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ABSTRACT
Data integration systems offer a uniform interface to a set of data
sources. Despite recent progress, setting up and maintaining a
data integration application still requires significant upfront effort
of creating a mediated schema and semantic mappings from the
data sources to the mediated schema. Many application contexts
involving multiple data sources (e.g., the web, personal informa-
tion management, enterprise intranets) do not require fullintegra-
tion in order to provide useful services, motivating apay-as-you-go
approach to integration. With that approach, a system starts with
very few (or inaccurate) semantic mappings and these mappings
are improved over time as deemed necessary.

This paper describes the first completely self-configuring data
integration system. The goal of our work is to investigate how ad-
vanced of a starting point we can provide a pay-as-you-go system.
Our system is based on the new concept of aprobabilistic medi-
ated schemathat is automatically created from the data sources.
We automatically create probabilistic schema mappings between
the sources and the mediated schema. We describe experiments
in multiple domains, including 50-800 data sources, and show that
our system is able to produce high-quality answers with no human
intervention.
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1. INTRODUCTION
Data integration systems offer a single-point interface toa set

of data sources. A data integration application is typically built by
creating a mediated schema for the domain at hand, and creating se-
mantic mappings between the schemas of the data sources and the
mediated schema. The user (or application) poses queries using the
terminology of the mediated schema, and the query is reformulated
onto the sources using the semantic mappings.

Despite recent progress in the field, setting up and maintaining
a data integration application still requires significant upfront and
ongoing effort. Hence, reducing the effort required to set up a data
integration application, often referred to ason-the-flyintegration,
has been a recurring challenge for the field. In fact, as pointed out
in [12], many application contexts (e.g., the web, personalinfor-
mation management, enterprise intranets) do not require full inte-
gration in order to provide useful services. This observation led
to proposing apay-as-you-goapproach to integration, where the
system starts with very few (or inaccurate) semantic mappings and
these mappings are improved over time as deemed necessary.

This paper describes the first completely self-configuring data
integration system. The goal of our work is to investigate how ad-
vanced of a starting point we can provide a pay-as-you-go system,
and how well a completely automated system can perform. We
evaluate our system on several domains, each consisting of 50-800
heterogeneous tables obtained from the Web. The key contribution
of the paper is that we can obtain very good query precision and
recall compared to the alternatives of (1) treating all the sources as
text, or (2) performing full manual integration.

To completely automate data integration, we need to automat-
ically create a mediated schema from the sources and automati-
cally create semantic mappings between the sources and the medi-
ated schema. Automatic creation of schema mappings has received
considerable attention [5, 7, 8, 9, 13, 14, 18, 21, 23, 26, 28]. Re-
cently [10] introduced the notion ofprobabilistic schema mappings
which provides a foundation for answering queries in a data inte-
gration system with uncertainty about semi-automaticallycreated
mappings. To complete the puzzle, we show how to automatically
create a mediated schema from a set of data sources.

The specific contributions of the paper are the following. First,
we show how to automatically create a mediated schema from a set
of data sources. In doing so, we introduce the concept of aproba-
bilistic mediated schema, which is a set of mediated schemas with
probabilities attached to each. We show that probabilisticmediated
schemas offer benefits in modeling uncertainty about the semantics
of attributes in the sources. We describe how to create a deter-
ministic mediated schema from the probabilistic one, whichis the
schema exposed to the user.

Our second contribution is an algorithm for creating probabilis-



tic schema mappings from the data sources to the mediated schema.
Since a mapping is constructed from a set of weighted attribute cor-
respondences between a source schema and the mediated schema,
and such weighted correspondences do not uniquely determine a
semantic mapping [10], we construct a probabilistic mapping that
is consistent with the correspondences and obtains the maximal en-
tropy.

As our final contribution, we describe a set of experimental re-
sults establishing the efficacy of our algorithms. We compare the
precision and recall of our system with several alternativeapproaches
including: (1) a perfect integration where the mediated schema and
mappings are created manually, (2) a document-centric approach
where we perform keyword search on the sources, and (3) pos-
ing queries directly on the sources without a mediated schema. We
show that our automatic methods achieve F-measure of around0.92
compared to (1) and significantly outperform (2) and (3) and sev-
eral variants of our algorithms. Hence, we believe that our approach
can substantially reduce the amount of time taken to create adata
integration application.

The paper is organized as follows. Section 2 gives an overview of
our approach. Section 3 formally introduces the notion of a prob-
abilistic mediated schema and presents some basic results about
them. Sections 4–6 present algorithms for the various stepsin
setting up a data integration system: constructing the probabilis-
tic mediated schema, generating probabilistic mappings for each
source, and consolidating the schema and mappings, respectively.
Section 7 provides an experimental evaluation of our system. Sec-
tion 8 presents related work and we conclude in Section 9.

2. OVERVIEW
We begin with an overview of our approach and point out the

technical challenges we address in the paper. Creating a data in-
tegration application involves two activities that require significant
human effort: creating the mediated schema and creating seman-
tic mappings between the data sources and the mediated schema.
Both activities require knowledge of the domain as well as anun-
derstanding of the queries that can be frequently asked.

Our goal is to create a data integration applicationwithout any
human involvement. The resulting integration should givebest-
effortanswers, and should let the administrator improve the system
in a pay-as-you-go fashion. To accomplish this goal, we needto au-
tomatically create a mediated schema and semantic mappingsfrom
the sources to that schema.

To support best-effort answers and improvement over time, we
build our system on a probabilistic data model. Recent work has in-
troduced probabilistic schema mappings [10], which enablea data
integration system to model its uncertainty on which schemamap-
ping is correct. While we define probabilistic schema mappings
formally in the next section, intuitively, a probabilisticschema map-
ping consists of asetof mappings with a probability attached to
each mapping. Previous research has also considered the problem
of automatically creating (non-probabilistic) schema mappings.

The mediated schema in a data integration application consists of
the set of relations and attributes that we wish to expose to users of
the system. The mediated schema need not include all the attributes
that appear in the sources, nor does it include only the intersection
of the attributes that appear in all of the sources.

To build a mediated schema automatically, a natural strategy is
to start from attributes in the source schemas, group those that have
the same meaning, and consider each result group as an attribute in
the mediated schema. Because of the heterogeneity of the sources,
we are typically unsure of the semantics of the source attributes and
in turn of the clustering results. Furthermore, since attributes can

have ambiguous meanings and some attributes can overlap in their
meaning, this approach to creating a mediated schema results in a
significant amount of uncertainty.

Our approach is based on constructing aprobabilistic mediated
schema. The following example illustrates the advantages of a
probabilistic mediated schema in our setting.

EXAMPLE 2.1. Consider two source schemas both describing
people:

S1(name, hPhone, hAddr, oPhone, oAddr)
S2(name, phone, address)

In S2, the attributephone can either be a home phone number
or be an office phone number. Similarly,address can either be a
home address or be an office address.

Suppose we cluster the attributes of S1 and S2. There are mul-
tiple ways to cluster the attributes and they correspond to different
mediated schemas. Below we list a few (in the mediated schemas
we abbreviatehPhone ashP, oPhone asoP, hAddr ashA, and
oAddr asoA):

M1({name}, {phone, hP, oP}, {address, hA, oA})
M2({name}, {phone, hP}, {oP}, {address, oA}, {hA})
M3({name}, {phone, hP}, {oP}, {address, hA}, {oA})
M4({name}, {phone, oP}, {hP}, {address, oA}, {hA})
M5({name}, {phone}, {hP}, {oP}, {address}, {hA}, {oA})

None of the listed mediated schemas is perfect. SchemaM1

groups multiple attributes from S1.M2 seems inconsistent because
phone is grouped withhPhone while address is grouped with
oAddress. SchemasM3, M4 and M5 are partially correct but
none of them captures the fact thatphone and address can be
either home phone and home address, or office phone and office
address.

Even if we introduce probabilistic schema mappings, none ofthe
listed mediated schemas will return ideal answers. For example,
usingM1 prohibits returning correct answers for queries that con-
tain bothhPhone and oPhone because they are taken to be the
same attribute. As another example, consider a query that contains
phone and address. UsingM3 or M4 as the mediated schema
will unnecessarily favor home address and phone over office ad-
dress and phone or vice versa. A system withM2 will incorrectly
favor answers that return a person’s home address together with
office phone number. A system withM5 will also return a person’s
home address together with office phone, and does not distinguish
such answers from answers with correct correlations.

A probabilistic mediated schema will avoid this problem. Con-
sider a probabilistic mediated schemaM that includesM3 and
M4, each with probability .5. For each of them and each source
schema, we generate a probabilistic mapping (Section 5). For ex-
ample, the set of probabilistic mappingspM for S1 is shown in
Figure 1(a) and (b).

