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ABSTRACT
A schema mapping is a high-level declarative specification of the
relationship between two schemas; it specifies how data structured
under one schema, called the source schema, is to be converted
into data structured under a possibly different schema, called the
target schema. Schema mappings are fundamental components for
both data exchange and data integration. To date, a language for
specifying (or programming) schema mappings exists. However,
developmental support for programming schema mappings is still
lacking. In particular, a tool for debugging schema mappings has
not yet been developed. In this paper, we propose to build a debug-
ger for understanding and exploring schema mappings. We present
a primary feature of our debugger, called routes, that describes the
relationship between source and target data with the schema map-
ping. We present two algorithms for computing all routes or one
route for selected target data. Both algorithms execute in polyno-
mial time in the size of the input. In computing all routes, our
algorithm produces a concise representation that factors common
steps in the routes. Furthermore, every minimal route for the se-
lected data can, essentially, be found in this representation. Our
second algorithm is able to produce one route fast, if there is one,
and alternative routes as needed. We demonstrate the feasibility of
our route algorithms through a set of experimental results on both
synthetic and real datasets.

1. INTRODUCTION
A schema mapping is a high-level declarative specification of the

relationship between two schemas; it specifies how data structured
under one schema, called the source schema, is to be converted into
data structured under a possibly different schema, called the target
schema. Schema mappings are fundamental components for both
data exchange and data integration [12, 13]. A widely used for-
malism for specifying relational-to-relational schema mappings is
that of tuple generating dependencies (tgds) and equality generat-
ing dependencies (egds). (In the terminology of data integration,
tgds are equivalent to global-and-local-as-view assertions.) Using
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a language that is based on tgds and egds for specifying (or pro-
gramming) schema mappings has several advantages over “lower-
level” languages, such as XSLT scripts or Java programs [14, 19],
in that it is declarative and it has been widely used in the formal
study of the semantics of data exchange and data integration. In-
deed, the use of a higher-level declarative language for program-
ming schema mappings is similar to the goal of model manage-
ment [4, 15]. One of the goals in model management is to reduce
programming effort by allowing a user to manipulate higher-level
abstractions, called models and mappings between models. In this
case, models and mappings between models are schemas and map-
pings between schemas. A recent example of a data exchange
system that allows a user to program a schema mapping using a
declarative language based on tgds and egds is Clio [11]. However,
developmental support for programming schema mappings in this
language is still lacking. In particular, to the best of our knowledge,
a tool for debugging schema mappings has not yet been developed.
It is for the same motivation as developing a debugger for a pro-
gramming language that we wish to develop a debugger for the
language of schema mappings.

In this paper, we present a primary feature of our debugger,
called routes, that allows a user to explore and understand a schema
mapping. Routes describe the relationships between source and tar-
get data with the schema mapping. A user is able to select target
(or source) data and our algorithms are able to compute all routes
or one route for the selected data. Our algorithms are based on the
formalism of tgds and egds for specifying schema mappings and
we have implemented these algorithms on top of Clio, with Clio’s
language for programming schema mappings. We emphasize that
even though our implementation is built around Clio’s language for
schema mappings, it is not specific to the execution engine of Clio.
In fact, our implementation requires no changes to the underlying
execution engine of Clio. Hence, we believe that the algorithms
we have developed in this paper can be easily adapted for other
data exchange systems based on a similar formalism. Our debugger
can also be used to understand the specification of a data integra-
tion system: In this case, we materialize (test) data under the target
schema (often called the global schema in the terminology of data
integration) for the purpose of debugging the schema mapping.

It is also worth mentioning that in Clio, schema mappings are of-
ten not programmed directly by the user but, rather, they are gener-
ated from the result of matching the source and target schemas (i.e.,
schema matching). However, it is often the case that the generated
schema mapping needs to be further refined before it accurately re-
flects the user’s intention. Hence, even though schema mappings
are not usually programmed directly in Clio, there is still a need for
a debugger that would allow the user to understand the generated
schema mapping.
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MANHATTAN CREDIT
Cards:

cardNo •

limit  •

ssn •

name •

maidenName •

salary  •

location •

SupplementaryCards:
accNo •

ssn •

name •

address •

FARGO BANK
FBAccounts:

bankNo
ssn
name
income 
address 

CreditCards:
cardNo
creditLimit
custSSN

FARGO FINANCE
Accounts:
• accNo
• limit
• accHolder

Clients:
• ssn
• name
• maidenName
• income
• address

Source-to-target dependencies, Σst:
m1: Cards(cn,l,s,n,m,sal,loc) →

∃A (Accounts(cn,l,s) ∧ Clients(s,m,m,sal,A))

m2: SupplementaryCards(an,s,n,a) →
∃M ∃I Clients(s,n,M,I,a)

m3: FBAccounts(bn,s,n,i,a) ∧ CreditCards(cn,cl,cs) →
∃M (Accounts(cn,cl,cs) ∧ Clients(cs,n,M,i,a))

Target dependencies, Σt:
m4: Accounts(a,l,s) → ∃N ∃M ∃I ∃A Clients(s,N,M,I,A)
m5: Clients(s,n,m,i,a) → ∃N ∃L Accounts(N,L,s)
m6: Accounts(a,l,s) ∧ Accounts(a’,l’,s) → l = l’

m2

m1

f1

f2

m5m4

Figure 1: A relational-to-relational schema mapping.

Contributions We propose to build a debugger for understanding
and exploring schema mappings. A description of some of the fea-
tures in this prototype debugger can be found in [2]. In this paper,
we make the following contributions.
• We propose the concept of a route that we use to drive a user’s

understanding of a schema mapping. A route describes the rela-
tionship between source and target data with the schema mapping.
Our concept of a route is not tied to any procedural semantics asso-
ciated with the transformation of data from the source to the target
according to the schema mapping.
• We describe an algorithm for constructing a concise represen-

tation of all routes for the selected target data with the following
properties: (1) It runs in polynomial time in the size of the input.
(2) Our representation factors common steps in the routes. (3) Ev-
ery minimal route can, essentially, be found in this polynomial-size
representation, even though there may be exponentially many min-
imal routes.
• We also describe an algorithm that computes one route fast for

selected target data if there is one, and produces another route as
needed. This algorithm executes in polynomial time in the size of
the input.
• The route algorithms we present can be easily adapted to work

for selected source (not target) data as well. Our implementation
handles both relational/XML to relational/XML data exchange al-
though we shall only describe our algorithms for the relational-to-
relational case in this paper.
• Our experiments report on the feasibility of our algorithms. In

particular, they show that computing one route can execute much
faster than computing all routes. Hence, even though we can com-
pute all routes, the ability to compute one route fast and exploit
the “debugging-time” of the user to generate alternative routes, as
needed, is valuable.

2. BACKGROUND
We introduce various concepts from the data exchange frame-

work [8] that we will use in this paper and we briefly describe the

SOURCE INSTANCE I
Cards
cardNo limit    ssn name        maidenName salary   location

s1: 6689 15K      434    J. Long     Smith                 50K      Seattle   

FBAccounts
bankNo ssn name      income address

s3: 1001       234   A. Long  30K       California
s4: 4341       153   C. Don   900K     New York

Accounts
accNo limit   accHolder
6689 15K     434
N1 2K      234
2252       2K      234
5539 40K    153    

Clients
ssn name        maidenName income    address
434 Smith         Smith 50K          A1 
234    A. Long      M1 I1 California
153    A. Long      M2 30K          California
234    A. Long      M3 30K          California
153    C. Don       M4 900K        New York
234    C. Don       M5 900K        New York

CreditCards
cardNo creditLimit custSSN

s5: 2252        2K                 234
s6: 5539        40K               153t1:

t2:              
t3:
t4:

t5:
t6:
t7:
t8:
t9:
t10:

SOLUTION J

SupplementaryCards
accNo ssn name      address

s2: 6689    234   A. Long   California

Figure 2: A source instance I and a solution J for I .

data exchange system Clio [11, 18].
Schema Mapping The specification of a data exchange is given by
a schema mapping M = (S, T, Σst, Σt) [12], where S is a source
schema, T is a target schema, Σst is a set of source-to-target de-
pendencies (s-t dependencies) and Σt is a set of target dependen-
cies. In the relational-to-relational data exchange framework [8],
s-t dependencies is a finite set of s-t tuple generating dependencies
(tgds) and the set of target dependencies is the union of a finite
set of target tgds with a finite set of target equality generating de-
pendencies (egds). A s-t tgd has the form ∀xφ(x) → ∃yψ(x,y),
where φ(x) is a conjunction of atomic formulas over S andψ(x,y)
is a conjunction of atomic formulas over T. A target tgd has a sim-
ilar form, except that φ(x) is a conjunction of atomic formulas over
T. A target egd is of the form ∀xφ(x) → x1 = x2, where φ(x) is
a conjunction of atomic formulas over T, and x1 and x2 are vari-
ables that occur in x.

