
FICSR: Feedback-based InConSistency Resolution and
Query Processing on Misaligned Data Sources∗

Yan Qi
Arizona State University
Tempe, AZ 85287, USA

yan.qi@asu.edu

K. Selçuk Candan
Arizona State University
Tempe, AZ 85287, USA
candan@asu.edu

Maria Luisa Sapino
∗

Universita’ di Torino
10149 Torino, Italy

mlsapino@di.unito.it

ABSTRACT
A critical reality in data integration is that knowledge from dif-
ferent sources may often be conflicting with each other. Conflict
resolution can be costly and, if done without proper context, can
be ineffective. In this paper, we propose a novel query-driven and
feedback-based approach (FICSR1) to conflict resolution when in-
tegrating data sources. In particular, instead of relying on tradi-
tional model based definition of consistency, we introduce a ranked
interpretation. This not only enables FICSR to deal with the com-
plexity of the conflict resolution process, but also helps achieve a
more direct match between the users’ (subjective) interpretation of
the data and the system’s (objective) treatment of the available al-
ternatives. Consequently, the ranked interpretation leads to new

opportunities for bi-directional (data
informs←→ user) feedback cycle

for conflict resolution: given a query, (a) a preliminary ranking of
candidate results on data can inform the user regarding constraints
critical to the query, while (b) user feedback regarding the ranks
can be exploited to inform the system about user’s relevant domain
knowledge. To enable this feedback process, we develop data struc-
tures and algorithms for efficient off-line conflict/agreement analy-
sis of the integrated data as well as for on-line query processing,
candidate result enumeration, and validity analysis. The results are
brought together and evaluated in the FICSR system.

Categories and Subject Descriptors: H.2.5[Heterogeneous Data-
bases]; H.3.3[Information Search and Retrieval]:Relevance feed-
back

General Terms: Algorithms, experimentation

Keywords: Reasoning with misaligned data, conflicts, taxonomy,
relevance feedback, query processing

1. INTRODUCTION
Integration of data from different sources starts with a match-

ing/alignment phase. Matching, which takes two data or schemas

∗Supported by NSF Grant “Archaeological Data Integration for the
Study of Long-Term Human and Social Dynamics (0624341)”
∗This work was done while the author was visiting ASU
1Pronounced as “fixer”.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’07, June 12–14, 2007, Beijing, China.
Copyright 2007 ACM 978-1-59593-686-8/07/0006 ...$5.00.

(a) (b)

Figure 1: Two conflicting shark taxonomies

as input and produces a mapping (or alignment) between elements,
has been investigated in scientific, business, and web data inte-
gration [30] contexts. Work on automated matching systems in-
clude [9, 11, 21, 23–26]. C-OWL [6] leverages predefined map-
pings between local and global ontologies to enable contextualized
use. [18] proposes a language which allows specification of alterna-
tive semantics for mapping tables and shows that a constraint-based
treatment of mappings can lead to efficient mechanisms for infer-
ring new mappings. [2] proposes to use DTDs and source-to-target
dependencies to eliminate inconsistent data translation from one
schema to the other.

Despite such advances in mapping technologies, alignments
across the data sources are rarely perfect. In this paper, we focus
on the problem of dealing with imperfectly aligned data and present
a Feedback-based InConSistency Resolution and query processing
(FICSR) system which assists the users in query answering when
the integrated data contain conflicts.

1.1 Dealing with Misalignments and Conflicts
In many cases, conflict resolution is an ill-defined problem: there

may be multiple ways to resolve conflicts and the appropriate con-
flict resolution strategy may be user- and query context-dependent.
Consider a scientist who is trying to work under multiple, con-
flicting assumptions or hypotheses. Figure 1 shows two alternative
shark taxonomies that are available to this scientist, each represent-
ing a different view of what the correct categorization of sharks
should be. This scientist may want to keep both views until she
has more understanding on their implications under a particular us-
age context. In such a case, overly-eager conflict resolution may
be detrimental to the effective use of the available knowledge. This
is true especially in information mashup scenarios [17], where the
ease and speed of integration is as (if not more) important as the
completeness and cleanliness.

In this paper, instead of trying to achieve fully-consistent inte-
gration in advance of query processing, we rely on query instances
to provide contexts in which conflicts should be resolved. Like
us, Piazza [15] and HepToX [5] recognize that it is unrealistic to
expect an independent data source entering information exchange

151

to agree to a global mediated schema or to perform heavyweight
operations to map its schema to every other schema in the group.
Piazza presents a mediation language for mapping both the domain
and document structures and focuses on certain answers that hold
for every consistent instance. HepToX, on the other hand, focuses
on automated mapping rule generation, without explicitly consider-
ing conflicts. TRIO [3] represents alternatives probabilistically and
relies on available lineage information for query processing with al-
ternatives. QUEST presents an assertion-based data model to cap-
tures both value-based and structure-based conflicts in data [28,29].
In this paper, we propose a ranked interpretation of constraints,
conflicts, and statements on data to enable feedback-based conflict
resolution within the context of a query, to support QUEST.

1.2 Interpretations of Conflicting Data
Traditionally, a consistent interpretation of the data with conflicts

is defined as a maximal, self-consistent subset of the data [4, 22].
This set is referred to as a model:

DEFINITION 1.1 (MODEL-BASED INTERPRETATION). A
model (or model-based interpretation) of a given knowledge base
D is a subset D′ of the knowledge base (D′ ⊆ D) such that there
exists no other consistent set D′′, where D′ ⊂ D′′ ⊆ D.

Since model-based repair requires selection of a subset of the
data, restoration of consistency through a model-based interpreta-
tion may lead to loss of information. Furthermore, in many cases,
the user may not have enough information (domain knowledge) to
select an appropriate model among all the alternatives implied by
D. Thus, instead of characterizing the user’s interpretation as a
maximally consistent portion of the data that she commits as being
certain, we argue that a more flexible definition of interpretation,
which captures the likelihood that a given asserted statement about
the data can be considered as holding, may be more suitable.

DEFINITION 1.2 (RANKED INTERPRETATION). Let D be
the data and S be a set of statements (i.e., propositions) on the
data. Then, a total ranking of statements in S is a ranked interpre-
tation of the data D.

The model-based interpretation of the data is a special case of the
ranked interpretation, where the rank of all certainly true statements
is better than the rank of all certainly false ones.

1.3 Objective vs. Subjective Interpretations
In general, data alignment is a subjective process whereby map-

pings capture the domain expert’s interpretation of the data sources
and the application requirements. A subjective ranked interpreta-
tion, �D,U , captures the user, U ’s domain knowledge or prefer-
ences, while an objective interpretation, ≤D, measures the degree
of agreement of the data sources on a given statement.

Query processing over data with conflicts requires any gap be-
tween objective (what is represented in the database) and subjec-
tive (what the user thinks to hold) interpretations to be bridged. We
refer to this as the objective-subjective correspondence:

DESIDERATUM 1 (OBJECTIVE-SUBJECTIVE CORRESP.). It
is preferred that, for all S1, S2 ∈ S , it holds that

(S1 �D,U S2) ←→ (S1 ≤D S2) .

This forms the basis of the feedback-based conflict resolution.

1.4 Feedback in Information Retrieval
Information retrieval (IR [35]) systems face similar objective-

subjective gaps: given an information retrieval request,

Relevance Feedback Cycle in IR Systems

Figure 2: Overview of the relevance feedback process com-
monly used in information retrieval when the available data has
alternative (user- and query-dependent) interpretations

• which features of the data are relevant (and how much so) for
the user’s query may not be known in advance, and
• the number of candidate matches in the database can be large.

In the IR context, these challenges are dealt effectively through rel-
evance feedback. A relevance feedback cycle enables the informa-
tion retrieval system to learn the user’s interests and focus onto a
suitable feature set through a query-driven, transparent, and itera-
tive process (Figure 2): (1) Given a query, using the available index
structures, the IR system (2) identifies an initial set of candidate
results. Since the number of candidates can be large, the system
presents a small number of samples to the user. (3) This initial
sample and (4) user’s relevance/irrelevance inputs are used for (5)
learning user’s interests (in terms of relevant features) and this in-
formation is used for (6) updating the query or the retrieval/ranking
scheme. Steps 2-5 are then repeated until the user is satisfied with
the ranked result samples returned by the system.