Now consider an instance ofS1 with a tuple

(’Alice’, ’123-4567’, ’123, A Ave.’,
’765-4321’, ’456, B Ave.’)

and a query

SELECT name, phone, address
FROM People

The answer generated by our system with respect toM and pM

is shown in Figure 1(c). (As we describe in detail in Section 3, we



Possible Mapping Probability
{(name, name), (hP, hPP), (oP, oP),

(hA, hAA), (oA, oA)}
0.64

{(name, name), (hP, hPP), (oP, oP),
(oA, hAA), (hA, oA)}

0.16

{(name, name), (oP, hPP), (hP, oP),
(hA, hAA), (oA, oA)}

0.16

{(name, name), (oP, hPP), (hP, oP),
(oA, hAA), (hA, oA)}

0.04

(a)
Possible Mapping Probability

{(name, name), (oP, oPP), (hP, hP),
(oA, oAA), (hA, hA)}

0.64

{(name, name), (oP, oPP), (hP, hP),
(hA, oAA), (oA, hA)}

0.16

{(name, name), (hP, oPP), (oP, hP),
(oA, oAA), (hA, hA)}

0.16

{(name, name), (hP, oPP), (oP, hP),
(hA, oAA), (oA, hA)}

0.04

(b)
Answer Probability

(’Alice’, ’123-4567’, ’123, A Ave.’) 0.34
(’Alice’, ’765-4321’, ’456, B Ave.’) 0.34
(’Alice’, ’765-4321’, ’123, A Ave.’) 0.16
(’Alice’, ’123-4567’, ’456, B Ave.’) 0.16

(c)

Figure 1: The motivating example: (a) p-mapping forS1 and
M3, (b) p-mapping for S1 and M4, and (c) query answers w.r.t.
M and pM. Here we denote{phone, hP} by hPP, {phone,
oP} by oPP, {address, hA} by hAA, and {address, oA} by
oAA.

allow users to compose queries using any attribute in the source.)
Compared with using one ofM2 to M5 as a mediated schema, our
method generates better query results in that (1) it treats answers
with home address and home phone and answers with office ad-
dress and office phone equally, and (2) it favors answers withthe
correct correlation between address and phone number. 2

Building on the concept of a probabilistic mediated schema,our
approach consists of three steps:

Construct a probabilistic mediated schema:We begin by con-
structing a set of schemas with a probability associated with each
one (Section 4).

Find best probabilistic schema mappings:Given the probabilis-
tic mediated schema, we need to construct the appropriate semantic
mappings (Section 5). The key challenge in this step is that the tools
for automatic schema mapping typically produceweighted corre-
spondencesbetween pairs of attributes (one from each schema).
But such correspondences neither uniquely determine a specific
schema mapping, nor uniquely determine a distribution of possi-
ble schema mappings. Therefore, we need to choose one distribu-
tion that seems tobestcapture the automatically generated attribute
correspondences.

Create a single mediated schema to expose to the user:In this
step we create a single mediated schema for the user and create
semantic mappings to it by adjusting the mappings created inthe
previous step (Section 6). The consolidated mediated schema is
such that it returns the same answers as we would have obtained
over the probabilistic mediated schema.
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Figure 2: Architecture of our automatic-setup data integration
system.

This step is not strictly necessary. For example, in some situ-
ations we may prefer to present the user with the set of mediated
schemas and have her choose one that best suits the application’s
needs. We also show that under certain conditions, a probabilistic
mediated schema actually adds expressive power to the system.

Figure 2 depicts the architecture of our system. At set-up time,
we start with attribute matching, based on which we generatethe
probabilistic mediated schema and mappings. We then consolidate
them and generate the final mediated schema and mappings. At
query-answering time, for each data source we rewrite a query
according to the mappings and answer the rewritten queries on
the source data. We then combine the results from different data
sources by taking the disjunction of the probabilities of each an-
swer tuple; that is, if answert has probabilitypi, i ∈ [1, n], for the
i-th data source, the final probability oft is 1−Πn

i=1(1−pi). Here
we assume that the different data sources are independent. Deal-
ing with data sources where some may be derived from others is
beyond the scope of this paper.

3. PROBABILISTIC MEDIATED SCHEMAS
In this section we formally define probabilistic mediated schemas

and the semantics of queries posed over them. We also show pre-
cisely the relationship between probabilistic mediated schemas and
deterministic (i.e., non-probabilistic) mediated schemas.

In our discussion, we consider a set of source schemas{S1, . . . ,

Sn} that are assumed to be roughly from the same domain. We
consider the case where each schema contains asingletable with a
set of attributes. We denote the attributes in schemaSi, i ∈ [1, n],
by attr(Si), and the set of all source attributes asA. That is,
A = attr(S1)∪· · ·∪attr(Sn). We focus on this case because it al-
ready exposes many interesting problems and is a common casein
practice (e.g., integration on the web); we describe the challenges
in integrating multiple-table sources in future work (Section 9).

We begin with deterministic mediated schemas. We denote a me-
diated schema for a set of sources{S1, . . . , Sn} byM = {A1, . . . ,



Am}, where each of theAi’s is called amediated attribute. The
mediated attributes aresetsof attributes from the sources, i.e.,Ai ⊆
A; for eachi, j ∈ [1, m], i 6= j ⇒ Ai ∩ Aj = ∅.

Note that whereas in a traditional mediated schema an attribute
has a name, we do not deal with naming of an attribute in our
mediated schema and allow users to use any source attribute in
their queries. (In practice, we can use the most frequent source
attribute to represent a mediated attribute when exposing the medi-
ated schema to users.) If a query contains an attributea ∈ Ai, i ∈
[1, m], then when answering the query we replacea everywhere
with Ai.

A probabilistic mediated schemaconsists of a set of mediated
schemas, each with a probability indicating the likelihoodthat the
schema correctly describes the domain of the sources. We formally
define probabilistic mediated schemas as follows.

DEFINITION 3.1 (PROBABILISTIC MEDIATED SCHEMA). Let
{S1, . . . , Sn} be a set of schemas. Aprobabilistic mediated schema
(p-med-schema) for{S1, . . . , Sn} is a set

M = {(M1, P r(M1)), . . . , (Ml, P r(Ml))}

where

• for eachi ∈ [1, l], Mi is a mediated schema forS1, . . . , Sn,
and for eachi, j ∈ [1, l], i 6= j, Mi andMj correspond to
different clusterings of the source attributes;

• Pr(Mi) ∈ (0, 1], andΣl
i=1Pr(Mi) = 1. 2

Probabilistic schema mappings: Before we can define the se-
mantics of answers posed over mediated schemas, we review the
definition of probabilistic schema mappings, originally introduced
in [10]. In this paper we mostly considerone-to-one schema map-
pings. Given a mediated schemaM and a data sourceS, a schema
mapping consists of a set of attribute correspondences, where each
correspondence matches a source attribute inS to an attribute in
the mediated schemaM . The mapping is one-to-one if each of the
attributes of the source or the mediated schema is involved in at
most one attribute correspondence.

A probabilistic schema mapping describes a probabilistic dis-
tribution of possible mappings between a source and a mediated
schema. Formally, they are defined as follows:

DEFINITION 3.2 (PROBABILISTIC MAPPING). LetS be a
source schema andM be a mediated schema. Aprobabilistic schema
mapping (p-mapping)betweenS andM is a set

pM = {(m1, P r(m1)), . . . , (ml, P r(ml))}

such that

• for eachi ∈ [1, l], mi is a schema mapping betweenS and
M , and for everyi, j ∈ [1, l], i 6= j ⇒ mi 6= mj ;

• Pr(mi) ∈ (0, 1], andΣl
i=1Pr(mi) = 1. 2

We focus on one-to-one mappings because they are common in
practice and it is more feasible to generate such mappings than
more complex mappings. As we show later, our algorithm actu-
ally produces one-to-many schema mappings when it consolidates
a probabilistic mediated schema into a deterministic one. Aone-to-
many mapping maps a source attribute to a set (e.g., concatenation)
of attributes in the mediated schema.

Semantics of queries:We measure the quality of the p-med-schema
and the p-mappings we generate by the accuracy of query answer-
ing results. Our goal is to return all correct answers possibly with

wrong answers, but rank correct answers higher. That is, we want
to obtain highprecision, recall and highTop-k precision.

However, before we can answer queries in this setting, we need
to define the semantics of queries. We define the semantics of a
p-med-schema by defining query answering with respect to a p-
med-schema and a set of p-mappings. Our definition is the natural
extension of query answering with respect to p-mappings [10].