Figure 1 shows a schema mapping M, where S consists of rela-
tion schemas Cards, SupplementaryCards, FBAccounts, and
CreditCards in Manhattan Credit and Fargo Bank. The target
schema consists of the relation schemas Accounts and Clients in
Fargo Finance. The set Σst consists of three s-t tgds, illustrated as
m1, m2 and m3 (shown in the box). Only m3 is not depicted as
arrows in the figure. The set Σt consists of two target tgds m4 and
m5 and a target egd m6 (also shown in the box). For conciseness,
we have omitted the universal quantifiers of the dependencies. In
this example scenario, the goal is to migrate every cardholder and
supplementary card holder of Manhattan Credit as a client of Fargo
Finance. Also, every credit card holder of Fargo Bank is a client
of Fargo Finance. Intuitively, m1 and m2 migrate data from Man-
hattan Credit to Fargo Finance, whilem3 migrates data from Fargo
Bank to Fargo Finance. For example, m1 projects every tuple (or
fact) from the Cards relation into two tuples, in Accounts and
Clients relations respectively. The target tgds m4 and m5 state
that an account with accHolder value s exists in Accounts if and
only if a client with ssn value s exists in Clients. Furthermore, the
target egd m6 states that there can only be one credit limit for an
account holder. Although not part of the schema mapping, there is
a constraint, depicted as f1 in Figure 1, that states that for every
supplementary card, there must be a sponsoring card in the Cards
relation whose cardNo equals accNo. There is also a constraint
f2 from CreditCards to FBAccounts that states that every credit
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card holder of Fargo Bank must have a bank account.
Solutions and homomorphisms Figure 2 illustrates a source in-
stance I , as well as a solution J for I under M of Figure 1. We
say that J is a solution for I under M if J is a finite target instance
such that (I, J) satisfies Σst ∪ Σt. In other words, (I, J) satisfies
the schema mapping M. The solution J may contain labeled nulls.
In Figure 2, N1, M1, ...,M5, I1, and A1 are labeled nulls. Distinct
labeled nulls are used to denote possibly different unknown values
in the target instance.

Let K and K′ be two instances. We say that h is a homomor-
phism from K to K′, denoted as h : K → K′, if h maps the
constants and labeled nulls of K to the constants and labeled nulls
of K′ such that h(c) = c for every constant c and for every tuple
(or fact)R(t) ofK, we have thatR(h(t)) is a tuple ofK′. We also
say that h is a homomorphism from a formula φ(x) to an instance
K, denoted as h : φ(x) → K, if h maps the variables of x to
constants or labeled nulls in K such that for every relational atom
R(y) that occurs in φ(x), we have that R(h(y)) is a tuple in K.

In general, there are many possible solutions for I under M. A
universal solution J for I under M has the property that it is a
solution and it is the most general in that there is a homomorphism
from J to every solution for I under M. It was shown in [8] that
the result of chasing I with Σst ∪ Σt is a universal solution.
Clio Clio is a prototype data exchange system developed at IBM
Almaden Research Center [11, 18]. The schema mapping language
of Clio is a nested relational extension of tgds and egds that also
handles XML data. In Clio, a user gets to make associations be-
tween source and target schema elements by specifying value cor-
respondences, or Clio may suggest possible value correspondences.
Value correspondences are illustrated as arrows as in Figure 1. Clio
then interprets these value correspondences into s-t (nested) tgds.
From these s-t tgds, executables such as XSLT scripts are gener-
ated. Given a source instance I , a solution J is created by applying
the generated script on I . We note that Clio does not compute a tar-
get instance based on the chase procedure [8] that has been defined
for data exchange. Also, the current Clio implementation does not
handle target egds, although the general framework does not im-
pose this restriction.

2.1 Example debugging scenarios
Next we illustrate some usage scenarios with our debugger. We

assume that Alice, a banking specialist, is interested to debug M
of Figure 1. We expect that in most cases, Alice would debug M
by providing her own (small) test data for the source. In this case,
she uses the source instance I and solution J shown in Figure 2.

Scenario 1: Incomplete and incorrect associations between
source and target schema elements When Alice browses through
J , she discovers that the address value of the tuple t5 in Clients
contains a null A1. Knowing that neither Fargo Bank nor Man-
hattan Credit would allow any of its customers to open an account
without providing an address, she probes t5. Our debugger shows a
route from the source that is a witness for t5 in the target, depicted

as s1
m1,h
−→ t1, t5. The route consists of the source tuple s1 in

Cards, the tgd m1, as well as an assignment h of variables of m1:
{ cn �→ 6689, l �→ 15K, s �→ 434, n �→ J. Long, m �→ Smith,
sal �→ 50K, loc �→ Seattle, A �→ A1}. Under this assignment,
the right-hand-side (RHS) of m1 is t1 and t5. Hence, m1 asserts
the presence of t5 with s1 and h. With this route, Alice discovers
that the address of J. Long (i.e., the value “Seattle”) was not copied
over by the tgd. Indeed, Figure 1 shows that there is no value cor-
respondence between any schema element of Cards and address
of Clients. Suppose Alice also noticed that in t5, the name value
is the same as its maidenName value (i.e., Smith). With the same

route s1
m1,h
−→ t1, t5, Alice discovers that maidenName of Cards

has been incorrectly mapped to name of Clients. She therefore
corrects m1 to the following tgd m′

1 which (1) adds the missing
value correspondence between location of Cards and address of
Clients and (2) retrieves the name of Clients from the name of
Cards:

m′
1
: Cards(cn, l, s, n,m, sal, loc) →
Accounts(cn, l, s) ∧ Clients(s, n ,m, sal, loc )

In this scenario, our debugger has helped Alice discover an incom-
plete, as well as an incorrect association between source and target
schema elements. Ideally, we would also like to be able to simul-
taneously demonstrate how the modification of m1 to m′

1 affects
tuples in J . This is one of our future work.

Scenario 2: Incomplete associations between source schema el-
ements When browsing through J , Alice discovered that A. Long
(tuple t7) who has an income of 30K has a credit limit of 40K (tu-
ple t4). Knowing that it is very unlikely for an account holder to
have a credit limit that is higher than her income, Alice probes t4.
Our debugger explains that t4 was created due to the s4 tuple in
FBAccounts and the s6 tuple of CreditCards through m3. Sup-
pose Alice could not find anything peculiar with this explanation.
She now requests to view all routes for t4. Our debugger reports
only one other route that uses the first tuple in FBAccounts (s3)
and the tuple s6 through m3. Since the ssn values of these two
source tuples are different, Alice realizes that m3 has missed the
join condition on ssn in the source relations. She corrects the s-t
tgd to:

m′
3
: FBAccounts(bn, cs , n, i, a) ∧ CreditCards(cn, cl, cs) →
∃M(Accounts(cn, cl, cs) ∧ Clients(cs, n,M, i, a))

Alice may also decide to enforce ssn as a key of the relation
Clients, which can be expressed as egds. Here, our debugger has
helped Alice discover a missing join condition, as well as realize
an additional dependency that may need to be added to the target.

Scenario 3: Incomplete associations between relations As Al-
ice browses through the target instance further, she sees that the
accNo of the account holder 234 is unspecified (N1 of tuple t2).
As it is not likely that there is no account number for an account
holder, Alice probes N1 of t2. Our debugger shows that t2 was
created through the target tgdm5 with the tuple t6. (Note that with
this explanation, the existentially-quantified variable L ofm5 is as-
sumed to map to the value 2K of t2.) Furthermore, our debugger
shows that t6 was created through the tgd m2 with the source tu-
ple s2. With this information, Alice discovers that m2 is in fact
missing an association with the source relation Cards. Indeed, ev-
ery supplementary card holder must have a sponsoring card holder
in Cards and they share the same credit limit. So Alice corrects
m2 by adding the association between SupplementaryCards and
Cards, as indicated by the constraint f1. Furthermore, the target
now includes an Accounts relation that is used to hold the account
number and ssn of the supplementary card holder, as well as the
credit limit of the sponsoring card holder. The new tgd m′

2, with
the changes highlighted, is now specified as follows:

m′
2
: Cards(cn, l, s1, n1,m, sal, loc) ∧
SupplementaryCards(cn, s2, n2, a) →

∃M∃I(Clients(s2, n2,M, I, a) ∧ Accounts(cn, l, s2) )

In this scenario, our debugger has helped Alice discover an in-
complete tgd that misses out on some associations between rela-
tions in the source schema, as well as between relations in the target
schema. Alice may also choose to remove the tgd m2 completely
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Algorithm ComputeAllRoutesM(I ,J ,Js)
Input: A source instance I , a solution J for I under M and a set of tuples
Js ⊆ J .
Output: A route forest for Js.
Global data structures:
• A set of ACTIVETUPLES that contains tuples for which the algorithm
has attempted to find all routes. Initially, this set is empty.
FindAllRoutes(Js)

For every tuple t in Js

If t is not in ACTIVETUPLES, then
1. Add t to ACTIVETUPLES.
2. For every s-t tgd σ and assignment h such that h is a possible as-

signment returned by findHom(I ,J ,t,σ)
(a) Add (σ, h) as a branch under t.