FICSR exploits a similar feedback-based approach in the context
of query processing in the presence of conflicts and alternative in-
terpretations. The system relies on the objective-to-subjective cor-
respondence (subj ← obj) to inform the user about the more likely
(i.e., highest source agreement) interpretations for the given query.
The subjective-to-objective correspondence (subj → obj), then,
informs the system about the user’s own interpretations. Since the
feedback process can be computationally costly and since the user
may have neither the need nor the sufficient domain knowledge to
interpret the entire data, instead of considering all possible state-
ments, as in IR systems, it is preferable to focus on only those
statements relevant within the context specified by a user query.

1.5 Proposed Approach
In this paper, we develop data structures and algorithms to en-

able feedback-based conflict resolution during query processing on
imperfectly aligned data. The overview of the FICSR system is
presented in Figure 3. The first step is an initial alignment between
the input data, obtained through semi-automated techniques, such
as [9,11,21,23–26]. The result of the alignment are mapping rules,
such as those described in [2, 18]. These rules along with the inte-
grated data are represented in the form of a set of constraints.
Relationship vs. Integrity Constraints: In this paper, we clas-
sify the data constraints into two major classes: (a) relationship
constraints describe how the individual data objects/entities relate

152

Proposed Feedback Cycle for Conflict Resolution

Figure 3: Query-driven feedback-based conflict resolution

to each other, while (b) integrity constraints describe the general
rules these data entities have to obey.
Source Agreement: Unless the constraints are conflict free, there
will be alternative interpretations of data. Consequently, FICSR
measures the objective agreement of the data sources on a given
data fragment. Informing the user regarding the objective ranking
involves identifying results with high agreements.
Query Processing and Feedback-based Conflict Resolution:
The agreement-based ranking task can be computationally expen-
sive if the system would need to enumerate all alternative models
(in Section 4.1, we show that the problem is NP-complete even
in highly specialized cases). Therefore, a particular challenge in
query processing in the presence of conflicts is to postpone the
computation of complete solution models until absolutely neces-
sary. In order to deal with the cost of the agreement computation in
the presence of conflicts, we divide the task into three stages:

(Stage 1) Off-line Analysis: We represent the relationship con-
straints in the form of a graph which enables off-line con-
flict/agreement analysis. To efficiently compute the agreement val-
ues, we partition the graph into small-sized constraint zones, each
consisting of a mutually-dependent set of relationship constraints.
The agreement values are computed for each zone separately.

(Stage 2) Candidate Enumeration and Ranking: Given a query,
the system identifies and ranks an initial subset of matches on the
graph, combining the zonal agreement values. Once presented with
a ranked set of candidate results, the user can provide her feedback.

(Stage 3) Path Integrity Constraints and Feedback: The remain-
ing complex integrity constraints (such as “no-cycles are allowed in
data”) are used for verifying the validity of the ranked interpretation
obtained through zonal agreement values. In particular, through the
analysis of path integrity constraints within the context provided by
the candidate result sets as well as user feedback, candidate results
and constraints are assigned validity values. Once these validity
values are propagated back to the objective agreement values (com-

Figure 4: A basic data graph segment

pleting the feedback cycle), the user can be provided with a new
subset of ranked results.

1.6 Contributions of the Paper
The proposed system brings together various innovative tech-

niques to deal with the computational complexity and the ill-
defined nature of the conflict resolution problem:

First of all, we propose a novel, feedback-driven approach
to query processing in the presence of conflicts. The feedback
process relies on a ranked interpretation of the data. The objective-
subjective correspondence of the ranked interpretations enables the
user to explore the available data and be informed regarding con-
straints critical to a given query before providing feedback.

We provide data structures and algorithms for efficient off-line
analysis of the data, on-line query processing, candidate result enu-
meration, and validity analysis. We represent data in the form of
relationship and integrity constraints (Sections 2 through 3.2):

• the relationship constraints lend themselves to efficient par-
titioning into independent constraint sets (called zones, Sec-
tion 3.2). The small sizes of the zones enable efficient off-
line agreement analysis (Section 4) and their independent na-
ture enables efficient on-line composition (Section 5).
• the top-k nature of the on-line candidate result enumeration

process lets the user focus on high-agreement parts of the
data, quickly (also in Section 5).
• the cost of the conflict analysis is kept low through the small

sizes of the candidate sets that need to be validated as well as
through the use of the query context which sets the scope of
the conflict analysis (Section 6).
• a constraint programming approach based on the ranked in-

terpretation of data and the fuzzy semantics attached to the
validities and conflicts enable integrity analysis and feedback
without relying on clique-based model enumeration (Sec-
tions 7 and 8).

In Section 9, we evaluate the effectiveness and efficiency of the
proposed techniques. These techniques are being deployed in
a feedback-driven QUEST system to support scientific reasoning
with incomplete and conflicting information [28, 29].

2. DATA REPRESENTATION
Since our goal is to maximize the applicability of FICSR to di-

verse application domains, we keep our assumptions from the data
low and simply represent the data, D(G, IC), in the form of a
graph (G) of entities and their relationships and the associated in-
tegrity constraints (IC). In other words, each D is an instance of a
given ER (entity-relationship) schema and associated constraints.

2.1 Data Relationship Graph
A basic data (relationship) graph describes the objects/entities in

a data source and their relationships.

DEFINITION 2.1 (BASIC DATA GRAPH). A basic data
graph, G(V, E), is a node and edge labeled directed graph, where

153

(a) (b) (c)

Figure 5: Example mappings of two IS-A hierarchies (a) node-
to-node, (b) node-to-tree, and (c) either-or mapping

• each node, v ∈ V , corresponds to an entity (or data object),

• each edge, e ∈ E, corresponds to a relationship between two
entities and is labeled with a relationship name.

Each relationship name has an arity constraint 1-1 (one-to-one),
1-N (one-to-many), N-1 (many-to-one), or M-N (many-to-many).

Intuitively, each node in the graph asserts the existence of a distinct
object and each edge is a constraint which asserts a relationship,
(such as IS-A, PART-OF, WORKS-AT, ATTRIBUTE/VALUE) be-
tween two objects. Figure 4 presents an example.

2.2 Data Paths
A data path is a sequence of relationship edges on a graph de-

scribing how two entities are related. In this paper, we take data
paths as the fundamental statements of interest. Such data path
based treatment of queries is common in object-centric models,
such as OODB and XML.

DEFINITION 2.2 (DATA PATH). A data path, p, on the
data graph, G(V, E), is a sequence of edges, p =
〈e1, e2, . . . , elength(p)〉, where

∀i<length(p) dest(ei) = source(ei+1), and

where source(p) = source(e1) and dest(p) = dest(elength(p))
are both data nodes.

The data path, Cottontail
InF oodChain

� Coyote
IS−A
�

MediumMammal 2, is an example from the graph in Figure 4.

2.3 Path Integrity Constraints
The data graph described above captures the data objects and

their stated relationships (subject to the associated arity con-
straints), while it cannot capture more general path integrity con-
straints to be enforced at the source or in the integrated domain. For
example, requirements about the acyclic nature of data can only
be captured using additional constraints in IC. This differentiated
treatment is analogous to the data vs. integrity constraints differen-
tiation common in database management systems [32]. Naturally,
whether local (to the source) or global, such path integrity con-
straints need also to be considered during integration.

3. DATA WITH ALTERNATIVES
In this section, we first highlight the need for extending the basic

data representation to allow for conflicts when working with imper-
fectly aligned data. We then propose a data representation extended
with alternatives and coordination specifications.

2In the rest of the paper, we simply omit the relationship names
whenever they are not relevant to the discussion.

(a) (b) (c) (d)

Figure 6: Example data graphs with (a) choice, (b) positive co-
ordination, (c) negative coordination, and(d) hybrid assertions

3.1 Motivating Examples
In the literature, there is a multitude of data and schema match-

ing algorithms [9, 11, 21, 23–26, 30]. In this paper, we refrain our-
selves from assuming any particular matching or alignment strat-
egy. As an example, we consider a mapping scenario, where two
concept hierarchies (consisting of concepts and IS-A relationships,
with N-1 arities, among them) are being integrated.

EXAMPLE 3.1 (NODE TO NODE MAPPING). Let us assume
that two nodes n1,i and n2,j from different IS-A hierarchies are
identified as representing the same concept. Naturally, once these
two hierarchies are integrated, these two nodes must be represented
as a single node, n′. In other words, n′ needs to preserve all the re-
lationships that n1,i and n2,j have in their respective hierarchies.
For example, all the children of these two nodes need to become
the children of the combined node. However, preserving the origi-
nal information after integration (while maintaining the appropri-
ate arity constraints) is not always as easy. To see this, consider
Figure 5(a), where a and b are two nodes that are mapped to each
other. In this example, (since more than one immediate ancestor
is not allowed in an integrated IS-A hierarchy) unless c and d are
also identified as representing the same concept during mapping,
the integrated hierarchy will contain an inconsistency.