We consider select-project-join (SPJ) queries, a core set of SQL
queries. Answering queries with respect to p-mappings returns a
set of answer tuples, each with a probability indicating thelike-
lihood that the tuple occurs as an answer. In this paper we con-
siderby-tablesemantics, which assumes there is one single possi-
ble mapping that is correct and it applies to all tuples in thesource
table. Given a queryQ, we compute answers by first answeringQ

with respect to each possible mapping, and then for each answer
tuplet summing up the probabilities of the mappings with respect
to whicht is generated.

We now extend this notion for query answering that takes p-med-
schema into consideration. Intuitively, we compute query answers
by first answering the query with respect to each possible mediated
schema, and then for each answer tuple taking the sum of its prob-
abilities weighted by the probabilities of the mediated schemas.

DEFINITION 3.3 (QUERY ANSWER). LetS be a source schema
andM = {(M1, P r(M1)), . . . , (Ml, P r(Ml))} be a p-med-schema.
Let pM = {pM(M1), . . . , pM(Ml)} be a set of p-mappings
wherepM(Mi) is the p-mapping betweenS and Mi. Let D be
an instance ofS andQ be a query.

Let t be a tuple. LetPr(t|Mi), i ∈ [1, l], be the probability
of t in the answer ofQ with respect toMi and pM(Mi). Let
p = Σl

i=1Pr(t|Mi) ∗ Pr(Mi). If p > 0, then we say(t, p) is a
by-table answer with respect toM andpM.

We denote all by-table answers byQM,pM(D). 2

We say that query answersA1 andA2 areequal(denotedA1 =
A2) if A1 andA2 contain exactly the same set of tuples with the
same probability assignments.

Expressive power:A natural question to ask at this point is whether
probabilistic mediated schemas provide any added expressive power
compared to deterministic ones. Theorem 3.4 shows that if wecon-
sider one-to-manyschema mappings, where one source attribute
can be mapped to multiple mediated attributes, then any combina-
tion of a p-med-schema and p-mappings can be equivalently rep-
resented using a deterministic mediated schema with p-mappings,
but may not be represented using a p-med-schema with determin-
istic schema mappings. Note that we can easily extend the defini-
tion of query answers to one-to-many mappings as one mediated
attribute can correspond to no more than one source attribute. (To
maintain the flow of the paper, we provide only proof sketchesfor
some theorems in the body of the paper, and defer complete proofs
to the appendix.)

THEOREM 3.4 (SUBSUMPTION). 1. Given a source schema
S, a p-med-schemaM, and a set of p-mappingspM be-
tweenS and possible mediated schemas inM, there ex-
ists a deterministic mediated schemaT and a p-mapping
pM betweenS and T , such that∀D, Q : QM,pM(D) =
QT,pM (D).

2. There exists a source schemaS, a mediated schemaT , a p-
mappingpM betweenS andT , and an instanceD ofS, such
that for any p-med-schemaM and any setm of deterministic
mappings betweenS and possible mediated schemas inM,
there exists a queryQ such thatQM,m(D) 6= QT,pM (D).
2



Proof sketch: To prove (1), we show that we can create a single
new mediated schemaT , and rewrite each original schema map-
ping in pM betweenS and a mediated schema inM to a corre-
sponding schema mapping betweenS andT . For the second part,
we give an exampleS, T , and a p-mapping between them such that
no p-med-schema with deterministic mappings can representit. 2

In contrast, Theorem 3.5 shows that if we restrict our attention to
one-to-one mappings, then a probabilistic mediated schemadoes
add expressive power.

THEOREM 3.5. There exists a source schemaS, a p-med-schema
M, a set of one-to-one p-mappingspM betweenS and possi-
ble mediated schemas inM, and an instanceD of S, such that
for any deterministic mediated schemaT and any one-to-one p-
mappingpM betweenS andT , there exists a queryQ such that,
QM,pM(D) 6= QT,pM (D). 2

Proof sketch: We prove the theorem by constructing a p-med-
schemaM = {M1, M2} and showing that for any single medi-
ated schemaT and any p-mappingpM , a queryQ referring to an
attribute that is clustered differently inM1 and M2 would miss
answers from those generated with respect to one ofM1 andM2

when posed overT . 2

Constructing one-to-many p-mappings in practice is much harder
than constructing one-to-one p-mappings. And, when we are re-
stricted to one-to-one p-mappings, p-med-schemas grant usmore
expressive power while keeping the process of mapping generation
feasible.

4. MEDIATED SCHEMA GENERATION
This section describes how we create the probabilistic mediated

schema. We begin by showing how to create a single mediated
schema, and then we extend the algorithm to create multiple medi-
ated schemas with probabilities attached to each.

4.1 Creating a single mediated schema
Consider a set of source table schemasS1, . . . , Sn. We are inter-

ested in creating a mediated schemaM which best represents the
domain the tables are about. Our strategy is to createM by clus-
tering attributes in source tables. We wantM to contain all “im-
portant” attributes from source tables, and we want to ensure that
semantically similar attributes from different tables arecombined
into one cluster. For example, if two source tables have attributes
phone-no andphone, we would like to put them in the same
mediated attribute.

Our mediated-schema generation algorithm assumes there issome
pairwise attribute similarity measure,s. The similaritys(ai, aj)
between two source attributesai andaj depicts how closely the
two attributes represent the same real-world concept. There has
been a significant amount of work in designing pairwise similarity
functions [26]. Improving on these techniques is not the focus of
our work. Instead, our algorithm is designed so it can leverage any
existing technique.

We create a mediated schema in three steps. First, we remove
infrequent attributes from the set of all source attributes; that is, at-
tribute names that do not appear in a large fraction of sourcetables.
This step ensures that our mediated schema contains only informa-
tion that is relevant and central to the domain. In the secondstep
we construct a weighted graph whose nodes are the attributesthat
survived the filter of the first step. An edge in the graph is labeled
with the pairwise similarity between the two nodes it connects. We
include an edge in the graph only if its weight is above a certain
thresholdτ . Finally, we cluster the nodes in the resulting weighted

0: Input : Source schemasS1, . . . , Sn.
Output : A set of possible mediated schemas.

1: ComputeA = {a1, . . . , am}, the set of all source attributes;
2: for each (j ∈ [1, m])

Compute frequencyf(aj) =
|{i∈[1,n]|aj∈Si}|

n
;

3: SetA = {aj |j ∈ [1, m], f(aj) ≥ θ}; //θ is a threshold
4: Construct a weighted graphG(V, E), where (1)V = A, and

(2) for eachaj , ak ∈ A, s(aj , ak) ≥ τ − ǫ, there is an edge
(aj , ak) with weights(aj , ak);

5: Mark all edges with weight less thanτ + ǫ asuncertain;
6: for each (uncertain edgee = (a1, a2) ∈ E)

Removee from E if (1) a1 anda2 are connected by a
path with only certain edges, or (2) there existsa3 ∈ V , such
thata2 anda3 are connected by a path with only certain edges
and there is an uncertain edge(a1, a3);

7: for each (subset of uncertain edges)
Omit the edges in the subset and compute a mediated

schema where each connected component in the graph corre-
sponds to an attribute in the schema;

8: return distinct mediated schemas.

Algorithm 1: Generate all possible mediated schemas.

graph to obtain the mediated schema. A cluster is defined to bea
connected component of the graph.

4.2 Creating a p-med-schema
We now show how to extend the algorithm we just described to

create a probabilistic mediated schemaM. Given source tables
S1, . . . , Sn, we first construct the multiple schemasM1, . . . , Mp

in M, and then assign each of them a probability.
We exploit two pieces of information available in the sourceta-

bles: (1) pairwise similarity of source attributes; and (2)statisti-
cal co-occurrence properties of source attributes. Whereas the first
piece of information tells us when two attributes are likelyto be
similar, the second tells us when two attributes are likely to be dif-
ferent. Consider for example, source table schemas

S1: (name,address,email-address)
S2: (name,home-address)

Pairwise string similarity would indicate that attributeaddress can
be similar to bothemail-address andhome-address. However,
since the first source table containsaddress andemail-address
together, they cannot refer to the same concept. Hence, the first
table suggestsaddress is different fromemail-address, making
it more likely thataddress refers tohome-address.

Algorithm 1 describes how we create the multiple mediated
schemas inM from S1, . . . , Sn and a pairwise similarity func-
tion s. Steps 1–3 of the algorithm find the attributes that occur
frequently in the sources. Steps 4 and 5 construct the graph of
these high-frequency attributes. Unlike the graph constructed in
Section 4.1, we allow an errorǫ on the thresholdτ for edge weights.
We thus have two kinds of edges:certain edges, having weight at
leastτ + ǫ, anduncertain edges, having weight betweenτ − ǫ and
τ + ǫ.