3. For every target tgd σ and assignment h such that h is a possible
assignment returned by findHom(I ,J ,t,σ)
(a) Add (σ, h) as a branch under t.
(b) FindAllRoutes(LHS(h(σ))).

Return the constructed route forest for Js.

Figure 3: An algorithm for computing all routes.

if she thinks it is incorrect, i.e., only primary card holders of Man-
hattan Credit are automatically customers of Fargo Finance.

Several remarks are in order now. First, debugging a schema
mapping is not solely a matter of identifying the target schema el-
ements that are left unmapped or that are mapped incorrectly from
the source. Indeed, as scenarios 2 and 3 illustrate, the problems
may also be due to missing associations between source schema
elements, or missing relations. Second, observe that routes are
always computed in its entirety even though only part of a route
may demonstrate problems with the schema mapping (see for ex-
ample, Scenario 3). Third, as illustrated in Scenario 2, observe that
there are situations in which a computed route may not reveal any
problems with the schema mapping. In scenario 2, Alice needs the
knowledge of the second route for t7 to discover the problem in
the s-t tgd m3. Certainly, one may argue that if the second route
for t7 would have been computed before the first one, Alice would
have been able to debug m3 without the knowledge of additional
routes for t7. It is conceivable, however, that t7 is a tuple con-
taining sensitive information and in this situation, the knowledge
of all routes for t7 would be crucial for the purpose of identifying
tgds that export sensitive information. It is also worth mentioning
that in our debugging scenarios, we have only illustrated the use of
routes for understanding the schema mapping through anomalous
tuples. We believe that routes for correct tuples are also useful for
understanding the schema mapping in general.

In the next section, we describe the algorithms behind comput-
ing all routes or one route for selected target data for relational-
to-relational schema mappings. We have extended our algorithms
to handle selected source data, as well as the schema mapping
language of [18, 11] to handle relational/XML-to-relational/XML
schema mappings. We report experimental results for the XML
case, but we limit our discussion in this paper to algorithms for
selected target data with relational-to-relational schema mappings.

3. ROUTE ALGORITHMS
In this section, we formalize the notion of a route and describe

algorithms, as well as properties of our algorithms for computing
all routes or one route for a selected set of target tuples. A route
illustrates the relationship between source and target data with the
schema mapping. As an example, consider again the route for t2
described in Scenario 3 of Section 2.1. The route for t2 shows

findHom(I ,J ,t,σ)
In the following, let K denote I if σ is a s-t tgd, and K denotes J if σ is a
target tgd.
Input: A source instance I , a solution J for I underM, a tuple t ∈ J of the
form R(a), and a tgd σ in Σst ∪ Σt of the form ∀xφ(x) → ∃yψ(x,y).
Output: An assignment h such that h(φ(x)) ⊆ K, h(ψ(x,y)) ⊆ J and
t ∈ h(ψ(x,y)).

1. LetR(z) be a relational atom of ψ(x,y). If no such relational atom
can be found, return failure. Otherwise, let v1 be a mapping that as-
signs the ith variable of z to the ith value of a inR(a). If v1 assigns
a variable z to two different values under this mapping scheme, re-
peat step 1 with a different relational atom R(z) of ψ(x,y). If no
other relational atom R(z) of ψ(x,y) can be found, return failure.

2. Let v2 be an assignment of variables in v1(φ(x)) to values in K so
that v2(v1(φ(x))) ⊆ K.

3. Let v3 be an assignment of variables in v2(v1(ψ(x,y))) to values
in J so that v3(v2(v1(ψ(x,y)))) ⊆ J .

4. Return v1 ∪ v2 ∪ v3.

Figure 4: The findHom procedure.

the relationship s2
m2−→ t6

m5−→ t2. In particular, it shows that s2
and t6 satisfy the tgd m2, and t6 and t2 satisfy the tgd m5. More
specifically, a route is a sequence of satisfaction steps, which we
define next.

DEFINITION 3.1. (Satisfaction step) Let σ be a tgd ∀xφ(x) →
∃yψ(x,y). Let K and K1 be instances such that K contains K1

andK satisfies σ. Let h be a homomorphism from φ(x)∧ψ(x,y)
toK such that h is also a homomorphism from φ(x) toK1. We say
that σ can be satisfied on K1 with homomorphism h and solution
K, or simply σ can be satisfied on K1 with homomorphism h, if
K is understood from the context. The result of satisfying σ on K1

with homomorphism h is K2, where K2 = K1 ∪ h(ψ(x,y)) and
h(ψ(x,y)) = {R(h(z))|R(z) is a relation atom in ψ(x,y)}. We

denote this step as K1

σ,h
−→ K2.

EXAMPLE 3.2. In the example described earlier with s2
m2−→

t6
m5−→ t2, the first satisfaction step is ({s2}, ∅)

m2,h1−→ ({s2}, {t6}),
where h1={ an �→ 6689, s �→ 234, n �→ A.Long, a �→ California,
M �→ M1, I �→ I1}. The result of satisfying m2 on the instance
({s2}, ∅) with homomorphism h1 and solution J of Figure 2 is
({s2}, {t6}).

We note that the instances K and K1 in Definition 3.1 are in-
stances over the schema 〈S,T〉 in our context, not necessarily satis-
fying the source or target constraints. We describe next a few tech-
nical differences between a satisfaction step, a chase step [8], and a
solution-aware chase step [9]. First, unlike the definition of a chase
step or solution-aware chase step for a tgd ∀xφ(x) → ψ(x,y)
where h is defined only for x, the homomorphism h in a satisfac-
tion step is defined for variables in both x and y. In other words,
φ(x) ∧ ψ(x,y) is completely defined under h. Second, when σ
is satisfied on K1 with homomorphism h, it may be that σ is al-
ready satisfied on K1 with some other homomorphism h′ where
h(x) = h′(x), for every x ∈ x. For example, suppose σ is
S(x) → ∃yT (x, y), I = {S(a)}, and J = {T (a, b), T (a, c)}.
Let h1 = {x �→ a, y �→ b} and let h2 = {x �→ a, y �→ c}.

Clearly, h1(x) = h2(x) and (I, ∅)
σ,h1−→ (I, {T (a, b)})

σ,h2−→ (I, J)
is a route for J . After the first step of the route, the tgd σ is already
satisfied with (I, {T (a, b)}), and therefore, σ cannot be applied on
(I, {T (a, b)}) during a chase or a solution-aware chase. In con-
trast, we allow σ to be used again, together with a different homo-
morphism (e.g., h2), to witness the existence of some other tuple
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T7(a)

T4(a)                                   T6(a)

T3(a)

T2(a)

T4(a) T1(a) S2(a)

S1(a)

T5(a)

T5(a) T8(b1) T5(a) T8(bn)T5(a)

S3(a)

σ6

σ4 σ8

σ7 σ3

σ10,h1 σ10,hn

σ9 σ5

σ1

σ2

(N1,S3)

(N2,S3) (N8,S3)

(N6,S3)

…

(N3,S3)

(N4,S3) (N7,S2)

(N5,S2)

…

Figure 5: A route tree for T7(a).

(e.g., T (a, c)) not in (I, {T (a, b)}). Third, there is no correspond-
ing definition for egds. This is because ifK already satisfies an egd
σ, then K1 must also satisfy σ since it is contained in K. Hence
there is no need to consider “egd satisfaction steps” in routes.

DEFINITION 3.3. (Route) LetM = (S, T, Σst, Σt) be a schema
mapping, I be a source instance and J be a solution of I un-
der M. Let Js ⊆ J . A route for Js with M, I and J (in
short, a route for Js) is a finite non-empty sequence of satisfac-

tion steps (I, ∅)
m1,h1−→ (I, J1) . . . (I, Jn−1)

mn,hn−→ (I, Jn), where
(a) Ji ⊆ J, 1 ≤ i ≤ n, (b) mi, 1 ≤ i ≤ n, are among Σst ∪ Σt,
and (c) Js ⊆ Jn. We say that the set of tuples produced by this
route is Jn.

EXAMPLE 3.4. Referring to Example 3.2 and the source in-

stance I and solution J of Figure 2, (I, ∅)
m2,h1−→ (I, {t6}) is a

route for t6. The following is also a route for t6: (I, ∅)
m2,h1−→

(I, {t6})
m5,h2−→ (I, {t6, t2}), where h2 = {s �→ 234, n �→ A.Long,

m �→ M1, i �→ I1, a �→ California, N �→ N1, L �→ 2K}. Note
that the target instance produced by the second route for t6 is {t2, t6}
and the last satisfaction step is redundant, in the sense that the first
satisfaction step is sufficient as a route for t6.

