software/data/ips/products/masterdata/
[21] Yahoo! Maps Geocoding API

http://developer.yahoo.com/maps/rest/V1/geocode.html
[22] Kapow Technologies, http://www.kapowtech.com
[23] Lixto Software, http://www.lixto.com/

1182

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