Steps 6-8 describe the process of obtaining multiple mediated
schemas. Specifically, a mediated schema inM is created for ev-
ery subset of the uncertain edges. For every subset, we consider
the graph resulting from omitting that subset from the graph. The
mediated schema includes a mediated attribute for each connected
component in the resulting graph. Since, in the worst case, the
number of resulting graphs is exponential in the number of uncer-
tain edges, the parameterǫ needs to be chosen carefully. In addi-



0: Input: Possible mediated schemasM1, . . . , Ml and source
schemasS1, . . . , Sn.
Output: Pr(M1), . . . , P r(Ml).

1: for each (i ∈ [1, l])
Count the number of source schemas that are consistent

with Mi, denoted asci;
2: for each (i ∈ [1, l]) SetPr(Mi) = ci∑

l
i=1

ci
.

Algorithm 2: Assign probabilities to possible mediated schemas.

Figure 3: The p-med-schema for a set of bibliography sources.
Each oval in the graph represents an attribute in the mediated
schemas. The p-med-schema contains two possible schemas,
the first containing attributes in regions A and B1, and the sec-
ond containing attributes in regionsA andB2. They have prob-
abilities 0.703 and 0.297 respectively.

tion, Step 6 removes uncertain edges that when omitted will not
lead to different mediated schemas. Specifically, we removeedges
that connect two nodes already connected by certain edges. Also,
we consider only one among a set of uncertain edges that connect
a particular node with a set of nodes that are connected by certain
edges.

Our next step is to compute probabilities for possible mediated
schemas that we have generated. As a basis for the probability
assignment, we first define when a mediated schema isconsistent
with a source schema. The probability of a mediated schema inM

will be the proportion of the number of sources with which it is
consistent.

DEFINITION 4.1 (CONSISTENCY). Let M be a mediated
schema for sourcesS1, . . . , Sn. We sayM is consistent witha
source schemaSi, i ∈ [1, n], if there is no pair of attributes inSi

that appear in the same cluster inM .

Intuitively, a mediated schema is consistent with a source only if
it does not group distinct attributes in the source (and hence distinct
real-world concepts) into a single cluster. Algorithm 2 shows how
to use the notion of consistency to assign probabilities on the p-
med-schema.

EXAMPLE 4.2. We applied our algorithm on a data set con-
taining 649 source tables about bibliographies extracted from
HTML tables on the web (we shall describe the data set in more
detail in Section 7.1). We used a string similarity measure for the
pairwise attribute comparison. We used a frequency threshold θ of

10%; hence, only attributes that appeared in at least 10% of the ta-
bles were clustered. We used an edge weight threshold ofτ = 0.85
and error bar ofǫ = 0.02.

Figure 3 shows the p-med-schema generated by our algorithm.
As we have an uncertain edge betweenissue and issn, the result
p-med-schema contains two possible mediated schemas, where one
groupseissn, issn and issue and the other keepsissue apart.

First of all, we generated a very good clustering, with semanti-
cally similar attributes grouped together (e.g.,author, author(s),
and authors are grouped andpages and pages/rec. no are
grouped). Second, among the several hundreds of distinct source
attribute names, our mediated schema contains mostly attributes
that are relevant to the domain. Note that many of our source tables
are about Biology and Chemistry, so although attributesorganism
and link to pubmed are not central to bibliographies in general,
they occur in a large fraction of source tables and are still selected.
Finally, notice that the three attributesissue, eissn, and issn are
clustered differently inM1 andM2. Since a large number of source
schemas contain bothissue and issn (or eissn), they are consis-
tent with onlyM1 but notM2; thus,M1 has a higher probability
thanM2. 2

5. P-MAPPING GENERATION
We now address the problem of generating a p-mapping between

a source schema and a mediated schema. We begin by computing
weighted correspondences between the source attributes and the
mediated attributes. However, as we explain shortly, therecan be
multiplep-mappings that are consistent with a given set of weighted
correspondences. Of all such p-mappings we choose the one that
maximizes the entropy of the probability assignment.

5.1 Computing weighted correspondences
A weighted correspondencebetween a pair of attributes spec-

ifies the degree of semantic similarity between them. Let
S(a1, . . . , am) be a source schema andM(A1, . . . , An) be a me-
diated schema. We denote byCi,j , i ∈ [1, m], j ∈ [1, n], the
weighted correspondence betweenai andAj and bypi,j the weight
of Ci,j . Our first step is to compute a weighted correspondence be-
tween every pair of attributes. Recall that theAj ’s are clusters of
attributes. We compute the weighted correspondence from the sim-
ilarity betweenai and each attribute inAj as follows1:

pi,j =
∑

a∈Aj

s(ai, a).

Whenever the similaritypi,j is below a certain threshold, we set
it to 0, thereby ensuring that clearly incorrect mappings are not
generated.

Although weighted correspondences tell us the degree of similar-
ity between pairs of attributes, they do not tell uswhichmediated
attribute a source attribute should map to. For example, whereas
a source attributephone is more similar to the mediated attribute
{ phone, hPhone} than to {oPhone}, it could still make sense
to mapphone to either of them in a schema mapping. In fact,
given a set of weighted correspondences, there could be asetof
p-mappings that are consistent with it. We can define the one-to-
many relationship between sets of weighted correspondences and
p-mappings by specifying when a p-mapping isconsistent witha
set of weighted correspondences.

1Although we could have usedavg or max instead ofsum as well,
the sum of pairwise similarities looks at the cluster as a whole to
determine how wellai is connected with the cluster.



DEFINITION 5.1 (CONSISTENT P-MAPPING). A p-mapping
pM is consistent witha weighted correspondenceCi,j between
a pair of source and target attributes if the sum of the probabilities
of all mappingsm ∈ pM containing correspondence(i, j) equals
pi,j ; that is,

pi,j =
∑

m∈pM,(i,j)∈m

Pr(m).

A p-mapping isconsistent witha set of weighted correspon-
dencesC if it is consistent with each weighted correspondence
C ∈ C. 2

However, not every set of weighted correspondences admits acon-
sistent p-mapping. The following theorem shows under whichcon-
ditions a consistent p-mapping exists, and establishes a normaliza-
tion factor for weighted correspondences that will guarantee the
existence of a consistent p-mapping.

THEOREM 5.2. Let C be a set of weighted correspondences
between a source schemaS(a1, . . . , am) and a mediated schema
M(A1, . . . , An).

• There exists a consistent p-mapping with respect toC if and
only if (1) for everyi ∈ [1, m],

∑n

j=1 pi,j ≤ 1 and (2) for
everyj ∈ [1, n],

∑m

i=1 pi,j ≤ 1.
• Let

M
′ = max{maxi{

n∑

j=1

pi,j}, maxj{
m∑

i=1

pi,j}}.

Then, for eachi ∈ [1, m],
∑n

j=1

pi,j

M′ ≤ 1 and for each

j ∈ [1, n],
∑m

i=1

pi,j

M′ ≤ 1. 2

Proof sketch: The second part of the theorem is trivial and the first
part is proved as follows.

Only if: Suppose in contrast, there existsi0 ∈ [1, m] such that∑n

j=1 pi0,j > 1. Let pM be the p-mapping that is consistent with
C. Let m̄ be the set of mappings inpM that mapai0 to some
Aj ’s. Then,

∑
m∈m̄ Pr(m) =

∑n

j=1 pi0,j > 1 and so the sum of
all probabilities inpM is greater than 1, contradicting the definition
of p-mappings. Similarly, we can prove the second condition.

If: We transform the problem of constructing a consistent p-
mapping to a problem of finding a set of bipartite matchings in
a graph. The vertex sets in the bipartite graph correspond to
source and mediated attributes respectively, and edges correspond
to pi,j ’s. We prove the existence of a solution to the transformed
problem by induction on the maximum number of edges for any
vertex. 2

Based on Theorem 5.2, we normalize the weighted correspon-
dences we generated as described previously by dividing them by
M ′; that is,

p
′
i,j =

pi,j

M ′
.

5.2 Generating p-mappings
To motivate our approach to generating p-mappings, consider the

following example. Consider a source schema(A,B) and a me-
diated schema(A′, B′). Assume we have computed the following
weighted correspondences between source and mediated attributes:
pA,A′ = 0.6 andpB,B′ = 0.5 (the rest are 0).

There are an infinite number of p-mappings that are consistent
with this set of weighted correspondences and below we list two:
pM1:

m1: (A,A’), (B,B’): 0.3
m2: (A,A’): 0.3
m3: (B,B’): 0.2
m4: empty: 0.2

pM2:

m1: (A,A’), (B,B’): 0.5
m2: (A,A’): 0.1
m3: empty: 0.4

In a sense,pM1 seems better thanpM2 because it assumes that
the similarity betweenA andA′ is independent of the similarity
betweenB andB′.

In the general case, among the many p-mappings that are consis-
tent with a set of weighted correspondencesC, we choose the one
with themaximum entropy; that is, the p-mappings whose probabil-
ity distribution obtains the maximum value of

∑l

i=1 −pi ∗ logpi.
In the above example,pM1 obtains the maximum entropy.