3.1 Computing all routes
We show next an algorithm for computing all routes for a given

set of tuples Js ⊆ J , where J is any solution for a source instance
I under the schema mapping M. Note that our algorithm works
for any solution and so, we are not limited to the solutions that
are generated by Clio. Our algorithm constructs a route forest, in
polynomial time in the size of I , J and Js, that concisely repre-
sents all routes. We characterize what “all routes” means. More
specifically, we show that every minimal route for a set of target
tuples is, essentially, represented in this route forest. Intuitively,
a minimal route for a set of target tuples is a route where none of
its satisfaction steps can be removed and the result still forms a
route for the set of target tuples. The algorithm for computing all
routes is shown in Figure 3. It makes use of a findHom procedure
shown in Figure 4. Intuitively, for every tuple t encountered during
the construction of the route forest, our algorithm considers every

possible σ and h such that h is a possible assignment returned by
findHom(I, J, t, σ). Conceptually, this corresponds to all possible
(σ, h) pairs under the tuple t in the route forest. In other words,
our algorithm explores all possibilities of witnessing t. We first
examine findHom with an example and ComputeAllRoutes next.

Suppose we invoke findHom(I , J , t1, m1), where I , J , t1 and
m1 are from Figure 1 and Figure 2. By “matching” t1 with the atom
Accounts(cn, l, s) of m1, step 1 of findHom defines v1 as {cn �→
6689, l �→ 15K, s �→ 434}. When v1 is applied to the left-hand-
side (LHS) of m1, we obtain the partially instantiated relational
atom Cards(6689, 15K, 434, n, m, sal, loc). Hence, the assign-
ment v2 (step 2) is {n �→ J. Long,m �→ Smith, sal �→ 50K, loc �→
Seattle}. With v1∪v2, the LHS ofm1 corresponds to the tuple s1 in
the Cards relation, and the RHS ofm1 is the conjunction of the tu-
ples Accounts(6689,15K,434) and Clients(434,Smith,Smith,50K,A).
Hence, step 3 of findHom returns v3 as {A �→ A1}. The algorithm
then returns v1 ∪ v2 ∪ v3 (step 4). In general, there are many possi-
ble assignments for v1, v2 and v3 for a tgd σ. The algorithm looks
for one combination of v1, v2 and v3 that works. In our implemen-
tation (Section 3.3), we push the evaluation for v2 and v3 to the
database. Hence, v2 and v3 can be derived efficiently in general.

EXAMPLE 3.5. Let M be a schema mapping where Σst and
Σt consists of the following tgds.
Σst : S1(x) → T1(x) σ1

S2(x) → T2(x) σ2

Σt : T2(x) → T3(x) σ3

T3(x) → T4(x) σ4

T4(x) ∧ T1(x) → T5(x) σ5

T4(x) ∧ T6(x) → T7(x) σ6

T5(x) → T3(x) σ7

T5(x) → T6(x) σ8

Let the source instance I consists of two tuples S1(a) and S2(a)
and a solution J for I under M consists of tuples T1(a), ..., T7(a).
Suppose we wish to compute all routes for T7(a). That is, we in-
voke ComputeAllRoutesM(I , J , {T7(a)}). The route forest (in
this case, a tree) that is constructed by this algorithm is shown in
Figure 5. (Please disregard the dotted branches for this example.)
The order at which the branches are added to the forest and the
steps involved in ComputeAllRoutes are labeled as a pair beside
the branches in the tree. For example, (N2, S3) for the branch with
σ4 denotes that this is the second branch added in the construction
and it is added by step 3 of ComputeAllRoutes. In this example,
h is always {x �→ a} and so, we have omitted h from the figure.

In the process of constructing a route tree for T7(a), step 2 of
ComputeAllRoutes fails to add any branches to T7(a). How-
ever, step 3 adds the σ6 branch to T7(a) and continues the con-
struction of the tree with FindAllRoutes({T4(a), T6(a)}). Find-
ing a route for T4(a) leads to the tuple T3(a). There are two
branches, σ7 and σ3, for T3(a). In this computation, the σ7 branch
was explored before σ3 and eventually, the σ7 branch will cause
FindAllRoutes({T4(a), T1(a)}) to be invoked. However, since
T4(a) belongs to ACTIVETUPLES at this point, the branches for
T4(a) are not explored at this node. Similarly, there are no branches
under the tuple T5(a) under the σ8 branch because T5(a) is an ac-
tive tuple at this point. Intuitively, the branches for an active tuple t
are added only when t is first encountered during the construction
of the forest.

Obviously, the resulting forest that is constructed is not unique.
For instance, if T6(a) was selected to be explored before T4(a)
in FindAllRoutes({T4(a), T6(a)}), the constructed tree will be
different from Figure 5. It is also easy to see that ComputeAll-
Routes terminates since for each tuple t, there are only finitely
many branches to add under t in steps 2 and 3. Furthermore, due

        83



NaivePrintF (Js)
We denote by F the route forest returned by
ComputeAllRoutesM(I ,J ,Js), where I is a source instance, J is a
solution for I under M and Js ⊆ J .
Input: A set of tuples Js where every tuple in Js occurs in F . We assume
that ANCESTORS is a global stack which is initially empty.
Output: A set of all routes for Js.
For every tuple t in Js

1. Push t into ANCESTORS. Goto any t in F .
2. Let L1 denote the set of all (σ, h) branches under t such that σ is a

s-t tgd.
3. Let L2 denote the set of all (σ, h) branches under t such that σ is a

target tgd and every tuple in LHS(h(σ)) does not occur in ANCES-
TORS.

4. Let L3 = ∅.
5. For every (σ, h) in L2

(a) Let L′ denote NaivePrintF (LHS(h(σ))).
(b) Append (σ, h) to every element in L′.
(c) L3 = L3 ∪ L′.

6. Let L(t) be L1 ∪ L3.
7. Pop ANCESTORS.

Return L(t1) x ... x L(tk), where Js = {t1, ..., tk}.

Figure 6: An algorithm for printing all routes.

to ACTIVETUPLES, the branches of an active tuple are only ex-
plored at one place in the forest. Hence, ComputeAllRoutes runs
in polynomial time in the size of I , J and Js since there can only
be polynomially many branches under each tuple.

PROPOSITION 3.6. Let M be a schema mapping. Let I be a
source instance, J be a solution for I under M and Js ⊆ J . Then,
ComputeAllRoutesM(I ,J ,Js) executes in polynomial time in the
size of I , J and Js.

From the tree in Figure 5, it is easy to see that a route, R1, for
T7(a) is:

R1: I
σ2−→ I, T2

σ3−→ I, T2, T3

σ4−→ I, T2, T3, T4

σ1−→ I, T1, ..., T4
σ5−→ I, T1, ..., T5

σ8−→ I, T1, ..., T6

σ6−→ I, T1, ..., T7

For conciseness, we have written Ti instead of Ti(a) above. If
there is another s-t tgd σ9 : S3(x) → T5(x) and suppose I also
contains the source tuple S3(a), then there would be another branch
under the tuple T5(a) under σ7. (See the leftmost dotted branch in
Figure 5.) This would mean there is another route for T7(a):

R2: I
σ9−→ I, T5

σ7−→ I, T5, T3

σ4−→ I, T5, T3, T4
σ8−→ I, T5, T3, T4, T6

σ6−→ I, T5, T3, T4, T6, T7

Observe that in this route, we have bypassed T1(a) since we can
now witness T5(a) directly with the s-t tgd σ9.