EXAMPLE 3.2 (MAPPING OF GROUPS OF NODES).
Figure 5(b) provides a scenario where a node in one hierar-
chy is mapped to an entire subtree in the second hierarchy. Thus,
in the resulting graph , h � b � e � c, and g � a � d, are
independently acceptable paths. Yet, as in the previous example,
due to c and d these paths cannot be accepted together.

EXAMPLE 3.3 (EITHER-OR MAPPINGS). In many integra-
tion scenarios, the user may want to describe either-or type of map-
pings which (positively or negatively) relate the choices for differ-
ent alternatives. Figure 5(c) provides an example of this type of
mapping: in this example, two nodes are mapped with the con-
straint that the children of the two nodes are not compatible. Unlike
the previous examples, this creates a situation where only one of the
nodes a and b can belong to a path in the combined hierarchy.

3.2 Extending Data with Zones of Choices
As illustrated by the alignment examples, representing data with

conflicts requires asserting the need for choices and for coordina-
tions among alternatives. In Figure 6, we introduce constructs de-
signed for this purpose, through examples:

• Figure 6(a) presents a data graph with choice semantics. This
graph contains a special edge leaving c, which can belong to
only one path in the data; thus, in this example, either path
c � a or c � b can be interpreted by the user to be true in
the data, but not both.
• In a data graph with coordination, alternatives associated

with one or more edges may need to be coordinated. In other

154

(a) Zone Z1 (b) Three inter-dependent choices of Z1

Figure 7: Zone example: (a) zone Z1 and (b) the three inter-
dependent choices of Z1

words, coordination statements assert the need for making
the same (or different) choices on involved edges. Fig-
ure 6(b) presents a positive coordination (where, if a � c
is interpreted to hold, then b � c must also hold), while
• Figure 6(c) presents a negative coordination requirement

(where, a � c and b � c cannot simultaneously hold).
• The various choice and coordination constraints can be com-

bined to obtain more complex scenarios. Figure 6(d) pro-
vides an example with hybrid choice and coordination re-
quirements. This graph asserts that, in the given data, a and
b have the same successor, and the shared successor is one of
the c, d, and e data nodes.

In the above graphs, the various edges collectively enforce a set
of mutually-dependent relationship constraints. We build the ex-
tended data graph on such blocks (or zones) of inter-dependent re-
lationship constraints.

DEFINITION 3.1 (ZONE). A zone (denoting a set of lo-
cally inter-dependent constraints) is a directed acyclic graph
Z(Src, Snk, ZV, ZE), where
• the sources (Src) and sinks (Snk) are all data nodes (ob-

jects, entities),
• none of the (internal) vertices (ZV) is a data node,
• ZE are directed edges which connect sources, sinks, and

internal nodes to each other. There are four types of edges:

– exclusive edges (marked with \),
– positive coordination edges (marked with +),
– negative coordination edges (marked with -), and
– regular edges (unmarked).

• for any given pair of nodes, vi, vj ∈ Src∪Snk∪ZV , there
exists an undirected path (vi �undir vj) in Z that does not
pass through any sources or sinks (i.e., data nodes).

Figure 7(a) depicts an example zone, Z1. In this example, source
nodes (lightly shaded) and sinks (darkly shaded) are connected
through various choice and coordination edges. More specifically,
Z1(Src1, Snk1, ZV1, ZE1) is such that
• Src1 = {a, d},
• Snk1 = {b, c}, and
• ZE1 = {ze1, ze2, ze3, ze4, ze5}

This zone effectively describes a number of choices that the data
allows: the paths, a � c and d � c, cannot be in the same data
due to the negative coordination edge, ze1, while d � c and d � b
are incompatible due to edge, ze4.

DEFINITION 3.2 (CHOICES OF A ZONE/ ZONAL-CHOICES).
Given a zone, Z(Src, Snk, ZV, ZE), with k sources and l sinks,
each path, zc = i � j, from the ith source to jth sink is said to
be an available choice for Z.

In the above example, zc1 = a � c, zc2 = d � c, and zc3 =
d � b are three inter-dependent choices (Figure 7(b)).

Figure 8: The data path from node a to node c is passing
through two zones; i.e., it can be split into two zonal-choices.
We denote this data path as a � b � c

3.3 Zone-Graphs
Since we aim to use zones as the building blocks of the data

with conflicts, we consider data graphs that can be partitioned into
zones. Such graphs are referred to as zone-graphs:

DEFINITION 3.3 (ZONE-GRAPH). A zone-graph, G(V, E),
consists of a set, Z, of zones, where
• V =

�
Zi∈Z(Srci ∪ Snki ∪ ZVi), and

• E =
�

Zi∈Z ZEi.

Different zones are allowed to share (and connect through) source
and sink data nodes; i.e., ∀Zi, Zj ∈ Z, Srci ∩ Srcj ⊇ ∅, Srci ∩
Snkj ⊇ ∅, Snki ∩ Srcj ⊇ ∅, and Snki ∩ Snkj ⊇ ∅. On the
other hand, the internal, non-data vertices of the zones or their
edges can not be shared; i.e., ∀Zi, Zj ∈ Z, ZVi ∩ ZVj = ∅
and ZEi ∩ ZEj = ∅. Each zone, Z ∈ Z, of a zone graph has
an associated relationship label, rel(Z), such as IS-A, PART-OF,
WORKS-AT, and ATTRIBUTE/VALUE.

Intuitively, each zone describes the alternative choices and coor-
dination requirements for a mutually-related set of edges (with the
same label). The various zones of the graph are separated from each
other by their shared data nodes. Conversely, we can also state that
the individual zones of a zone-graph are connected to each other
through their shared data nodes.

THEOREM 3.1. Given data-graph G(V, E), its zones can be
computed and enumerated efficiently, in O(E) time.

PROOF SKETCH 3.1. Due to the undirected connectivity re-
quirement in Definition 3.1, the process of identifying zones can
be done in O(E) time, using a connected-components type of algo-
rithm and treating data nodes as boundaries of zones.

Note that in a basic data graph without conflicts (e.g., Figure 4),
each edge between two data nodes is a zone with a single source, a
single destination, and a single regular edge.

3.4 Data Paths on a Zone-Graph
Data paths on a zone-graph are defined similarly to the data paths

on a basic data graph (i.e., Definition 2.2). In this more general
case, on the other hand, a data path can pass through one or more
zones. Thus, we can segment a given data path, p, into a sequence
of segments, each corresponding to a zonal-choice.

PROPOSITION 3.1 (ZONAL-CHOICES OF A DATA PATH). A
data path, p = 〈e1, e2, . . . , elength(p)〉, can be segmented into a
sequence of zonal-choices, p = 〈zc1, zc2, . . . , zcl〉, where each
zci = source(zci) � dest(zci) is a data path from a source to a
sink within the corresponding zone.

EXAMPLE 3.4. Figure 8 depicts a data path, a � b � c, from
data node a to data node c through data node b. In this example,
this data path passes through two zones (Z1 and Z2) and, hence, it
consists of two zonal choices.

155

(a) (b) (c)

Figure 9: Zone-graphs obtained through the mapping exam-
ples in Section 3.1, Figure 5

Figure 10: Integration of the two IS-A hiearchies in Figure 1

3.5 Zonal-Graph Examples
In this subsection, we reconsider the mapping examples (Exam-

ples 3.1 through 3.3) earlier in this section and show how zonal rep-
resentations can capture conflicts that arise during data mapping.

EXAMPLE 3.5 (NODE TO NODE MAPPING). Example 3.1
(Figure 5(a)) illustrated a case where only one of the data
nodes, c or d, can be a valid immediate ancestor (parent) of
a combined node, due to the N-1 arity constraint of IS-A hi-
erarchies. This situation can be captured using the proposed
zone-graph as shown in Figure 9(a): children of a and b can
use the combined node as their parents and the combined
node can have either c or d as its immediate ancestor, but not
both. On the resulting zone-graph, some sets of paths, such as
{e � b � d, f � b � d, g � a � d, e � a � d} are
consistent, while others, such as {e � b � c, g � b � d} or
{e � b � c, g � a � d}, are inconsistent.