The intuition behind maximum entropy is that when we need to
select among multiple possible distributions on a set of exclusive
events, we choose the one that does not favor any of the eventsover
the others. Hence, we choose the distribution that does notintro-
duce new informationthat we didn’t have apriori. The principle
of maximum entropy is widely used in other areas such as natural
language processing [4, 24].

To create the p-mapping, we proceed in two steps. First, we enu-
merate all possible one-to-one schema mappings betweenS andM

that contain a subset of correspondences inC. Second, we assign
probabilities on each of the mappings in a way that maximizesthe
entropy of our result p-mapping.

Enumerating all possible schema mappings givenC is trivial:
for each subset of correspondences, if it corresponds to a one-to-
one mapping, we consider the mapping as a possible mapping.

Given the possible mappingsm1, . . . , ml, we assign probabili-
ties p1, . . . , pl to m1, . . . , ml by solving the following constraint
optimization problem (OPT):

maximize
∑l

k=1 −pk ∗ log pk subject to:

1. ∀k ∈ [1, l], 0 ≤ pk ≤ 1,

2.
∑l

k=1 pk = 1, and

3. ∀i, j :
∑

k∈[1,l],(i,j)∈mk
pk = pi,j .

We can apply existing technology (such as [11]) in solving the
OPT optimization problem. Although finding maximum-entropy
solutions in general is costly, our experiments show that the ex-
ecution time is reasonable for a one-time process; in addition, we
can reduce the search space by consideringgroup p-mappings[10],
which divides the weighted correspondences into groups to localize
the uncertainty.

6. P-MEDIATED-SCHEMA CONSOLIDA-
TION

To complete the fully automatic setup of the data integration
system, we consider the problem of consolidating a probabilistic
mediated schema into a single mediated schema and creating p-
mappings to the consolidated schema. We require that the answers
to queries over the consolidated schema be equivalent to theones
over the probabilistic mediated schema.

The main reason to consolidate the probabilistic mediated
schema into a single one is that the user expects to see a single
schema. In addition, consolidating to a single schema has the ad-
vantage of more efficient query answering: queries now need to be



0: Input: Mediated schemasM1, . . . , Ml.
Output: A consolidated single mediated schemaT .

1: SetT = M1.
2: for (i = 2, . . . , l) modify T as follows:
3: for each (attributeA′ in Mi)
4: for each (attributeA in T )
5: DivideA into A ∩ A′ andA − A′;
6: return T .

Algorithm 3: Consolidate a p-med-schema.

rewritten and answered based on only one mediated schema. We
note that in some contexts, it may be more appropriate to showthe
application builder a set of mediated schemas and let her select one
of them (possibly improving on it later on).

Consolidating a p-med-schema:Consider a p-med-schemaM =
{(M1, P r(M1)), . . . , (Ml, P r(Ml))}. We consolidateM into a
single mediated schemaT . Intuitively, our algorithm (see Algo-
rithm 3) generates the “coarsest refinement” of the possiblemedi-
ated schemas inM such that every cluster in any of theMi’s is
equal to the union of a set of clusters inT . Hence, any two at-
tributesai andaj will be together in a cluster inT if and only if
they are together in every mediated schema ofM. The algorithm
initializesT to M1 and then modifies each cluster ofT based on
clusters fromM2 to Ml.

EXAMPLE 6.1. Consider a p-med-schemaM = {M1, M2},
where M1 contains three attributes{a1, a2, a3}, {a4}, and
{a5, a6}, and M2 contains two attributes{a2, a3, a4} and
{a1, a5, a6}. The target schemaT would then contain four at-
tributes:{a1}, {a2, a3}, {a4}, and{a5, a6}. 2

Note that in practice the consolidated mediated schema is the same
as the mediated schema that corresponds to the weighted graph
with only certain edges. Here we show the general algorithm for
consolidation, which can be applied even if we do not know the
specific pairwise similarities between attributes.

Consolidating p-mappings: Next, we consider consolidating p-
mappings specified w.r.t.M1, . . . , Ml to a p-mapping w.r.t. the
consolidated mediated schemaT . Consider a sourceS with p-
mappingspM1, . . . , pMl for M1, . . . , Ml respectively. We gener-
ate a single p-mappingpM betweenS andT in three steps. First,
we modify each p-mappingpMi, i ∈ [1, l], betweenS andMi to
a p-mappingpM ′

i betweenS andT . Second, we modify the prob-
abilities in eachpM ′

i . Third, we consolidate all possible mappings
in pM ′

i ’s to obtainpM . The details are as follows.
1. For each i ∈ [1, l], modify p-mapping pMi: Do the fol-

lowing for every possible mappingm in pMi:

• For every correspondence(a, A) ∈ m between source
attributea and mediated attributeA in Mi, proceed as
follows. (1) Find the set of all mediated attributesB in
T such thatB ⊂ A. Call this setB. (2) Replace(a,A)
in m with the set of all(a, B)’s, whereB ∈ B.

Call the resulting p-mappingpM ′
i .

2. For each i ∈ [1, l], modify probabilities in pM ′
i : Mul-

tiply the probability of every schema mapping inpM ′
i by

Pr(Mi), which is the probability ofMi in the p-med-
schema. (Note that after this step the sum of probabilities
of all mappings inpM ′

i is not1.)
3. Consolidate pM ′

i ’s: Initialize pM to be an empty p-
mapping (i.e., with no mappings). For eachi ∈ [1, l], add
pM ′

i to pM as follows:

• For each schema mappingm in pM ′
i with probability

p: if m is in pM , with probabilityp′, modify the prob-
ability of m in pM to (p + p′); if m is not inpM , then
addm to pM with probabilityp.

The resulting p-mapping,pM , is the final consolidated p-
mapping. The probabilities of all mappings inpM add to
1.

Note that Step 2 can map one source attribute to multiple medi-
ated attributes; thus, the mappings in the resultpM are one-to-
many mappings, and so typically different from the p-mapping gen-
erated directly on the consolidated schema. The following theo-
rem shows that the consolidated mediated schema and the consol-
idated p-mapping are equivalent to the original p-med-schema and
p-mappings.

THEOREM 6.2 (MERGEEQUIVALENCE). For all queriesQ,
the answers obtained by posingQ over a p-med-schemaM =
{M1, . . . , Ml} with p-mappingspM1, . . . , pMl is equal to the an-
swers obtained by posingQ over the consolidated mediated schema
T with consolidated p-mappingpM . 2

PROOF. Consider a mediated schemaMi, i ∈ [1, l], and the
associated p-mappingpMi. Let pM ′

i be the p-mapping obtained
by modifying pMi in our algorithm. LetQ be a query. If an at-
tribute inQ is mapped to a source attribute underpMi, based on
our construction ofpM ′

i it will also be mapped to the same source
attribute underpM ′

i . Therefore,Q posed overMi with p-mapping
pMi returns the same set of answer tuples asQ posed overT with
p-mappingpM ′

i , whereas each returned tuple’s probability is multi-
plied byPr(Mi). Finally, the probability of an answer tuple when
Q is posed over the p-med-schema is the weighted sum of the prob-
abilities of the tuple returned by posingQ over eachMi, weighted
by probabilityPr(Mi). HenceQ returns the same answer over the
original and consolidated schemas.

7. EXPERIMENTS
We now describe experiments that validate the performance of

our algorithms. Our main goal is to examine the quality of answers
obtained from a completely automatic setup of a data integration
system. In addition, we describe experiments validating the use of
a probabilistic mediated schema, and showing that our setuptime
scales well with the number of sources.

7.1 Experimental setup
We built a data integration system, referred to as UDI, basedon

the techniques described in the previous sections. UDI takes a set
of data sources and automatically creates a mediated schemaand
a probabilistic schema mapping between each data source andthe
mediated schema. UDI accepts select-project queries on theex-
posed mediated schema and returns answers ranked by their prob-
abilities. We did not consider joins, as our mediated schemacon-
tained a single table. For each given query, UDI transforms it into
a set of queries on the data sources according to the probabilistic
schema mappings, retrieves answers from individual data sources,
and then combines the answers assuming that the data sourcesare
independent (as we described in Section 2).

For the purposes of our evaluation, it suffices to store each source
as a single table in a database, rather than access data sources at
query time. We used MySQL for storing the data, and implemented
the query processor in Java. We used the SecondString tool [2] to
compute the Jaro Winkler similarity [27] of attribute namesin pair-
wise attribute comparison. We used Knitro [1] to solve the entropy
maximization problem in p-mapping construction. We conducted



Table 1: Number of tables in each domain and keywords that
identify the domain. Each domain contains 50 to 800 data
sources.