Completeness of the route forest in representing all routes We
show next that the route forest generated by ComputeAllRoutes
is complete in the sense that every minimal route for Js can, es-
sentially, be found in this route forest. More specifically, we show
that every minimal route for Js is represented by one of the routes
we naively generate from this forest. Our procedure for naively
generating routes for Js is shown in Figure 6. It finds the set of
all routes for every tuple t in Js and takes a cartesian product of
these sets of routes in the last step. Observe that in step 1, we al-
low the search for routes to start from any occurrence of t in F .
Even though there may be many occurrences of t in F , we assume
that every other occurrence of t has a link to the first t in F where
the branches of t are explored. For example, T4(a) under the σ5

branch has a reference to T4(a) under the σ6 branch. NaivePrint
on T7(a) will produce a route σ2 → σ3 → σ4 for T4(a) and a

route σ2 → σ3 → σ4 → σ1 → σ5 → σ8 for T6(a). For con-
ciseness, we have listed only the tgds involved. Hence the route
produced for T7(a) is

R3 :
σ2−→

σ3−→
σ4−→

σ2−→
σ3−→

σ4−→
σ1−→

σ5−→
σ8−→

σ6−→

Obviously, this route contains some redundant satisfaction steps.
A minimal route for T7(a) is in fact R1, where none of its sat-
isfaction steps are redundant. In other words, it does not contain
redundant satisfaction steps. Although R3 is not a minimal route,
it has the same set of satisfaction steps as the route R1. To com-
pare routes based on the satisfaction steps they use, rather than the
order in which the satisfaction steps are used, we introduce an in-
teresting concept called the stratified interpretation of routes. To
stratify a route, we make use of the concept of the rank of a tuple
in a route. Intuitively, every tuple is associated with a unique rank
in a route. Source tuples have rank 0 and a tuple t has rank k in a
route if for some satisfaction step in the route that involves σ and
h, (1) t occurs in RHS(h(σ)), (2) the maximum rank of tuples in
LHS(h(σ)) is k − 1, and (3) t is not of a lower rank. The stratified
interpretation of a route R, denoted as strat(R), partitions the pairs
(σ, h) in R into blocks. We say that (σ, h) of a route belongs to
rank 1 if LHS(h(σ)) consists of only source tuples and it belongs
to rank k if the maximum rank of tuples in LHS(h(σ)) is k−1. The
rank of a route is the number of blocks in the stratified interpreta-
tion of the route. For example, R1 and R3 have the same stratified
interpretation shown below and they both have rank 6.

Rank 1 2 3 4 5 6
σ1, σ2 σ3 σ4 σ5 σ8 σ6

We say that two routes R and R′ have the same stratified inter-
pretations, denoted as strat(R) = strat(R′), if for every block of rank
i in strat(R), every (σ, h) in this block can be found in the corre-
sponding ith block of strat(R′) and vice versa. We show that for any
Js ⊆ J , the forestF that is constructed by ComputeAllRoutesM(I ,
J , Js) contains all routes, in the sense that every minimal route for
Js has the same stratified interpretation as one of the routes pro-
duced by NaivePrintF (Js). Note that when we say two routes R
andR′ are equivalent if they have the same stratified interpretation,
this is in fact the same as saying thatR andR′ have the same set of
satisfaction steps. The stratified interpretation of routes, however,
comes naturally in the proof of our completeness result. Further-
more, stratified routes are also more easily understandable, when
compared to a sequence of satisfaction steps. We plan to include
the ability to display stratified routes in our visual interface [2].

THEOREM 3.7. Let M be a schema mapping. Let I be a source
instance and J be a solution for I under M. Let Js ⊆ J and let
F denote the route forest of ComputeAllRoutesM(I ,J ,Js). If R
is a minimal route for Js, then there exists a route R′ in the result
of NaivePrintF (Js) with the property that strat(R) = strat(R′).

Observe that there could be exponentially many routes for Js,
but our route forest is a compact, polynomial-size representation
of all routes. Our experimental results in Section 4 indicate that it
may be expensive to construct the route forest in general. Hence, a
natural question is whether we can can produce one route fast and
leverage the “debugging-time” of the user to produce other routes
as needed.

3.2 Computing one route
In debugging, we believe it is also useful to have the alternate

feature where we can derive and display one route fast and display
other routes, as needed. Our experimental results in Section 4 jus-
tify that in most cases, it is much faster to compute one route than
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Algorithm ComputeOneRouteM(I ,J ,Js)
Input: A source instance I , a solution J for I under M and a set of tuples
Js ⊆ J .
Output: A route for Js.
Global data structures:
• A set of ACTIVETUPLES that contains tuples for which the algorithm
has attempted to find a route. Initially, this set is empty.
• A set UNPROVEN that contains unproven triples, initially empty.
• Every tuple has a status proven or unproven.
• A sequence of pairs G used to contain the route, initially empty.

FindRoute(Js)
For every tuple t in Js

If t is not in ACTIVETUPLES, then
1. Add t to ACTIVETUPLES.
2. If findHom(I , J , t, σ) returns h for some s-t tgd σ, then

(a) Append (σ, h) to G.
(b) Infer({t}).
(c) Continue with the next iteration of For-Loop.

3. If findHom(I , J , t, σ) returns h for some target tgd σ, then
(a) If LHS(h(σ)) consists of only proven tuples, then

(i) Append (σ, h) to G.
(ii) Infer({t}).
Else
(iii) Add (t, σ, h) to UNPROVEN.
(iv) FindRoute(LHS(h(σ))).
(v) If (t, σ, h) is UNPROVEN, continue with step 3.

Return G.

Figure 7: An algorithm for computing a route.

Infer(S)
Repeat until S = ∅

1. Mark all tuples in S as proven.
2. Let S = ∅.
3. For every triple (t′, σ′, h′)) in UNPROVEN

(a) If LHS(h′(σ′)) consists of only proven tuples, then
(i) Add t′ to S.
(ii) Remove (t′, σ′, h′)) from UNPROVEN.
(iii) Append (σ, h) to G.

Figure 8: The Infer procedure used by ComputeOneRoute.

compute all routes. We believe that in general however, it is valu-
able to incorporate both features for a debugger. In some cases, the
user may be satisfied with one route, which is faster to compute
than computing all routes. It is also useful, however, to be able to
determine all routes whenever desired.

We describe next our algorithm ComputeOneRoute which com-
putes a route for a given set of tuples Js ⊆ J , where J is any
solution for I under the schema mapping M. The algorithm for
computing one route is shown in Figure 7. It uses two procedures
Infer in Figure 8 and findHom, in Figure 4, which was described
earlier. We examine the algorithm ComputeOneRoute in some
detail with an example next and make a comparison with Com-
puteAllRoutes after this.

EXAMPLE 3.8. Let M, I and J be the schema mapping, source
and target instances given in Example 3.5. Suppose a route for
T7(a) is sought. With ComputeOneRouteM(I , J , {T7(a)}), we
obtain the same route tree of Figure 5. (Please disregard the dotted
branches.) The computation that occurs during the construction,
however, is different. With the tuple T7(a), ComputeOneRoute
fails to find a s-t tgd in step 2 for T7(a). Hence, it proceeds to Step
3 and succeeds in finding homomorphisms with T7(a) and σ6. (As
before, we have omitted h as it is always {x �→ a} in this example.)

Consequently, FindRoute({T4(a), T6(a)}) is invoked. Similarly,
for T4(a), findHom succeeds with σ4. For T5(a), findHom suc-
ceeds with σ5. In the branch with σ5, FindRoute({T4(a), T1(a)})
is invoked. Since T4(a) occurs in ACTIVETUPLES, the for-loop
for FindRoute for T4(a) is not executed. Instead, FindRoute con-
tinues with the tuple T1(a) and succeeds with a s-t tgd σ1. Since
findHom does not succeed with other tgds on T5(a), the algorithm
returns to T3(a). It happens that, so far, the computation resem-
bles ComputeAllRoutes. Continuing from T3(a), the algorithm
succeeds in witnessing T3(a) with σ3 and σ2. At σ2, the set UN-
PROVEN is {σ6, σ4, σ7, σ5, σ3}, and G is the sequence [σ1, σ2].
When Infer({T2(a)}) is invoked (see step 2(b)), the algorithm will
deduce that T3(a), T4(a), T5(a) and T3(a) are proven, in this or-
der, andG is now [σ1, σ2, σ3, σ4, σ5, σ7]. After this, the algorithm
returns to the branch σ6 and attempts to find a route for T6(a) next.
It succeeds with σ8 because T5(a) is already proven and it will
infer that T7(a) is proven with Infer({T6(a)}) (see step 3(a-ii) of
ComputeOneRoute). The algorithm successfully terminates and
returns [σ1, σ2, σ3, σ4, σ5, σ7, σ8, σ6].

Comparisons between compute all routes and one route In Com-
puteOneRoute, the algorithm searches for one successful branch
under a tuple t to find a route for t. In ComputeAllRoutes, how-
ever, all branches are searched, regardless of whether a route for
t has already been found. To make a better contrast, suppose Σst

contains another s-t tgd σ9 : S3(x) → T5(x) and additionally, we
have the source tuple S3(a). Then, for the tuple T5(a) that sits
under the branch σ7 in Figure 5, only the branch σ9 will be consid-
ered. This is because the algorithm considers s-t tgds before target
tgds (step 2 of ComputeOneRoute). Since a route for T5(a) can
be found with the s-t tgd σ9, the branch with σ5 will not be ex-
plored.

The second difference is that the result returned by the algorithm
ComputeOneRoute is a sequence of (σ, h) pairs that represents
the route that is found for Js, even though a route forest is con-
structed during the computation. These (σ, h) pairs are collected
during the construction of the forest in ComputeOneRoute.