EXAMPLE 3.6 (MAPPING OF GROUPS OF NODES).
Example 3.2 (Figure 5(b)) provided a case where, after the
integration, a number of paths (including h � b � a � c,
g � a � d) are independently valid, but mutually incompatible.
Figure 9(b) illustrates how these requirements are captured in a
zone-graph using exclusive edges.

EXAMPLE 3.7 (EITHER-OR MAPPINGS). Example 3.3
(Figure 5(c)) provided an example of an integration scenario,
where the user provides explicit either-or mappings which neg-
atively relate the choices for different alternatives. Figure 9(c)
shows how this is captured using zones and coordination edges.
In this example, while both e � a � c and g � b � d are
independently valid paths, they cannot be valid together due to
coordination requirement.

Finally, let us also reconsider our motivating example of the sci-
entist working under alternative hypotheses, described by two dif-
ferent taxonomies in Figure 1 in the Introduction.

EXAMPLE 3.8 (TAXONOMY INTEGRATION). Figure 10
presents a data graph describing the combined systems:

• The concept ’Elasmobranchii’ can be either directly under
the root ’Taxa’ or under the concept of ’Chondrichthyes’,
but not both. This leads to a zone with an exclusive edge.
• The concepts ’Basking Shark’ and ’Dog Shark’ are either

both under ’Elasmobranchii’ (based on ’Taxa1’) or are not
known to be in the taxa. This leads to a zone with a positive
coordination.
• The concept ’White Shark’ is under ’Elasmobranchii’,

only when ’Elasmobranchii’ is considered independently of
’Chondrichthyes’ (’Taxa 2’). Thus, ’Taxa2’ introduces a path
integrity constraint which requires that there is no path from
’White Shark’ to ’Chondrichthyes’.

3.6 Zonal-Graphs and Path Constraints
As described in Section 2.3, zonal-graphs cannot capture all rel-

evant constraints describing the data and their alignments. For ex-
ample, multi-zonal statements, such as “there exists no path with
a cycle” or “there exists no path from ’White Shark’ to ’Chon-
drichthyes’”, require constraints beyond what can be expressed
within a zone. Such constraints, which require multi-path or multi-
path level evidence to verify or reject, are kept outside of the scope
of the zone-graph specifically to ensure the efficacy of the agree-
ment computation and agreement-based ranking processes. They
are instead treated as path integrity constraints at a post-processing
step, along with the user’s feedback. However, path constraints
themselves may be conflicting and have to be considered during
integration [10, 32, 33]. Unlike existing work, where only conflict-
free sources can be integrated, in FICSR, the path constraints them-
selves are assessed during the feedback process. We will revisit the
path constraints and their place in the validity assessment and feed-
back process in Section 6.

4. ANALYSIS OF ZONAL AGREEMENTS
As discussed in Section 1.3, FICSR uses a feedback-driven

mechanism to deal with alternative interpretations. In particu-
lar, the system relies on the objective-to-subjective implication
(sub ← obj) of the Desideratum 1 to inform the user about the
more likely (i.e., highest source agreement) interpretations for the
given data. Intuitively, the agreement values measure how much
different models of the data agree on the stated relationships, with
the default assumption that sources agree unless they explicitly con-
flict on the data or path constraints. In this section, we focus on the
off-line analysis of the zone graph for the computation of agree-
ment values on the choices of the individual zones.

4.1 Agreement Values of Zonal Choices
We define the models of an individual zone in a way parallel to

the definition of models of the data with conflicts (Definition 1.1).
DEFINITION 4.1 (ALTERNATIVE MODELS OF A ZONE).

Given a zone, Z(Src, Snk, ZV, ZE), with k sources and l sinks,
a set, C, of choices of Z is said to be a model if all the choices in
C are pairwise consistent with the constraints associated with the
edges of Z and there is no other consistent set C′ ⊃ C of choices
of Z (i.e., C is set-maximal in Z).

Given these models, the zonal agreement of a choice measures
the degree of agreement among alternative models on this choice.

DEFINITION 4.2 (ZONAL AGREEMENT ON A CHOICE).
Given a zone, Z(Src, Snk, ZV, ZE), with k sources and l sinks,
the zonal agreement value associated with a choice zc = i � j is
defined in terms of the alternative models in which the choice path,
zc, is valid versus the total number models of the zone Z:

agr(zc) =
models of Z in which zc is a valid path

#models of Z
=

nm(zc, Z)

nm(Z)
.

156

Figure 11: 3-SAT to zone reduction for the expression exp =
(a ∨ b ∨ ¬c) ∧ (¬a ∨ b ∨ c)

EXAMPLE 4.1. Consider again the zone-graph in Figure 7. In
this graph, there are three possible source/sink pairs, i.e., choices
zc1 = a � c, zc2 = d � c, and zc3 = d � b. Among
these, a � c and d � c are incompatible, d � c and d � b
are incompatible, while a � c and d � b are compatible with
each other. Thus, the two alternative models of this zone are {a �

c, d � b} and {d � c} Another way to look at this is as follows:
the choice d � c is valid in only half of all the possible alternative
models. Similarly, the choices a � c and d � b are both valid in
only half of all the alternative models. Thus, we can conclude that
agr(a � c) = agr(d � c) = agr(d � b) = 1/2.

4.2 Off-line Agreement Analysis of a Zone
Since the definition of the zonal agreement relies on a model-

based interpretation, the computation complexity of this task re-
flects the cost of computing models of data.

THEOREM 4.1 (PER-CHOICE COMPLEXITY). Given a zone
graph, Z, and a choice, zc, the problem of counting the number,
nm(zc, Z), of models in which zc occurs is NP-Complete.

PROOF SKETCH 4.1. The proof of NP-completeness of the
problem of counting the number of models in which zc occurs is
through a reduction from the well-known NP-complete 3-SAT prob-
lem, which asks the satisfiability of a boolean expression written in
conjunctive normal form with 3 variables per clause. While the
complete reductive proof is outside of the scope of this paper, we
sketch the idea through an example. Consider the expression

exp = (a ∨ b ∨ ¬c) ∧ (¬a ∨ b ∨ c).

The reduction step converts this expression (in polynomial time)
into the zone, Zexp shown in Figure 11. Given this graph, we re-
state the 3-SAT problem as follows: Given an expression, exp,

satisfiable(exp)←→ (nm(D � R, Zexp) ≥ 1) .

Due to the set-maximality requirement, the models which contain
the choice path D � R will be exactly those models which also
use edges t1 and t2; i.e., satisfying both terms of the conjunctive
expressions, exp. Thus exp is satisfied iff there is at least one model
of Zexp, where the path D � R is used. �

COROLLARY 4.1 (COMPLEXITY OF ZONE EVALUATION).
Given a zone with μ edges, the complexity of the zonal agreement
evaluation is O(2μ).

PROOF SKETCH 4.2. This is the worst case complexity based
on exponential evaluation. Since, the zonal value agreement com-
putation is NP-complete per Theorem 4.1, we do not expect to find
a polynomial solution for this task. �

It is important to note that the initial zone-partitioning of the data
graph3 and the modular (per-zone) nature of the agreement-analysis
prevent this off-line process from becoming costly.

COROLLARY 4.2 (COMPLEXITY OF ZONE-GRAPH ANALYSIS).
The complexity of the zonal agreement evaluation for a complete
data graph G, with |Z| zones, where the largest zone has μ edges
is O(|Z| × 2μ).

Thus, zone partitioning significantly reduces the cost of this off-
line process: O(|Z| × 2μ)� O(2|Z|×μ), which would have been
the cost of agreement computation without zone partitioning. The
zone-graph analysis is an off-line pre-processing process which is
performed on the integrated data graph once, at the bootstrap phase.

5. QUERY PROCESSING AND RANKED
CANDIDATE ENUMERATION

Since the goal is to help the user identify the best matches to her
query, at the first stage of the query processing and conflict reso-
lution, FICSR provides the user with a set of high-agreement can-
didate matches. These candidates help the user also in seeing the
critical conflicts that affect these most-agreed upon (i.e., objectively
most likely) results to the query. This, we refer to as the objective-
to-subjective (sub← obj) flow of feedback (Section 1.4).

Definition 1.2 of ranked interpretations calls for a set, S , of state-
ments to be ranked. This set of statements can include any general
statement about the data. In this paper, we focus on data paths as
the fundamental statements of interest. Thus, given a source, nsrc,
and destination, ndst, nodes, the data paths from nsrc to ndst, are
ranked and a small (≤ k) subset of candidate data paths from nsrc

to ndst are chosen to be presented to the user based on their agree-
ment values (Figure 3 in the Introduction section).