Domain #Src Keywords
Movie 161 movieandyear
Car 817 makeandmodel

name, one ofjob andtitle, and one ofPeople 49
organization, companyandemployer
one ofcourseandclass,

Course 647 one ofinstructor, teacherandlecturer,
and one ofsubject, departmentandtitle
author, title, year, andBib 649
one ofjournal andconference

our experiments on a Windows Vista machine with Intel Core 2
GHz CPU and 2GB memory.

For our experiments, we set the pairwise similarity threshold for
creating the mediated schema to0.85, the error bar for uncertain
edges to0.02, the frequency threshold for considering attributes in
the mediated schema to10%, and the correspondence threshold to
0.85. Our experiments showed similar results even when the above
constants were varied by 20%.

Data and queries: We evaluated our system using real data sets
from five domains:Movie, Car, People, Course, andBibliog-
raphy. The tables were selected from a larger corpus of HTML
tables on the web for which attribute labels were clearly present.
We selected the tables for each domain by searching for tables that
contained certain keywords (see the third column of Table 1). Each
of the tables typically contain tens to a few hundreds of tuples. Ta-
ble 1 also shows the number of tables extracted for each domain.

For each domain, we chose 10 queries, each containing one to
four attributes in theSELECT clause and zero to three predicates
in theWHERE clause. The attributes in theSELECT andWHERE
clauses are attributes from the exposed mediated schema. Each
predicate contains an attribute, an operator, and a value, where the
operator can be=, 6=, <,≤, >,≥ andLIKE. When we selected the
queries, we varied selectivity of the predicates and likelihood of the
attributes being mapped correctly to cover all typical cases.

Overview of experiments: Our main goal is to see how well we
can do without any human intervention in setting up a data inte-
gration system. Hence, Section 7.2 compares the answers obtained
by UDI with those that would be obtained from a data integra-
tion system in which the mediated schema and schema mappings
were created manually. In the absence of UDI, the typical approach
imagined to bootstrap pay-as-you-go data integration systems is to
consider all the data sources as a collection of text documents and
apply keyword search techniques. Section 7.3 compares UDI to
this approach and to several variations of UDI where some of its
features are omitted. Section 7.4 demonstrates the value ofproba-
bilistic mediated schemas and Section 7.5 shows the qualityof the
mediated schema we create. Finally, Section 7.6 touches on effi-
ciency issues in UDI.

Performance measure:In our experiments we used three standard
metrics: precision, recallandF-measure. Let Ā be the set of an-
swers that our system generates andB̄ be the set of answers in the
golden standard. The three metrics are defined as follows: (1) Pre-
cision: P = |Ā∩B̄|

|Ā|
; (2) Recall: R = |Ā∩B̄|

|B̄|
; and (3)F-measure:

F = 2∗P∗R
P+R

.
To show how well our system ranks the answers, we plotted the

Table 2: Precision, recall and F-measure of query answeringof
the UDI system compared with a manually created integration
system. The results show thatUDI obtained a high accuracy in
query answering.

Domain Precision Recall F-measure
Golden standard

People 1 .849 .918
Bib 1 .852 .92

Approximate golden standard
Movie .95 1 .924
Car 1 .917 .957

Course .958 .984 .971
People 1 1 1

Bib 1 .955 .977

recall/precision curve (R-P curve)for certain domains. An R-P
curve varies recall on the X-axis and precision on the Y-axis. An
ideal R-P curve is a horizontal line with a precision of 1.

Since most of the approaches we compared against do not return
ranked answers, to be fair to these approaches we do not remove
duplicates before measuring precision/recall, although we did ob-
serve similar results even with duplicates eliminated. Only for the
R-P curve experiment duplicates were removed, as the experiment
needs tuple probabilities.

7.2 UDI v.s. manual integration
To compare UDI with manual integration, we constructed a

golden standardby manually creating mediated schemas and
schema mappings in two domains (People andBib). To answer
queries, we followed the traditional data integration approach, re-
formulating the query using the schema mappings, and takingthe
union of the results obtained from the relevant data sources.

Since the manual integration with the number of sources we have
is a significant undertaking, for the other three domains we com-
pared UDI with an approximation to a golden standard. Specifi-
cally, we retrieved all answers generated by UDI as well as the an-
swers obtained by directly posing the query over each data source,
and then manually removed incorrect answers. Note that the ap-
proximate golden standard will still be high in precision but may
loose recall compared with the true golden standard. We executed
ten queries in each domain and report the average precision,recall
and F-measure of the returned results.

Results: Table 2 shows that we obtain high precision and recall
for all domains. In comparison to the true golden standard, we
obtained a recall of about 0.85 on the two domains, and in com-
parison to the approximate golden standard, we obtained a recall
of over 0.9 in all cases and over 0.95 in four of the domains. Ex-
trapolating from the discrepancy in theBib andPeople domains
between the true and approximate golden standards, we expect that
we would obtain recall around 0.8-0.85 with respect to the golden
standard on all domains. Our precision and recall results validate
the main point of our work: we are able to completely automati-
cally set up a data integration system to obtain high-quality results,
and therefore be in an excellent starting point to improve the data
integration system with time.

We believe that the main method to improve our results is to em-
ploy a better schema matcher. Our matcher considered only sim-
ilarity of attribute names and did not look at values in the corre-
sponding columns or other clues. Hence, we did not detect that lo-
cation andaddress are similar attributes. We also suffered some
loss of recall because we set a high threshold to choose attribute



correspondences in order to reduce the number of correspondences
considered in the entropy maximization. While there is a chance
that a p-mapping generated automatically can contain incorrect
mappings, leading to low precision, this did not happen veryoften
in our experiments. This is also due to the high threshold we ap-
plied to correspondences, therefore preserving mostly correct ones.

7.3 Competing automatic approaches
Next, we compared our system with alternative approaches for

bootstrapping a data integration system. The first approachis to
consider the data sources as a collection of documents and perform
keyword search. We tested three variants of this approach. In each
one, given a queryQ, we generated a keyword queryQ′ by taking
all attribute names in theSELECT clause and values in theWHERE
clause ofQ. Using MySQL’s keyword search engine, we tried the
following variants:

• KEYWORDNAIVE : return tuples withanyof the keywords in
the queryQ′.

• KEYWORDSTRUCT: classify keywords inQ′ according to
the schema ofS: if a keywordK occurs in an attribute name
of S, considerK as astructure term; otherwise, considerK
as avalue term. Return tuples withanyof the value terms.

• KEYWORDSTRICT: classify keywords inQ′ as in KEY-
WORDSTRUCT and return tuples withall value terms.

The second alternative approach, SOURCE, answersQ directly
on every data source that contains all the attributes inQ, and takes
the union of returned answers.

Finally, we considered the TOPMAPPING approach, where we
use the consolidated mediated schema but consider only the schema
mapping with the highest probability, rather than all the mappings
in the p-mapping.

Results: Figure 4 shows that UDI obtains better results than the
other approaches. We make the following three observations.

First, not surprisingly, all variants of KEYWORD performed
poorly on all domains. While we fully expected the precisionand
recall of keyword-based solutions to be poor, the main pointof the
experiment was to measure how poorly they did compared to UDI,
since keyword search engines offer a simple and general solution
for searching any kind of information.

Second, the SOURCEapproach always obtained high precision,
but its recall was low. The reason for this is that in essence,
SOURCEconsiders only attribute-identity mappings between terms
in the query and terms in the sources. Therefore, SOURCE will
miss any answer that needs a more subtle mapping. In theCourse
domain, the precision of SOURCE is below1 because a numeric
comparison performed on a string data type generates incorrect an-
swers.

Third, the precision of TOPMAPPING varied a lot from domain
to domain. When the mapping with the highest probability was
indeed a correct mapping, TOPMAPPING obtained high precision;
but otherwise, TOPMAPPING returned incorrect answers and re-
sulted in low precision. In any case, the recall of TOPMAPPING

was low since it did not consider other correct mappings (in the
Bib domain, TOPMAPPING failed to return any correct answers).
The recall of TOPMAPPING is even lower than SOURCE because
the highest-probability mapping often did not produce all identity
mappings, picked by SOURCE.

7.4 Contribution of p-med-schema
To examine the contribution of using a probabilistic mediated

schema in improving query answering results, we consideredtwo
approaches that create asinglemediated schema:

Figure 6: R-P curves for theMovie domain. The experimental
results show thatUDI ranks query answers better.

• SINGLEMED: create a deterministic mediated schema based
on the algorithm in Section 4.1.

• UNIONALL : create a deterministic mediated schema that
contains a singleton cluster for each frequent2 source at-
tribute.