The third difference is that in ComputeOneRoute, we now
have an Infer procedure to infer proven tuples as we construct the
forest. This procedure is needed for the correctness of the algo-
rithm. To see this, consider Example 3.8 again. Now consider
the execution of ComputeOneRoute for T7(a) without Infer. At
the σ2 branch, no inference will be made. Although we can still
conclude that T3(a) and T4(a) are proven as we return along the
branches σ3 and σ4 respectively, observe that we cannot conclude
that T5(a) is proven. Hence, without Infer, the status of T5(a)
is unknown at the point when σ8 is used and because T5(a) is
in ACTIVETUPLES, the branches under T5(a) are not explored.
The algorithm therefore terminates with a partial route for T7(a),
which is incorrect. One might argue that we should remove the AC-
TIVETUPLES restriction so as to allow the branches under T5(a)
to be explored again. In this case, since both T4(a) and T1(a) are
proven by the time we explore the branches of T5(a) under σ8,
we conclude that T5(a) is proven and so the algorithm terminates
with a route for T7(a). However, without the ACTIVETUPLES re-
striction, there might be many unnecessary explorations. To see
this, suppose the schema mapping of Example 3.8 has an addi-
tional target tgd σ10 : T5(x) ∧ T8(y) → T3(x) and the target
instance J consists of n additional tuples T8(b1), ..., T8(bn). Ob-
serve that J is a solution for I under M with these n additional
tuples. When T3(a) is encountered during the construction of a
route for T7(a), it may happen that the σ3 branch is explored last.
(Refer to T3(a) of Figure 5.) Hence, the branches of T5(a) are re-
peatedly explored along the branches σ7, (σ10, h1), ..., (σ10, hn),
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where hi = {x �→ a, y �→ bi}. The repeated exploration of the
branches of T5(a) in this case is unnecessary. We also remark that
the ACTIVETUPLES restriction makes the running time analysis
simpler. As in ComputeAllRoutes, since every (σ, h) pairs for a
tuple t occurs at most once in the route forest, there are at most
polynomially many branches in the forest constructed by Com-
puteOneRoute. In ComputeOneRoute, however, one also has
to reason about the running time of Infer.

PROPOSITION 3.9. Let M = (S,T,Σst,Σt). Let I be a source
instance, J be a solution for I under M and Js ⊆ J . Then,
ComputeOneRouteM(I ,J ,Js) executes in polynomial time in the
size of I , J and Js.

We note that our running time analysis is based on the size of
I , J and Js. The default behavior of our debugger, however, uses
the solution J that is generated by Clio on a given source instance
I under a schema mapping M. Therefore, a natural question is
whether the polynomial time results of Proposition 3.6 and Theo-
rem 3.9 hold when analyzed against the size of the source instance
I . It is easy to show that if J is polynomial in the size of I , then
our route algorithms run in polynomial time in the size of I . Since
Clio generates a solution J that is polynomial in the size of I under
a relational-to-relational schema mapping [8], our route algorithms
run in polynomial time in the size of I in this setting as well.

Next, we show that our algorithm is complete for finding one
route. If there is a route for Js, then ComputeOneRoute on Js

will produce a route for Js.

THEOREM 3.10. Let M be a schema mapping, I be a source
instance and J be a solution for I under M. For every Js ⊆ J , if
there is a route for Js, then ComputeOneRouteM(I , J , Js) will
produce a route for Js.

3.3 Some implementation details
Although we have only described how one can compute routes

for a set of tuples with relational-to-relational schema mappings,
we have extended and implemented our route algorithms to handle
schema mappings where the source or target schemas may be hier-
archical. Our implementation uses the nested relational model as
our underlying representation and the mapping language of Clio [18,
26] to represent schema mappings. The system is implemented in
Java 1.5. Currently, we store relational instances using DB2 UDB
Personal Edition release 8.1.10, while XML instances are stored as
XML documents. We use DB2’s query engine and Saxon-SB 8.6
XSLT transformation engine to run SQL and respectively, XSLT
queries over relational and respectively, XML instances.

In the findHom procedure (Figure 4), the required assignments
v1, v2 and v3 for a given tuple t are obtained as follows. First,
we obtain v1 by matching t against the RHS of the tgd σ. Sec-
ond, we run the LHS of σ as a selection query (as indicated by v1)
against the instance K to obtain all the assignments v2 that agree
with v1. (Here, K is the source or target instance, depending on
whether σ is a s-t or target tgd.) For each such v2, we obtain possi-
ble assignments v3 that agree with v2 by running the RHS of σ as
an appropriate (based on v2) selection query on the target instance.
Note that all possible assignments of v2 and v3 could in fact be
obtained by running a single selection query (the join of the LHS
and RHS of σ) against the source and target instances. While this
may be more efficient for relational schema mappings, it was a de-
sign choice to run two separate queries, in order to handle general
situations in which for example, the source instance is relational,
while the target is XML. We fetch the assignments one at a time,
as needed, from the result of the selection queries. For this reason,

1 join
S ��suppkey L, O ��custkey C, PS ��partkey P , N ��nationkey R
2 joins
S ��suppkey L ��orderkey O, S ��suppkey PS ��partkey P ,
C ��nationkey N ��nationkey R
3 joins
S ��suppkey L ��partkey,suppkey PS ��partkey P ,
O ��custkey C ��nationkey N ��nationkey R

Figure 9: Joins used in tgds in the relational and flat-hierarchy
synthetic scenarios.

our implementation of ComputeOneRoute is scalable for rela-
tional instances. For XML instances, however, all the assignments
are fetched at once, since the result produced by the Saxon engine
is stored in memory.

Our implementation of ComputeOneRoute is an optimization
of the algorithm in Figure 7. If the findHom step for tuple t is
successful with some tgd σ in steps 2 or 3 of the algorithm, we
conclude that all the target tuples produced by σ (and not only t)
are proven. Hence, we may avoid performing redundant findHom
steps with the rest of the tuples.

3.4 Some other features of our debugger
We briefly mention here some other features of our debugger. We

refer the interested reader to [2] for a more detailed description on
these features. Besides computing one or all routes for selected tar-
get tuple, our system is also capable of computing one or all routes
for selected source tuples. We have also extended our algorithms
for computing one route to generate alternative routes at the user’s
request. Our system is also equipped with “standard” debugging
features such as breakpoints on tgds, single-stepping the computa-
tion of routes and a “watch” window for visualizing how the target
instance changes, as well as the assignments for variables used in a
tgd at each step.

4. EXPERIMENTAL EVALUATION
We have experimentally evaluated our debugger on both real and

synthetic datasets to assess its efficiency in computing one or all
routes, under the effect of various parameters. We present our ex-
perimental results with both route algorithms. All our experiments
were executed on a Pentium 4, 2.8GHz Windows machine with
2GB RAM. The DB2 buffer pool was set to 256MB. Each experi-
ment was repeated three times and we report execution times aver-
aged over the second and third runs.

4.1 The synthetic datasets
We designed three synthetic scenarios, called relational, flat-

hierarchy and deep-hierarchy. The first two scenarios are de-
signed with the goal of measuring the influence of various param-
eters, when the source and target schemas are relational and re-
spectively, hierarchical. The parameters are: the size of source
(and target) instances, the number of tuples selected by a user and
the size and complexity of the schema mappings. The third sce-
nario is designed to measure the influence of the depth of the se-
lected elements of an XML document on the performance of our
algorithms, where both the source and target schemas are deeply
nested. In what follows, we describe the construction of each sce-
nario and present our experimental results on both route algorithms.
In summary, we have observed that ComputeOneRoute can be ef-
ficiently executed, while ComputeAllRoutes may perform orders
of magnitude slower compared to ComputeOneRoute.

        86



(a)     Varying the size of source and target instances 
        TGDs with 1 join, Routes with M/T=3
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(b)             Varying the M/T factor from 1 to 6
                 TGDs with 3 joins, |I| = 100MB, |J| = 600MB
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(c)         Varying the complexity of TGDs (0 to 3 joins)
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(d)     ComputeOneRoute vs. ComputeAllRoutes
          TGDs with 1 join, Routes with M/T=3

       |I| = 100MB, |J| = 600MB

0.001

0.01

0.1

1

10

100

1000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

# tuples
R

u
n

n
in

g
 t

im
e 

(s
ec

)

computeOneRoute coumputeAllRoutes

Figure 10: (a-c) Performance evaluation of ComputeOneRoute and (d) comparison in performance between ComputeOneRoute
and ComputeAllRoutes in the relational synthetic scenarios.