5.1 Computation of Data Path Agreements
Given a data path, p = 〈zc1, zc2, . . . , zcl〉, its overall (multi-

zonal) agreement value can be defined in terms of the agreements
of the choices involved in it. Since

• the agreement value of a choice in a given zone is the ratio
of the number of models of the zone in which the choice is
valid to the number of all possible models of the zone, and
• each zonal alignment choice is independent from the choices

of the other zones (modulo the path constraints that will be
enforced at a later stage, in Section 6),

we can treat the agreement ratios as independent selection proba-
bilities (Figure 12).

DEFINITION 5.1 (AGREEMENT OF A DATA PATH). Given a
path in its zonal choice representation, p = 〈zc1, zc2, . . . , zcl〉,
we define the agreement value of p as

agr(p) =
�

1≤i≤l

agr(zci).

In Section 6, we will relax the independence assumption and con-
sider the affects of multi-zonal path constraints that tie choices in a
given zone to the choices in the other zones.

5.2 Agreement-Ranked Enumeration of Can-
didates

In order to provide the user with the most likely paths based on
the available zonal conflict/agreement analysis, the system needs
3Normally, each zone represent a single or closely related few rela-
tions, while the data graph can be composed of many relationships.

157

Figure 12: A path which passes through four zones involves
four independently made alignment choices along the way

Algorithm K − HighAgreementPaths(G, nsrc, ndst, k)
Given a zone-graph G(V, E), a source node, nsrc , and a destination node, ndst, and a
positive integer k, do

1. Let V ′ = ∅ and E′ = ∅ /* Construct a dual graph*/
2. Let Z be the set of all zones of G,
3. for all Zi ∈ Z do

(a) V ′ = V ′ ∪ Srci ∪ Snki;
(b) for all zc = src(zc) � dest(zc), where zc is a choice path in Zi;

i. Let ezc be a new edge with length length(ezc) =
−log(agr(zc));

ii. E′ = E′ ∪ {ezc}
4. resultPaths = Y enKShortestPath(V ′, E′, length, nsrc, ndst, k)
5. return resultPaths; /* Return k-shortest paths of the dual*/

Figure 13: Algorithm for enumerating highest agreement paths

to identify the highest-agreement data paths. We formally pose this
task in the form of a k highest-agreement data paths problem.

DEFINITION 5.2 (k HIGHEST-AGREEMENT DATA PATHS).
Given a zone-graph G(V, E), a source node, nsrc, and a destina-
tion node, ndst, identify the k highest-agreement data paths from
the source node, nsrc, to the destination node, ndst.

Since the data schema (i.e., relationships between entities) them-
selves are subject to interpretation, the enumeration of the data
paths cannot rely on (ranked) join techniques used in fuzzy data
management systems where the imprecision is associated with the
values and objects, but the schema is fixed and known advance [13].
Instead, as shown in Figure 13, we solve the k high-agreement data
paths problem by translating it into the k-shortest simple paths, a
classical problem in graph theory. Due to its applications in var-
ious domains, such as networking, this problem has been stud-
ied extensively. Among the alternative solutions, Yen’s algorithm
for k-shortest paths is preferred due to its general and optimal na-
ture [27, 34]. This algorithm searches shortest paths in a "pseudo"-
tree containing k shortest loopless paths. First the shortest path is
obtained; then, this path is deviated to obtain the 2nd shortest path.
This process is repeated, one new shortest path at a time, until k
shortest paths are found. We use a version of Yen’s algorithm [27].

THEOREM 5.1 (CORRECTNESS). The k-highest agreement
algorithm presented in Figure 13 is correct.

PROOF. Given a graph G(V, E), the algorithm in Figure 13 con-
structs a dual graph, G′(V ′, E′), where the choices in each zone are
replaced with explicit edges between the corresponding source/sink
pairs. Thus, it is trivial to show that there is a one-to-one mapping
between any data path on G(V, E) and a path on G′(V ′, E′).

In Step 3(b)i of the algorithm, given a choice zc in G, the length
of the corresponding edge in G′ is set to

length(ezc) = −log(agr(zc)),

which is never negative. Thus, the k-shortest path algorithm ran on

G′ (Step 4) returns k simple paths, such that the term

�
zc∈path

−log(agr(zc)) = log

�
� �

zc∈path

1

agr(zc)

�
� ,

is minimized. Since the log function is monotonic, this corresponds
to the minimization of the term

�
zc∈path

1
agr(zc)

or, equivalently,
the maximization of the term�

zc∈path

agr(zc).

By Definition 5.1, this term is equal to the agreement of the data
path on the original zone graph G. Hence, these enumerated paths
are also the k highest-agreement data paths in G.

THEOREM 5.2 (COMPLEXITY). The worst case execution
time of the k highest-agreement data paths algorithm in Figure 13
is O(kn(m2 + nlogn)).

PROOF. Given a dual graph, G′, with n′ nodes and m′ edges,
Yen’s algorithm would identify the k-shortest simple paths in G′

with the worst case time of O(kn′(m′ + n′logn′)) [27, 34].
Given a graph, G, with n nodes and m edges, the algorithm cre-

ates a dual graph, G′, with at most n′ = n nodes and m′ = m2

edges. The worst case occurs when a zone in G with u edges leads
to O(u2) individual choices, each with a corresponding edge in G′.

In the first phase of the algorithm (Steps 1 through 3), the dual
graph creation costs O(m2) time. In the second phase (Step 4),
given the dual graph, G′, with m′ = O(m2) and n′ = n nodes,
Yen’s algorithm costs O(kn(m2 + nlogn)) time. Thus, the worst
case of the algorithm in Figure 13 is O(kn(m2 + nlogn)).

Note that, in general, not all nodes and edges on the graph, G,
need to be involved in the enumeration process. In fact, the only
nodes that are relevant for path enumeration are those nodes that
are reachable from the source node, such that the destination node
is reachable from them. A reachability graph (generated off-line) is
used to limit the nodes and edges that are involved in the generation
of G′, reducing the cost of the candidate path enumeration.

6. MULTI-ZONAL PATH CONSTRAINTS
After the enumeration of the k highest-agreement paths based

on the zone-graph (i.e., following the initial assumption that the
zonal choices are independent from each other), FICSR considers
multi-zonal path constraints (such as acyclicity) to assess the validi-
ties of the candidate paths. However, FICSR recognizes that, while
they are used to assess the candidate paths, path constraints from
different sources themselves may require assessment. When the
highest-agreement paths are conflicting with the path constraints,
this may result in (a) lowering of the zone and path agreement val-
ues computed in the earlier processing stages or (b) reducing of the
validities of the path constraints themselves.

Since candidate paths are weighted with agreement values quan-
tifying their likelihood based on the zone-graph, the conflicts be-
tween available candidate paths and the constraints must also reflect
the likelihood of their inconsistencies. This leads to the concept of
degree of conflict between a set of paths and constraints.

DEFINITION 6.1 (DEGREE OF CONFLICT). Given a set of
paths P (on a data-graph G) and constraint Θ, the degree of con-
flict between P and Θ (denoted as conflictG(P, Θ)) is defined
as

|{M|(M ⊇ P is a model of G) ∧ (M ∪ Θ is inconsistent)|)
|{M|M ⊇ P is a model of G)|

158

(a) (b)

Figure 14: (a) A zone-conflict between paths p1 and p2; (b) a
cycle due the subpaths of p1 and p2 and other paths in graph G

Thus, the degrees of conflict can be treated as agreement values (of
the integrated data, on the conflict statement, within the context of
the given set of paths). Since the problem of counting the models is
NP-complete (Section 4.2), quantification of the degrees of conflict
needs to avoid explicit enumeration. Next, we classify the conflicts
into two major types and discuss how to compute corresponding
degrees of conflict efficiently.

DEFINITION 6.2 (ZONAL CONFLICTS). Given two paths in
their zonal choice representations, p1 = 〈zc1,1, zc1,2, . . . , zc1,u〉
and p2 = 〈zc2,1, zc2,2, . . . , zc2,v〉, there is a zonal conflict due to
zonal choices, zc1,i and zc2,j , iff the two zonal choices are in the
same zone, Z, but they are not compatible according to the zonal
constraints. This is illustrated in Figure 14(a). Given two paths
p1 and p2, and incompatible choices zc1,i and zc2,j on them, the
zonal conflict is certain:

conflictG({p1, p2}, ZONE(zc1,i, zc2,j)) ≡ 1.0.

The degree of zonal conflict is 0 otherwise.

In other words, the degree of zonal conflicts can be computed in
quadratic worst case time in the size of the result paths.