Figure 5 compares UDI with the above methods. We observed
that although SINGLEMED and UNIONALL perform better than the
alternatives considered in the previous section, they still do not per-
form as well as UDI. Specifically, SINGLEMED obtained similar
precision as UDI but a lower recall, because it missed some cor-
rect mediated schemas and the accompanying mappings. UNION-
ALL obtained high precision but much lower recall. This is because
UNIONALL does not group source attributes with the same seman-
tics, resulting in correspondences with low weights; thus,we may
miss some correct attribute correspondences in p-mapping genera-
tion. In addition, not grouping similar attributes leads toan explo-
sion in the number of possible mappings in p-mappings. In theBib
domain, UNIONALL ran out of memory in system setup.

We observed from Figure 5 that the average F-measure of UDI
was only slightly better than SINGLEMED. This is because UDI
beat SINGLEMED in recall only for queries that contain ambiguous
attributes. For other queries the recall was the same using both the
approaches.

We took a closer look at how UDI and SINGLEMED rank their
answers by plotting the R-P curve in theMovie domain in Figure 6
(the other domains exhibited similar behavior). Recall wasvaried
on the x-axis by taking top-K answers based on probabilities. For
instance, to compute the UDI precision for 50% recall, we findK

such that the top-K answers in UDI have 50% recall. We then
compute the precision for theseK answers.

Although UDI and SINGLEMED obtained similar precision in
this domain, UDI ranked the returned answers better: the R-Pcurve
of UDI has a better shape in the sense that with a fixed recall, it has
a higher precision. Note the precision at recall of1 is different from
those of Figure 5 for two reasons. First, to rank tuples, we elimi-
nated duplicates and combined their probabilities; hence,the an-
swer set does not contain duplicates, unlike in the answers used for
Figure 5. Moreover, in the UDI domain, many incorrect answers
were ranked below all the correct answers, so we got a precision
higher than that in Figure 5.

7.5 Quality of mediated schema
Next, we tested the quality of the probabilistic mediated schema

against a manually created schema. Recall that each mediated
schema corresponds to a clustering of source attributes. Hence,
2We use the same threshold to decide if a source attribute occurs
frequently.



Figure 4: Performance of query answering of theUDI system and alternative approaches. TheUDI system obtained the highest
F-measure in all domains.

Figure 5: Performance of query answering of theUDI system and approaches that generate deterministic mediated schemas. The
experimental results show that using a probabilistic mediated schema improves query answering performance. Note thatwe did not
plot the measures forUNIONALL in the Bib domain as this approach ran out of memory in system setup.

Table 3: Precision, recall and F-measure of p-med-schemas
generated byUDI.

Domain Precision Recall F-measure
Movie .97 .62 .76
Car .68 .88 .77

People .76 .86 .81
Course .83 .58 .68

Bib .77 .81 .79
Avg .802 .75 .762

we measured its quality by computing theprecision, recallandF-
measureof the clustering, where we counted how manypairsof at-
tributes are correctly clustered. To compute the measures for prob-
abilistic mediated schemas, we computed the measures for each
individual mediated schema and summed the results weightedby
their respective probabilities.

Table 3 shows that we obtained high precision and recall, av-
eraging 0.8 and 0.75 respectively, over five domains. We expect
that if we used a more sophisticated pair-wise attribute matching
algorithm, our results would be significantly better.

7.6 Setup efficiency
Finally, we measured the time taken to set up the data integration

system. To examine the effect of the number of data sources onthe
efficiency of the system, we started with a subset of the data sources
in a domain and gradually added more data sources. We report our
results on theCar domain, as it contains the largest number of data
sources. We observed similar trends for other domains.

Figure 7 shows the time to set up the system, which includes
four steps: (1) importing source schemas, (2) creating a p-med-

Figure 7: System setup time for theCar domain. When the
number of data sources was increased, the setup time increased
linearly.

schema, (3) creating a p-mapping between each source schemaand
each possible mediated schema, and (4) consolidating the p-med-
schema and the p-mappings. For the entire data set, consisting of
817 data sources, it took roughly 3.5 minutes in total to configure
the integration system. Considering the typical amount of time it
takes to set up data integration applications, few minutes is a neg-
ligible amount of time. Furthermore, Figure 7 shows that thesetup
time increased linearly with the number of data sources. We note
that the most time-consuming step in system setup is to solvethe
maximum-entropy problem.

We also measured the time to answer queries in our system. With
817 data sources, UDI answered queries in no more than 2 sec-
onds. Since UDI is storing all the data locally and not commu-
nicating with live data sources, this number cannot be considered
representative of a real data integration system. Instead,the num-
ber illustrates that answering queries over the mediated schema and



the p-mappings we create does not add significant overhead.

8. RELATED WORK
We briefly describe related work on automated creation of me-

diated schemas and on schema-mapping creation. In contrastto
previous work that focused on each of these problems in isolation,
ours is the first that handled the entire process of setting upa data
integration application. The goal of our work is to be able tooffer
high-quality answers to queries without any human involvement.

Creating mediated schema:Most of the previous work on au-
tomatically creating mediated schemas focused on the theoretical
analysis of the semantics of merging schemas and the choicesthat
need to be made in the process [3, 6, 15, 17, 22, 25]. The goal of
these work was to make as many decisions automatically as pos-
sible, but where some ambiguity arises, refer to input from ade-
signer.

The work closest to ours is by He and Chang [14] who consid-
ered the problem of generating a mediated schema for a set of web
sources. Their approach was to create a mediated schema thatis
statistically maximallyconsistentwith the source schemas. To do
so, they assume that the source schemas are created by agenerative
modelapplied to some mediated schema. Our probabilistic medi-
ated schemas have several advantages in capturing heterogeneity
and uncertainty in the domain. We can express a wider class of
attribute clusterings, and in particular clusterings thatcapture at-
tribute correlations described in our motivating example in Sec-
tion 2. Moreover, we are able to combine attribute matching and
co-occurrence properties for the creation of the probabilistic medi-
ated schema, allowing for instance two attributes from one source
to have a nonzero probability of being grouped together in the me-
diated schema. Also, our approach is independent of a specific
schema-matching technique, whereas their approach is tuned for
constructing generative models and hence must rely on statistical
properties of source schemas.

Magnani et al. [20] proposed generating a set of alternativemedi-
ated schemas based on probabilistic relationships betweenrelations
(such as anInstructor relation intersects with aTeacher relation
but is disjoint with aStudent relation) obtained by sampling the
overlapping of data instances. Our technique focuses on matching
attributes within relations. In addition, our approach allows explor-
ing various types of evidence to improve matching and we assign
probabilities to the mediated schemas we generate.

Schema mapping:Schema mapping has been studied extensively
in the last ten years. Previous work has studied how to explore var-
ious clues, including attribute names, descriptions, datatypes, con-
straints, and data values, to understand the semantics of attributes
and match attributes (see [26] for a survey and [5, 7, 8, 9, 14,18,
28] for some work since then). In addition, some work consid-
ered how to create schema mappings by choosing a set of attribute
correspondences that best conform to certain heuristic constraints
involving the structure of the schema [8, 21]. Our algorithmtakes
existing schema matching techniques as a blackbox for attribute
comparison, based on which we then create mediated schemas and
probabilistic schema mappings.

Recent work has proposed notions to capture the uncertaintyin
data integration. Dong et al. [10] proposed the concept of proba-
bilistic schema mapping and studied query answering with respect
to such mappings, but they did not describe how to create such
mappings. Magnani and Montesi [19] have empirically shown that
top-k schema mappings can be used to increase the recall of a data
integration process and Gal [13] described how to generate top-k
schema matchings by combining the matching results generated by

various matchers. The probabilistic schema mappings we generate
are different as it contains all possible schema mappings that con-
form to the schema matching results and assigns probabilities to
these mappings to reflect the likelihood that each mapping iscor-
rect. In Section 7 we have compared our system to TOPMAPPING,
where we choose a single mapping from the sources to the mediated
schema. A further refinement would be to choose the top-k map-
pings selected using one of the techniques above. Finally, Nottel-
mann and Straccia [23] proposed generating probabilistic schema
matchings that capture the uncertainty on each matching step. The
probabilistic schema mappings we create not only capture our un-
certainty on results of the matching step, but also take intoconsid-
eration various combinations of attribute correspondences and de-
scribe adistributionof possible schema mappings where the prob-
abilities of all mappings sum up to 1.

9. CONCLUSIONS
We showed that it is possible to automatically set up a data in-

tegration application that obtains answers with high precision and
recall. In doing so, we established a fairly advanced starting point
for pay-as-you-go data integration systems. At its core, our system
is built on modeling uncertainty in data integration systems. The
main novel element we introduced to build our system is a prob-
abilistic mediated schema, which is constructed automatically by
analyzing the source schemas. We showed a set of experimentson
five domains and hundreds of data sources that validated our ap-
proach.