Relational scenario We designed four schema mappings M0, ...,
M3 for our experiments. The subscripts denote the number of
joins, which we shall explain shortly, used in the tgds of the schema
mapping. In each schema mapping, the source schema conforms to
the TPC Benchmark H (TPCH) Standard Specification Revision
2.1.0 [21] and consists of eight relations Customer (C), Lineitem
(L), Nation (N), Orders (O), Part (P), Partsupp (PS), Region (R)
and Supplier (S). The target schema consists of six “copies” of the
source schema: for each relation R0 in the source schema, there
are six relations Ri, i ∈ [1, 6], identical toR0 in the target schema.
Hence, the target schema can be viewed as having six groups of
relations, where each group is a “copy” of the source schema. In
the first schema mapping M0, the s-t tgds populate relations in the
first group by copying everyR0 to the corresponding relationR1 in
the target. The target tgds are such that every relation Ri in the ith
group, i ∈ [2, 6], is copied from the corresponding relation Ri−1.
Finally, no target egds appear in our target dependencies, since egds
do not influence the performance of our algorithms. The second
schema mapping M1 is similar except that every tgd in this schema
mapping has 1 join on both sides corresponding to the 1 join case
illustrated in Figure 9. For example, one such s-t “copying” tgd in
M1 is S0(sk, ...) ∧ L0(..., sk, ...) → S1(sk, ...) ∧ L1(..., sk, ...),
where the variable sk corresponds to the supplier key attribute (sup-
pkey) shown in Figure 9. We have omitted the rest of the variables
for conciseness. The schema mappings M2 and M3 are similar
except that the tgds have 2 and respectively, 3 joins on both sides
as shown in Figure 9. We note that using only such “copying” tgds
in these four schema mappings does not bias our empirical evalu-
ation; our debugger separately operates with the LHS and RHS of

each tgd in findHom and we have varied the complexity of each
side of the tgds in each schema mapping.

In Figure 10(a), we study the influence that the size of the in-
put (i.e., the size of source and target instances, as well as the
number of tuples for which a route needs to be computed) has
on the performance of ComputeOneRoute for a fixed schema
mapping. The sizes of (I, J) are (10MB,60MB), (50MB,300MB),
(100MB,500MB), (500MB,3GB) respectively. The number of se-
lected tuples is varied between 1 and 20. To keep the comparison
meaningful, all tuples were selected at random from the same group
of target relations so that the number of satisfaction steps in a route
of each selected tuple (called M/T factor) is kept constant. For ex-
ample, M/T= 2 for tuples of relations in group 2, since these tuples
are witnessed with one s-t tgd and one target tgd. Figure 10(a) il-
lustrates the time required to compute one route for tuples in group
3 in the schema mapping with 1 join tgds (M1). As expected, the
running time increases as the number of selected tuples increases,
since more findHom steps need to be taken, hence more queries
are executed. The execution time also increases with the size of the
source and target instances. Routes for 10 and 20 tuples are com-
puted in under 4, and respectively, under 8 seconds on the datasets
with 10MB, 50MB and 100MB source instances. However, the per-
formance degrades to a larger extent on the dataset where the source
and target instances are of size 500MB and respectively, 3GB. This
is not unexpected, since the queries, with joins involved, are now
executed on larger instances. We believe, however, that a user is
unlikely to select as many as 20 tuples in the first place. We expect
a user to be interested in a smaller number of tuples at any time,
cases in which our system would still perform well.
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In Figure 10(b), we analyze the influence of the M/T factor on
the performance of ComputeOneRoute, by computing routes for
target tuples in different groups. We performed six runs, each time
selecting up to 20 tuples from the same group (i.e., the M/T factor
varies between 1 and 6). The source instance is fixed at 100MB
in the schema mapping with 3 joins tgds (M3). As expected, the
running time increases with a higher M/T factor, since more inter-
mediary tuples are discovered (and consequently, more invocations
of findHom are made) along the route to source tuples, hence more
queries are executed. For example, it takes 1.8, and respectively,
2.9 seconds to find a route for a tuple with an M/T factor of 3 and
respectively, 6.

In Figure 10(c), we analyze the influence of the complexity of
schema mappings on the performance of the system. This time,
we vary the schema mapping with 0 to 3 joins tgds and we fix the
M/T factor to 3 and the size of the source instance to 100MB. The
running time of ComputeOneRoute increases with the number
of joins in the tgds. This is, again, not unexpected, since the per-
formance of executing queries degrades with the number of joins.
Still, the system performs well, taking up to 4.5 seconds to compute
routes for a set of 7 target tuples, in all four schema mappings.

We have performed a similar suite of experiments with Com-
puteAllRoutes and observed similar trends (graphs not shown).
As expected however, ComputeAllRoutes performs slower com-
pared to ComputeOneRoute. Figure 10(d) shows a comparison
between the running times of the two algorithms for the schema
mapping with 1 join, the source instance of 100MB and tuples with
an M/T factor of 3. (Note the logarithmic scale). For 5 tuples,
one route is found and printed in 2 seconds, while ComputeAll-
Routes requires about 100 seconds to construct the route forrest.
The running time shown for ComputeAllRoutes does not include
the time required to print all routes from the route forest (algorithm
NaivePrint). The performance gap between the two algorithms
will be even larger if we require all routes to be printed.
Flat-hierarchy scenario We have studied the influence that the
size of source (and target) instances, as well as the number of el-
ements for which a route needs to be computed have on the per-
formance of ComputeOneRoute for the XML case. We also per-
formed experiments to analyze the influence of the M/T factor, as
well as the complexity of the schema mappings. (We have omit-
ted the graphs here, for lack of space.) The source schema consists
of a root record having eight sets of records nested underneath,
each set corresponding to one TPCH relation. Similarly, the tar-
get schema consists of six “copies” of the source schema and the
s-t and target tgds are similar to our relational scenario (i.e., they
are “copying” tgds). Hence, in this scenario we deal only with ele-
ments nested immediately underneath the root (i.e., the depth is 1).
For our experiments, the sizes of (I, J) we use are (500KB,3MB),
(1MB,6MB) and (5MB,30MB) respectively. As expected, the run-
ning time of ComputeOneRoute increases with the size of the
source and target instances, as well as the number of selected target
elements that need to be justified. The system performs very well,
requiring at most 5 seconds to compute one route for 20 elements,
for all three pairs of source and target instances. We observed that
the performance of the algorithm decreases with the increase of the
M/T factor, as in the relational case. However, we noticed a more
drastic decrease in performance with the increase in the number
of joins in the tgds. This is not unexpected, since the free version
of Saxon XSLT engine which we use in the findHom procedure
does not perform join reordering and simply implements all for-
each clauses as nested loops.
Deep-hierarchy scenario To analyze the effect of the depth of se-
lected elements on the performance, we designed a schema map-
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Figure 11: Performance evaluation of ComputeOneRoute in
the deep hierarchy scenario.

ping where the source and target schemas are identical and have
the nesting Region/Nation/Customer/Orders/Lineitem. In other
words, the root consists in a set of regions, each region has na-
tions nested underneath and so on. The set Σst consists of one s-t
tgd that copies the source instance into an identical target instance
and there are no target tgds. We tested the performance of Com-
puteOneRoute on elements found at different nesting levels in
the target instance. For example, we picked Customer and respec-
tively, Lineitem elements for our experiments with levels 3 and 5,
respectively. The results are shown in Figure 11. The execution
time decreases with the depth of the selected element. Intuitively,
with a deeper selected element, more variables will be instantiated
in the selection queries generated by findHom. Hence, the resulting
selection queries will execute faster. We note that for elements of
depth 1, we report the execution time for at most 5 selected region
facts, since there are only 5 distinct regions in the TPCH instance.

4.2 The real datasets
We also evaluated our system using two real datasets (DBLP and

Mondial) for which we created schema mappings in order to ex-
change bibliographical, and respectively, geographic information.
For the DBLP scenario, we obtained two DBLP data sources. As
a target schema, we used the first relational schema in the Amal-
gam integration test suite [16]. In the Mondial scenario, we used
the relational and nested versions of the Mondial schema [17], as
source, and respectively, target schemas. In both cases, we gen-
erated the s-t tgds and we used the foreign key constraints of the
target schemas as target tgds. Some characteristics of the source
and target schemas, the number of s-t and target tgds, as well as
the size of source and resulting target instances used in our exper-
iments are shown in Table 1. We used our debugger to compute
(one or all) routes for one to ten randomly selected target tuples in
both scenarios. The time required to find one route was under 3
seconds in all cases, while computing all routes took much longer.
For example, a route was computed in under 1 second, while Com-
puteAllRoutes took about 18 seconds to construct the routes forest
for a set of 10 target elements in the Mondial scenario.