DEFINITION 6.3 (PATH INTEGRITY CONFLICTS). Given a
path p, let SPp be the set of all subpaths in p. Then, given a set,
P = {p1, . . . , pm}, of paths in G and an m-ary constraint predi-
cate, Θ : SPp1× . . .×SPpm → {true, false}, a constraint vio-
lation occurs iff there exists an m-tuple �st ∈ SPp1 × . . .×SPpm

of subpaths, such that Θ(�st) evaluates to false.
The degree of the path conflict is measured using the likelihood

of the sub-paths in �st and the likelihood of any further subgraph
G′ ⊆ G contributing to the conflict:

conflictG(P, Θ(�st)) ≡

�
� �

1≤i≤m

agr(�st[i])

�
� × agr(G′).

Path integrity constraints include limits on path lengths, reachabil-
ity constraints between objects, overlap and intersection constraints
on the data paths, and acyclicity constraints (Figure 14 (b)).

EXAMPLE 6.1 (ACYCLICITY CONFLICTS). Let us be given
two paths, p1 = n1,1 � . . . � n1,k and p2 = n2,1 � . . . �

n2,l. Let also, sp1 = n1,i � . . . � n1,j and sp2 = n2,u �

. . . � n2,v be two subpaths on p1 and p2. As depicted in Figure 14
(b), there exists a cycle involving the subpaths sp1 and sp2 iff

reachable(n1,j , n2,u) ∧ reachable(n2,v, n1,i).

Based on this, we can measure the degree of any acyclicity violation
involving subpaths sp1 and sp2 using the agreement values of the
involved paths as follows:

conflictG({p1, p2}, NOCYC(sp1, sp2)) ≡
agr(sp1)× agr(sp2)×
agr(reachable(n1,j, n2,u))× agr(reachable(n2,v, n1,i)).

The agreement values on the statements regarding the reachability
of one node in the zone graph from the other can be computed by
treating the graph as a Bayesian network (or a Markov Chain) and
applying probabilistic reachability analysis techniques [7].

THEOREM 6.1. Let Θ be an m-ary path constraint. Let P
be a set of m paths, such that the ith argument of Θ is selected
from the set, SPpi , of subpaths of path pi ∈ P . Then, the
number of conflicts that need to be assessed in the worst case is
O(
�

1≤i≤m length(pi)
2)

The proof of the theorem follows trivially from the quadratic num-
ber of subpaths of a given path. This result shows that focusing on
the context provided by the candidates paths (as opposed to count-
ing all models) renders the conflict degree computation process
tractable. This complexity can be further reduced by pruning con-
flicts described by stabbed subpath-tuples.

DEFINITION 6.4 (STABBED SUBPATH-TUPLES). Let ST be
a set of m-tuples of subpaths. Then, �stx ∈ ST is a stabbed
subpath-tuple iff ∃ �sty �= �stx s.t. ∀1≤i≤m �sty[i] ⊆ �stx[i].

Intuitively, if �sty stabs �stx, then �sty’s subpaths (hence the conflicts
these paths are involved in) are more specific. In Section 9, we will
evaluate the impact of pruning stabbed m-tuples.

7. SYSTEM FEEDBACK GENERATION
The concepts of degrees of conflict introduced above, together

with the concepts of zones, choices, and zonal agreements intro-
duced in Sections 3 and 4, enable us to articulate the basic postu-
lates that any statement needs to obey to be accepted valid.

7.1 Postulates of Validity
The following postulates characterize the dependencies between

validities of zonal-choices, paths, and constraints:

POSTULATE 1 (ZONAL CONFLICTS AND VALIDITY). If two
valid paths are conflicting within a given zone, then the correspond-
ing zonal choices cannot be simultaneously valid: i.e., it holds that
for all pairs of paths, p1 and p2

conflictG({p1, p2}, ZONE(zc1, zc2)) →¬valid(zc1) ∨ ¬valid(zc2)∨
¬valid(ZONE(zc1, zc2)).

POSTULATE 2 (PATH CONSTRAINTS AND VALIDITY). If a
given set of paths and a path constraint are in conflict, then it can-
not be true that all paths and the constraint are simultaneously
valid: i.e., it holds that for a given set, P , of paths and a path
integrity constraint, c, violated by the subpath tuple �st from P ,

conflictG(P, c(�st)) → ¬valid(c) ∨
�
� �

�st[i]∈�st

¬valid(�st[i])

�
�

These postulates imply that whenever a conflict occurs, the va-
lidities of some of the (sub)paths and/or the constraints involved in
the conflicts need to be correspondingly reduced.

7.2 Validity vs. Agreement
Note that both agreement and validity values assess the preferred

order of statements. Agreement describes the objective ranked in-
terpretation based on the zonal graph, while the validity reflects
the path constraints as well as user feedback to capture the subjec-
tive ranking. Let us define the normalized value norm(v), of the
agreement value, v, of a (path/constraint/conflict) statement S as	
1− log(v)

log(vmin)

, where vmin > 0 is the smallest agreement value

159

in the input. Note that for the statement with the smallest agree-
ment, vmin, the normalized agreement value is equal to 0. On the
other hand, for any statement, S, with objective agreement value
v = 1, the value of norm(v) is also equal to 1. This implies that
for all input statements, their normalized values are between 0 and
1 and increase monotonically with their agreement values. Given
these normalized agreement values, the subjective to objective cor-
respondence (Desideratum 1) implies that subjective validity values
should be related to the objective agreement values.

DESIDERATUM 2. For any path (candidate path or subpath),
p, it should be that

valid(p) ∼ norm(agr(p))

∀zc∈zonalchoice(p) valid(zc) ∼ norm(agr(zc)).

This desideratum implies a correspondence between the validity of
a given path and the validities of the choices involved.

PROPOSITION 7.1 (ZONAL CHOICES AND PATH VALIDITIES).
A path’s validity is related to the validity of its zonal choices; in
particular, it holds that for any path, p,

valid(p) = 1 +
�

zc∈zonechoice(p)

(valid(zc)− 1).

Intuitively, the use of
�

to relate validity of a path to the validities
of its zonal choices is similarly motivated to the use of addition in
the computation of k highest agreement paths in Section 5.2.

PROOF SKETCH 7.1. Desideratum 2 and the fact that
agr(p) =

�
zc∈zonalchoices(p) agr(zc) together imply that

1− log(agr(p))

log(vmin)� � �
valid(p)

= 1−

�
� �

zc∈zonalchoices(p)

log(agr(zc))

log(vmin)

�
�

The left hand side of the equation can be rewritten as

1 +
�

zc∈zonalchoices(p)

�
�����
�

1 − log(agr(zc))

log(vmin)

�
� �	

valid(zc)

−1

�
���� .

Thus, valid(p) = 1 +
�

zc∈zonechoice(p) (valid(zc)− 1). �

7.3 Measuring Validity
Since the conflict and agreement values associated with the paths

and constraints are non-boolean, we cannot rely on boolean, model-
based schemes to assess validity. Thus, instead of relying on a
costly and boolean, maximal clique-based formulations (as in [22]),
FICSR computes validity values by translating the postulates and
user-feedback into a fuzzy constraint program. A fuzzy set, F ,
with domain D is defined using a membership function, F : D →
[0, 1]. A fuzzy predicate then corresponds to a fuzzy set; instead
of returning true(1) or false(0) values for propositional functions,
fuzzy predicates return the corresponding membership values. The
meaning of the constraint program depends on the fuzzy semantics
chosen for the logical operators ∧ and ∨. It is well established
that the only fuzzy semantics which preserves logical equivalence
of statements (involving conjunction and disjunction) and is also
monotonic is the min semantics, where a∧b = min(a, b), a∨b =
max(a, b), and ¬a = 1 − a. Therefore, FICSR uses fuzzy min
semantics to translate the postulates into a constraint program.

An example constraint program is presented in Figure 15. Here,
penalty variables represent the degrees of conflicts observed in the
data within the context of the query. Given such a constraint pro-
gram, FICSR searches for a solution with maximal constraint va-
lidity (in other words,
• validities of path constraints need to be maximized and
• validities of zonal constraints need to satisfy Desideratum 2),

and minimal deviation from Postulates 1 and 2 (that is,
• zonal and path constraint penalties must match the (normal-

ized) degrees of conflict).

Thus, the objective function for the constraint program is

MAX ω1
�

ic∈IC

valid(ic)

� �	

P ath consts.