5. RELATED WORK
A framework for understanding and refining schema mappings

in Clio, where both the source and target schemas are relational, is
proposed in [25]. The main focus of [25] is the selection of a good
source and target instance that is illustrative of the behavior of the
schema mappings. Our debugger differs from [25] in that: (1) Our
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debugger works for relational or XML schema mappings. (2) We
allow any source instance to be used for debugging the schema
mapping. Since the instances are crafted in [25], routes are prede-
termined. In our case, we do not generate instances and routes are
computed only “on demand”. We allow a user to create and use any
source instance that she thinks is representative for debugging, and
this is similar to creating test cases for testing the correctness of a
program during a software development cycle. The work of [25]
is thus complementary to our debugger. It would be desirable to
incorporate the functionality of [25] into our debugger and investi-
gate what are representative instances for debugging in general.

Commercial systems such as Altova’s MapForce [14] and Sty-
lus Studio [19] ship with integrated debugging facilities for data
exchange. These systems rely directly on “lower-level” languages
such as XSLT or XQuery for specifying the exchange. Hence, their
built-in debugging tools are simply XSLT or XQuery debuggers.
Our debugger, however, debugs at the level of schema mappings.

The problem of computing a route is similar in spirit to the prob-
lem of computing the provenance (or lineage) of data. Our route al-
gorithms also bear resemblance to top-down resolution techniques
used in deductive databases. In the next two sections, we compare
our work with related work in these areas in more detail.

5.1 Computing the provenance of data
Cui et al. [7] studied the problem of computing the provenance

of relational data in a view in the context of data warehousing. The
provenance of a tuple in a view is described as the tuples in the
base tables that witness the existence of that tuple. Whenever the
provenance of a view tuple t is sought, the approach of [7] is to
generate a query to retrieve all combinations of base tuples that
together with the view definition justify the existence of t. This
type of provenance is also called why-provenance in [6].

There are several differences between our work and the approach
of [7]. First, observe that part of the input to our route algorithms
is (I, J), where J is a solution for I under the schema mapping.
Since J is any solution, there may exist tuples in J with no routes.
In contrast, in the context of [7], the equivalent of J is the output
of an SQL query executed over I . Consequently, the provenance
of every tuple in J always exists. The second difference lies in the
representation of provenance. Our route algorithms operate with
schema mappings, and not with SQL queries as in [7]. In our case,
a tuple in J may relate to several other intermediate tuples in I
and J through possibly different tgds. Our route captures these
“intermediate relationships” between tuples. In contrast, the prove-
nance of a tuple t as defined in [7] is the set of source tuples, that
will witness t according to the SQL query. (We will exemplify this
point after we describe the next difference.) The third difference
is that the language of schema mappings allows one to define re-
cursive computations. In contrast, recursive views are not handled
in [7]. Even if recursive views were handled in [7], the descrip-
tion of provenance only with source tuples can be unsatisfactory as
the following example illustrates. Consider a schema mapping M
where Σst consists of one s-t tgd σ1 : S(x, y) → T (x, y) and Σt

consists of a target tgd σ2 : T (x, y) ∧ T (y, z) → T (x, z) that de-
fines the transitive closure of the binary relation T . Let the source
instance I = {s1 : S(1, 2), s2 : S(2, 3)} and the target instance
J = {t1 : T (1, 2), t2 : T (2, 3), t3 : T (1, 3)} which is a solu-
tion for I under M. Clearly, the two source tuples witness t3 with
M, but this is not as informative as showing a route s1

σ1−→ t1,
s2

σ1−→ t2, {t1, t2}
σ2−→ t3 that describes all the intermediate re-

lationships. In particular, the fact that t3 is a consequence of t1
and t2 with σ2 is captured in the route. (For simplicity, we have
omitted the homomorphisms in each step and showed only the rel-

evant tuples in the source instance.) Consequently, the process of
computing a route for t is more complex in our case, since it is
no longer sufficient to pose a single query over the source instance
as in [7]. Fourth, we have extended our approach for computing
routes in the context of schema mappings where the source and tar-
get schemas can be nested, while the approach of [7] handles only
relational views defined over relational sources. Lastly, [7] handles
aggregates and negation. The language of schema mappings we
consider cannot express aggregates or negation.

The approach of [7] is lazy in the sense that the SQL query that
describes the transformation is not re-engineered and provenance
is computed by (subsequently) examining the query, and the source
and target databases. In contrast, several systems such as Explain
[3], DBNotes [5], the MXQL system of [23], and recently Mon-
drian [10], adopt the bookkeeping or eager approach for computing
provenance. In these systems, the transformation is re-engineered
to keep extra information from the execution. Consequently, prove-
nance can often be answered by examining only the target database
and the extra information. Explain is an explanative module for
the CORAL deductive database system. Explain records additional
information during the execution of a rule-based program and uses
this information for explaining how a certain conclusion is reached,
as well as identifying consequences of a certain fact produced by
the program. DBNotes has functionalities similar to Explain, where
such additional information is a special form of annotations that
can be propagated through a special query language. Mondrian ex-
tends DBNotes to allow annotations on sets of values.

In [23], the authors propose a concept of provenance at the level
of schema mappings for data exchange. The underlying data ex-
change transformation engine is reengineered so that additional in-
formation about which source schema elements and mappings con-
tributed to the creation of a target data is propagated along and
stored with the target data. In particular, it modifies the way queries
are generated in Clio in order to capture additional information dur-
ing the exchange. This information can later be queried using a
special query language called MXQL. Our debugger is similar to
[23] in that it operates over relational or XML schema mappings.
However, our approach is different from [23] in two aspects. First,
our debugger can be used “as is” on data exchange systems based
on similar formalisms for schema mappings. It does not require
changes to the underlying engine. Second, we can automatically
compute routes for any source or target data selected by a user
and these routes contain information about schema-level, as well as
data-level provenance. In contrast, the approach of [23] requires a
user to be familiar with MXQL to query about schema-level prove-
nance, while data-level provenance is not considered.

We emphasize that it is our design choice not to adopt the eager
approach for computing routes, since this approach may involve
re-engineering the underlying system. We want our debugger to
readily work on top of Clio or (future) data exchange systems or
data integration systems that are based on a similar formalism for
schema mappings. It is worth commenting that there is existing
research on both the lazy [6, 7] and eager [5, 10] approaches to
computing provenance when the transformation is described as an
SQL query. However, when the transformation is described as a
schema mapping, only the eager approach for computing prove-
nance has been studied [23]. Our work fills in the missing gap of
using a lazy approach for computing the provenance of data when
the transformation is specified by a schema mapping.

5.2 Approaches in deductive databases
Our route algorithms bear resemblance to top-down approaches

such as the SLD resolution technique [1] for evaluating datalog. In
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Total Atomic Nest. Inst. |Σst|
Schemas elems elems depth size /|Σt|

S: DBLP1(XML) 65 57 1 640KB
DBLP2(XML) 20 12 4 850KB 10/14

T: Amalgam1(Rel) 117 100 1 1.1MB

S: Mondial1(Rel) 157 129 1 1MB
T: Mondial2(XML) 144 112 4 1.2MB 13/25

Table 1: Real datasets and schema mappings characteristics.

fact, sophisticated variants of SLD resolution such as query/sub-
query (QSQ) [24], rule/goal graphs [22] or OLDT [20] are even
more closely related to our work. These approaches use memo-
ization to avoid redundant computations and infinite loops. In our
route algorithms, we also avoid redundant computations and infi-
nite loops by not exploring any branches under repeated tuples. Ex-
plored branches are never discarded and they are memoized. How-
ever, a major difference between our route algorithms and these
top-down approaches is that we make use of the target instance,
which is available to us. In contrast, the result of a datalog program
is not available during resolution. A consequence of this difference
is that we may able to detect if a tuple has no routes early in the
computation. The top-down techniques, in contrast, will continue
to perform resolution down to the source tuples before deciding
whether a tuple belongs to the output of a datalog program exe-
cuted against a source instance.

Another difference is that our approach is more scalable in gen-
eral. We are able to exploit the database engine, since we push the
computation to the database by using queries in each findHom step.
In contrast, top-down resolution techniques have to perform nested
loop joins in memory, since they expand one subgoal at a time and
need to perform sideways information passing to propagate the new
assignments to the unexplored subgoals.

6. CONCLUSION AND FUTURE WORK
We have presented two route algorithms for computing all routes

or one route for selected target data. The former returns a compact,
polynomial-size representation of all minimal routes, even though
there may be exponentially many minimal routes for the selected
data. The latter avoids the computation of all routes in general by
producing one route fast, if there is one, and alternative routes as
needed. We are currently developing a visual interface for our de-
bugger and we refer the interested reader to [2] for more details. An
interesting future extension for our debugger is to adapt the changes
made to the target instance dynamically along with the changes to
the schema mapping made by the user. Our concept of a route cur-
rently does not reflect how an egd is used in an exchange. We would
like to explore definitions and algorithms for computing routes that
take into account egds. Other questions include whether there is
an efficient way of generating all minimal routes in a concise man-
ner, optimization opportunities in findHom, as well as a systematic
study on how our debugger provides developmental support to de-
signers of schema mappings.
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