−ω2
�

zc∈ZC

|valid(zc) − norm(agr(zc))|
� �	

Desideratum 2 (zonal constraints)

−ω3
�

χ∈ZoneConf

| penaltyzone(χ) − norm(confictG(χ)) |
� �	

Postulate 1 (zonal conflicts)

−ω4
�

ξ∈P athConf

|penaltypath(ξ) − norm(conflictG(ξ))|
� �	

P ostulate 2 (path integrity conflicts)

Here, ω1 through ω4 are the preference weights associated with
different desiderata and postulates. To enable the user to explore
the alternatives and provide more informed decisions regarding the
validities of the paths and constraints, the preference of the path
integrity constraints (ω1) is left flexible (or less important) in the
initial cycles of the feedback process and rendered incrementally
stronger through user assessment and feedback. This is similar to
the way IR systems approach to the assessment of features whose
relevance are not known in advance [35].

7.4 System Feedback
Once the validity values are obtained, the next step in the feed-

back process is the recomputation of the agreement values of
choices and paths based on their validity assessments. Given a
computed validity value ν and the vmin (used earlier for normaliza-
tion), FICSR computes the corresponding agreement value, agrν

(based on Desideratum 2) as follows:

agrν = norm−1(ν) = e(1−ν)×(log(vmin)).

At this stage, for every zonal choice and candidate result the user
is presented with two agreement values: one obtained through the
zonal agreements and the other obtained by incorporating path con-
straints. Furthermore, the user is also presented with validities as-
sociated with constraints as well as degrees of individual conflicts.
This is referred to as the objective-to-subjective information flow
(sub← obj), or the system feedback.

8. USER FEEDBACK
The postulates presented above enable a fuzzy framework in

which the validities of the candidate paths as well as the path in-
tegrity constraints can be assessed. However, the postulates (and
the resulting fuzzy constraint program) can be satisfied in multi-
ple ways and, thus, the user feedback is necessary to inform the
system on the appropriate adjustments [29]. This is the subjective-
to-objective information flow (sub→ obj), or the user feedback.

Although, as discussed in the Introduction, the motivation is sim-
ilar, it is important to note a significant difference between the treat-
ment of feedback in FICSR and in traditional IR systems. Since in
the information retrieval context, the major challenge is to identify
user’s interest indirectly, from examples, a significant part of the
effort goes into the learning task. In FICSR, on the other hand,
the query as well as conflicts are known, but the user’s ranking is

160

Given candidate paths, P , conflicting subpaths, SP , zonal choices, ZC , and path integrity constraints, IC ,
∀c ∈ ZC ∪ IC 0 ≤ valid(c) ≤ 1;
∀p ∈ P ∪ SP 0 ≤ valid(p) ≤ 1;
∀zc1, zc2 ∈ ZC 0 ≤ valid(ZONE(zc1, zc2)}) ≤ 1; /* Validities of zonal constraints*/
∀sp1, sp2 ∈ SP 0 ≤ valid(NOCYC(sp1, sp2)}) ≤ 1; /* Validities of acylicity constraints*/
∀p ∈ P ∪ SP valid(p) = 1 +

�
zc∈zonalchoices(p)(valid(zc) − 1) /* Proposition 7.1*/

/* Postulates 1 and 2*/
∀zc1, zc2 ∈ ZC 0 ≤ penaltyzone(zc1, zc2) ≤ max{1 − valid(zc1), 1 − valid(zc2), 1 − valid(ZONE(zc1, zc2)})
∀sp1, sp2 ∈ SP 0 ≤ penaltycyc(sp1, sp2) ≤ max{1 − valid(sp1), 1 − valid(sp2), 1 − valid(NOCYC(sp1, sp2))}

Figure 15: Fuzzy constraint program capturing the validity postulates

Candidate Enumeration Time
(vs the number of candidate results)

0

0.2

0.4

0.6

0.8

0 1 2 3 4 5 6 7 8 9 10 11
of candidate results

ti
m

e
 (

s
e

c
o

n
d

s
)

~65 ~130 ~260 nodes

Per-candidate Time (vs. the size of
the relevant data neighborhood)

0

0.02

0.04

0.06

0.08

0.1

0 50 100 150 200 250 300
relevant neighborhood (# of nodes)

ti
m

e
 (

s
e

c
)

Estimated Observed

(a) time vs. # candidate results (b) time vs. neighb. size

Figure 16: Candidate enumeration complexity

not. In fact, unlike in IR systems where the object features used for
ranking are many times hidden from the user, in FICSR, given the
system feedback (Section 7.4), the user can observe individual con-
flicts and provide concrete adjustments, without the system having
to learn from examples. Thus, given the initial set of candidates and
system feedback (agreement values and degrees of conflict), the
user’s feedback is primarily in the form of preferred validity rank-
ings and assessments (e.g., valid(pi) > valid(pj), valid(ck) >
max{valid(pi)|pi ∈ candidates}, or valid(ck) = 1.0). These
describe users’ ranked interpretation of the statements regarding
the candidate paths, constraints, and conflicts.

Through the QUEST interface [29], FICSR enables two types of
feedback: hypothetical and committed. Hypothetical (soft) feed-
back is captured similarly to the path constraints: mismatches be-
tween the feedback-constraint and the data are implicitly mini-
mized within the objective function. The user can observe the effect
of the feedback-constraint by varying its weight in the optimization
function (for example changing its importance as opposed to a cer-
tain conflicting path constraint) and observing its various impacts.
The committed (hard) feedback is inserted into the program as con-
straints to be enforced, overriding any conflict from the sources.

9. EVALUATION
In order to evaluate the proposed algorithms, we used input

taxonomies of varying sizes and with varying degrees of mis-
alignments. In the results presented in Figures 16 through 17,
we merged 2 to 8 taxonomies with high (upto ∼ 15%) pairwise
misalignments. The queries on the integrated taxonomies involved
fragments (reachability neighborhoods) of upto ∼ 260 data nodes.
Experiments ran on a 2.8GHz Pentium with 2GB main memory.
Candidate enumeration. Figure 16 presents the execution times
for candidate enumeration phase. The scatter-plot in Figure 16(a)
depicts the time against the candidate results returned for different
integration scenarios. The enumeration time is (as expected) lin-
early correlated with the number of candidate matches. The figure
also shows that the fragment of the data involved in enumeration af-
fects the complexity. To further observe this effect, in Figure 16(b),
we compare the observed per-candidate enumeration time with the
estimated worst case time complexity according to Theorem 5.2.
The results show that the measured time is indeed upperbounded
by the predicted values. It is important to note that, in the exper-
iments, the per-candidate enumeration time was less than 100ms,

Time vs. #of constraints in the fuzzy
program

0

5

10

15

20

25

30

35

40

45

0 200 400 600 800
of constraints

ti
m

e
 (

s
e

c
)

Stabbing-based pruning of
constraints

0

30

60

0 200 400 600 800
#of original constraints

#
 o

f
c
o

n
s
tr

a
in

ts
 a

ft
e
r

s
ta

b
b

in
g

(a) time vs.# of constraints (b) constraint pruning by stabbing
Time gains due to stabbed pruning

-30

0

30

60

90

0 200 400 600 800

#of original constraints

P
e

rc
e

n
t

T
im

e
 G

a
in

Error due to stabbed pruning

0

5

10

15

20

0 200 400 600 800
#of original constraints

P
e

rc
e

n
t

E
rr

o
r

(c) gains in time due to stabbing (d) quality of stabbing

Figure 17: Scatter-plots showing validity analysis complexity
and stabbing effectiveness (each point represents a single case)

even for highly-conflicting, highly-dense data neighborhoods.
Constraint analysis and feedback generation. In the second
phase, we employed a constraint solver (LINGO) to observe the
time required to solve the optimization problem described in Sec-
tion 7. Figure 17 presents the results. In Figure 17(a), we plot ex-
ecution time against the number of (zonal and path integrity) con-
straints required. The observe times were monotonically correlated
with the number of constraints involved. Although they reached
45 seconds in one extreme case with > 800 constraints, the times
were mostly under 20 seconds. However, using the stabbing strat-
egy presented in Section 6, constraints were pruned significantly to
less than 70 for all cases (Figure 17(b)). As a consequence, the cost
of this step was reduced in time upto 90%, especially for cases with
high number of constraints (Figure 17(c)). For instance, for the ex-
treme 45 seconds run, the stabbed version was ∼ 60% faster. Fig-
ure 17(d) shows that, although stabbing may cause reduction in the
value of the objective function (i.e., may miss some constraints),
except very few cases, the error is negligible.

10. RELATED WORK
In 80s, the problem of dealing with incomplete and/or incon-

sistent information led to multiple model semantics [14], non
monotonic reasoning systems [12], and the theory of belief revi-
sion [1]. [36] defines a choice semantics for logic programs with
negation. In 90s, uncertain information at the data value level has
been modeled through different types of nulls [8, 16]. The null-
value treatment has also been extended to missing and partial data
in semistructured domains in [20]. More recently, in TRIO [3]
system, the existence of alternative database instances is captured
through the notion of uncertainty associated to the available data
values. Probability values capture uncertainty, while lineage cap-
tures data items’ derivation. As in FICSR, in TRIO the probabilities

161

associated to attribute values capture the likelihood in the alterna-
tive scenarios. Unlike FICSR, in TRIO the probability values are
taken to be known at the storage time (or derivation time for de-
rived items), and structural uncertainties (i.e., schema/constraint-
level uncertainty and conflicts) or coordination requirements are
not captured. FICSR instead provides a uniform object centered
model that can express uncertainty both in data and in constraints
governing structural relationships. In TRIO lineage guarantees that
derivations are coherent. In FICSR, however, the user can specifi-
cally choose to trust and combine results that are not coherent; i.e.,
the imperfect alignment constraints dictated by the initial mapping
strategy can be overruled by users’ data interpretations.

Orchestra [31] focuses on managing disagreement (at both
schema and instance levels) among different collaborating mem-
bers and addresses the problem of propagating source updates. Up-
dates are propagated among participants through a series of accep-
tance rules; i.e., acceptance of tuples from other sources is an op-
tion encoded within these acceptance rules. No global consistency
requirement is imposed. Unlike the user feedback mechanisms in
FICSR which enables domain knowledge in conflict resolution, in
Orchestra acceptance rules are simply predicated on the fixed trust
values and priorities associated to the sources.

[4] investigates formal characterizations of the notion of con-
sistent data in a possibly inconsistent database, and discusses the
complexities of consistent query answering. Similarly, [19] ad-
dresses modeling and query answering complexity issues in data
integration systems. A global architecture (mediator) provides a
reconciled, integrated, virtual view over the real data sources. Un-
like FICSR, integrity constraints are taken as inherently valid and,
thus, the focus is on returning answers while guaranteeing consis-
tency with respect to the given constraints. Instead, in FICSR, we
do not take integrity constraints (which can be source specific) to be
inherently true. The domain expert has the final say in the validity
of the integration constraints, along with the data.

11. CONCLUSION
In this paper, we presented innovative techniques to deal with the

computational complexity and the ill-defined nature of the conflict
resolution problem. In particular, we presented a novel, feedback-
driven approach to query processing in the presence of conflicts.
The novel feedback process relies on a ranked interpretation of the
data, as opposed to more traditional model-based interpretations.
The objective-to-subjective correspondence of the ranked interpre-
tations enables the user to explore the available data within the con-
text of a query and be informed regarding data and relationship-
constraints critical to a given query before providing feedback. In
a similar fashion, the subjective-to-objective correspondence of the
ranked interpretations inform the system regarding user’s prefer-
ences and domain knowledge within the context of a query. We
provided data structures and algorithms that enable an efficient and
effective implementation of the proposed feedback cycle.

Acknowledgment
We thank Prof. Kintigh at the ASU School of Human Evol. &
Social Change for his feedback.

12. REFERENCES
[1] C. Alchourron, P. Gardenfors, and D. Makinson. On the logic of

theory change: Partial meet contraction and revision functions", In J.
Symbolic Logic, 1985

[2] M. Arenas and L. Libkin. XML data exchange: consistency and
query answering. In PODS, 2005.

[3] O. Banjelloun, A. D. Sarma, A. Halevy, and J. Widom. ULDBs:
Databases with uncertainty and lineage. In VLDB, 2006.

[4] L. Bertossi. Consistent query answering in databases. VLDB,2006.

[5] A. Bonifati, E. Chang, and L. Lakshmanan. Heptox: Marrying XML
and heterogeneity in your P2P databases. In VLDB, 2005.

[6] P. Bouquet, F. Giunchiglia, F. van Harmelen, L. Serafini, and
H. Stuckenschmidt. COWL: Contextualizing Ontologies. ISWC’03.

[7] C. Boutilier, R. I. Brafman, and C. Geib. Structured Reachability
Analysis for Markov Decision Processes. UAI’98.

[8] K.S. Candan, J. Grant, and V. Subrahmanian. A unified treatment of
null values using constraints. Information Systems J., 98(1–4), 1997.

[9] K.S. Candan, J.W. Kim, H. Liu, R. Suvarna. Discovering mappings
in hierarchical data from multiple sources using the inherent
structure. J. of KAIS, 10, 2, 185-210, Aug. 2006.

[10] S. Conrad, M. Höding, G. Saake, I. Schmitt, and C. Türker. Schema
Integration with Integrity Constraints. In BNCOD, 1997.

[11] A. Doan, P. Domingos, and A. Y. Levy. Learning source description
for data integration. In WebDB, 2000.

[12] J. Doyle. A truth maintenance system. J. of Artificial Intelligence,
1979.

[13] R. Fagin. Combining fuzzy information from multiple systems. In
PODS, 1996.

[14] M. Gelfond and V. Lifschitz. The stable model semantics for logic
programming. In Proc. ICSLP, 1988.

[15] A. Halevy, Z. G. Ives, D. Suciu, and I. Tatarinov. Schema mediation
in peer data managemen. In ICDE, 2003.

[16] T. Imielinski and W. Lipski. Incomplete information in relational
databases. JACM, 31(4):761–791, 1984.

[17] A. Jhingran. Enterprise information mashups: Integrating
information, simply. In VLDB, 2006.

[18] A. Kementsietsidis, M. Arenas, and R. Miller. Mapping data in
peer-to-peer systems: Semantics and algorithmic issues.
SIGMOD’03.

[19] M. Lenzerini. Data integration: a theoretical perspective. PODS’02.
[20] M. Liu and T. W. Ling. A data model for semistructured data with

partial and inconsistent information. In LNCS 1777, 2000.
[21] J. Madhavan, P. A. Bernstein, and E. Rahm. Generic schema

matching with cupid. In VLDB, 2001.
[22] R.Mercer and V.Risch. Properties of maximal cliques of a pair-wise

compatibility graph for three nonmonotonic reasoning system. In
Answer Set Programming, 2003.

[23] R. Miller, L. Haas, and M. Hernandez. Schema mapping as query
discovery. In VLDB, 2000.

[24] T. Milo and S. Zohar. Using schema matching to simplify
heterogeneous data translation. In VLDB, 1998.

[25] P.Mitra, G.Wiederhold, and M.Kersten. A graph oriented model for
articulation of ontology interdependencies. In EDBT, 2000.

[26] L. Palopoli, D. Sacca, and D. Ursino. An automatic technique for
detecting type conflicts in database schemes. In CIKM, 1998.

[27] M. Pascoal and E. Martins. A new implementation of Yen’s ranking
loopless paths algorithm. 4OR – Quarterly Journal of the Belgian,
French and Italian Operations Research Societies, 2003.

[28] Y. Qi, K. S. Candan, M. L. Sapino, and K. Kintigh. Using QUEST
for integrating taxonomies in the presence of misalignments and
conflicts. In SIGMOD Demos, 2007.

[29] Y. Qi, K. S. Candan, M. L. Sapino, and K. Kintigh. QUEST:
QUery-driven Exploration of Semistructured Data with ConflicTs
and partial knowledge, CleanDB, 2006.

[30] E. Rahm and P. A. Bernstein. A survey of approaches to automatic
schema matching. VLDB Journal,2001.

[31] N. E. Taylor and Z. G. Ives. Reconciling while tolerating
disagreement in collaborative data sharing. In SIGMOD, 2006.

[32] C. Turker and G. Saake. Deriving relationships between integrity
constraints for schema comparison. In Advances in Databases and
Information Systems, 1998.

[33] M. W. W. Vermeer and P. M. G. Apers. The role of integrity
constraints in database interoperation. In VLDBJ, 1996.

[34] J. Y. Yen. Finding the k shortest loopless paths in a network.
Management Science, 1971.

[35] C. T. Yu, W. S. Luk, and T. Y. Cheung. A statistical model for
relevance feedback in information retrieval. J. ACM, 23(2), 1976.

[36] C. Zaniolo. A unified semantics for active and deductive databases.
In Proc. First Int’l Workshop Rules in Database Systems 1994.

162

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