Of course, setting up the data integration is just the first step
in the process. Aside from improvements to this process, ourfu-
ture work will consider how to improve the data integration sys-
tem with time. We believe that the foundation of modeling un-
certainty will help pinpoint where human feedback can be most
effective in improving the semantic integration in the system, in
the spirit of [16]. In addition, we plan to extend our techniques to
dealing with multiple-table sources, including mapping multi-table
schemas, normalizing mediated schemas, and so on.

10. REFERENCES
[1] Knitro optimization software. http://www.ziena.com/knitro.htm.
[2] Secondstring. http://secondstring.sourceforge.net/.
[3] C. Batini, M. Lenzerini, and S. B. Navathe. A comparativeanalysis

of methodologies for database schema integration. InACM
Computing Surveys, pages 323–364, 1986.

[4] A. L. Berger, S. A. D. Pietra, and V. J. D. Pietra. A maximumentropy
approach to natural language processing.Computational Linguistics,
(1):39–71, 1996.

[5] J. Berlin and A. Motro. Database schema matching using machine
learning with feature selection. InProc. of the 14th Int. Conf. on
Advanced Information Systems Eng. (CAiSE02), 2002.

[6] P. Buneman, S. Davidson, and A. Kosky. Theoretical aspects of
schema merging. InProc. of EDBT, 1992.

[7] R. Dhamankar, Y. Lee, A. Doan, A. Y. Halevy, and P. Domingos.
iMAP: Discovering complex semantic matches between database
schemas. InProc. of ACM SIGMOD, 2004.

[8] H. Do and E. Rahm. COMA - a system for flexible combination of
schema matching approaches. InProc. of VLDB, 2002.

[9] A. Doan, J. Madhavan, P. Domingos, and A. Y. Halevy. Learning to
map between ontologies on the Semantic Web. InProc. of the Int.
WWW Conf., 2002.

[10] X. Dong, A. Y. Halevy, and C. Yu. Data integration with uncertainty.
In Proc. of VLDB, 2007.

[11] M. Dudik, S. J. Phillips, and R. E. Schapire. Performance guarantees
for regularized maximum entropy density estimation. InProc. of the
17th Annual Conf. on Computational Learning Theory, 2004.

[12] M. Franklin, A. Y. Halevy, and D. Maier. From databases to
dataspaces: a new abstraction for information management.In



SIGMOD Record, pages 27–33, 2005.
[13] A. Gal. Why is schema matching tough and what can we do about it?

SIGMOD Record, 35(4):2–5, 2007.
[14] B. He and K. C. Chang. Statistical schema matching across web

query interfaces. InProc. of ACM SIGMOD, 2003.
[15] R. Hull. Relative information capacity of simple relational database

schemata. InProc. of ACM PODS, 1984.
[16] S. Jeffery, M. Franklin, and A. Halevy. Pay-as-you-go user feedback

for dataspace systems. InProc. of ACM SIGMOD, 2008.
[17] L. A. Kalinichenko. Methods and tools for equivalent data model

mapping construction. InProc. of EDBT, 1990.
[18] J. Kang and J. Naughton. On schema matching with opaque column

names and data values. InProc. of ACM SIGMOD, 2003.
[19] M. Magnani and D. Montesi. Uncertainty in data integration: current

approaches and open problems. InVLDB workshop on Management
of Uncertain Data, pages 18–32, 2007.

[20] M. Magnani, N. Rizopoulos, P. Brien, and D. Montesi. Schema
integration based on uncertain semantic mappings.Lecture Notes in
Computer Science, pages 31–46, 2005.

[21] S. Melnik, H. G. Molina, and E. Rahm. Similarity flooding: A
versatile graph matching algorithm. InProc. of ICDE, pages
117–128, 2002.

[22] R. J. Miller, Y. Ioannidis, and R. Ramakrishnan. The useof
information capacity in schema integration and translation. In Proc.
of VLDB, 1993.

[23] H. Nottelmann and U. Straccia. Information retrieval and machine
learning for probabilistic schema matching.Information Processing
and Management, 43(3):552–576, 2007.

[24] S. D. Pietra, V. D. Pietra, and J. Lafferty. Inducing features of random
fields.IEEE Transactions on Pattern Analysis and Machine
Intelligence, 19(4):380–393, 1997.

[25] R. Pottinger and P. Bernstein. Creating a mediated schema based on
initial correspondences. InIEEE Data Eng. Bulletin, pages 26–31,
Sept 2002.

[26] E. Rahm and P. A. Bernstein. A survey of approaches to automatic
schema matching.VLDB Journal, 10(4):334–350, 2001.

[27] S. E. Fienberg W. Cohen, P. Ravikumar. A comparison of string
distance metrics for name-matching tasks. InProc. of IJCAI, 2003.

[28] J. Wang, J. Wen, F. H. Lochovsky, and W. Ma. Instance-based
schema matching for Web databases by domain-specific query
probing. InProc. of VLDB, 2004.

APPENDIX

A. PROOFS
Proof of Theorem 3.4:

1. Let the target mediated schemaT contain the set of all source
attributes that appear in some schema ofM, each in its own
cluster. We construct the set of mappings in the result p-
mappingpM as follows. For each mappingmi with prob-
ability pi in pM betweenS and mediated schemaMj in M

having probabilityp(Mj), we add a mappingmij to pM ,
with probabilitypi ∗p(Mj). mij is constructed as follows. If
mi maps attributeB ∈ S to some clusterA in Mj , thenmij

mapsB to all the singleton clusters inT that have an element
in A. Hence if a query asks for some attribute inA in M,
due toMj in the input it would retrieveB with probability
pi ∗ p(Mj) because of the probabilities of the corresponding
mediated schema and mapping, and in our constructed target
also it would retrieveB with the same probability because of
mij .

2. Consider the following example. LetS be a source with two
attributesa, andb, mediated schemaT also have two single-
ton clustersc1 = {a} andc2 = {b}. SupposepM has two
mappingsm1 with probability0.5 mappinga in S to c1 and
b to c2, andm2 with probability0.5 mappinga in S to c2 and
b to c1. There exists no p-med-schemaM and deterministic

mappingsm which would give results equivalent to the above
for all queries. Intuitively, this is because, we would needto
construct two distinct mediates schemas, each with two sin-
gleton clusters, and encoding the two mappings above. How-
ever, there exists just one distinct mediated schema with all
singleton clusters for the set of two attributes{a, b}. 2

Proof of Theorem 3.5: Consider a single data sourceS(a1, a2)
and a single-tuple instance ofS: D = {(x1, x2)}.

Consider a p-med-schemaM = {M1, M2}, whereM1 contains
two mediated attributesA1 = {a1} andA2 = {a2} (i.e., singleton
clusters), andM2 contains one mediated attributeA3 = {a1, a2}.
We havep(M1) = 0.7 andp(M2) = 0.3.

Consider a setpM = {pM1, pM2} of p-mappings forM1 and
M2 respectively. BothpM1 and pM2 are indeed deterministic
(contain one single mapping with probability 1):pM1 mapsA1

andA2 to a1 anda2 respectively, andM2 mapsA3 to a1.
We claim that there does not exist a single mediated schemaT

with a p-mappingpM betweenS andT such thatQT,pM (D) =
QM,pM(D) for all Q. If there did exist such aT and pM , T

would need to havea1 and a2 in different clusters. Otherwise,
for queryQ1: SELECT a1, a2 FROM T. AnswerQ1T,pM (D)
contains either tuple(x1, x1) or (x2, x2), but not(x1, x2), which
occurs inQ1M,pM(D). Thus,T has two attributesA4 = {a1}
andA5 = {a2}. BecausepM is a one-to-one mapping, each pos-
sible mapping inpM can mapa1 to one ofA4 andA5. Consider
query Q2: SELECT a1 FROM T, Q2M,pM(D) contains tuple
(x1) with probability 1. Thus, every possible mapping inpM must
mapa1 to A4 and so cannot mapa1 to A5. Now consider query
Q3: SELECT a2 FROM T. AnswerQ3M,pM(D) contains tuple
(x1) with probability .3; however,Q3T,pM (D) does not contain
(x1), leading to contradiction. 2.

Proof of Theorem 5.2: The second part of the theorem is trivial
and we prove the first part.

Only if: Suppose in contrast, there existsi0 ∈ [1, m] such that∑n

j=1 pi0,j > 1. Let pM be the p-mapping that is consistent with
P. Letm̄ be the set of mappings inpM that mapai0 to someAj ’s.
Then,

∑
m∈m̄

Pr(m) =
∑n

j=1 pi0,j > 1 and so the sum of all
probabilities inpM is greater than 1, contradicting the definition
of p-mappings. Similarly, we can prove the second condition.

If: We prove the theorem assuming allpi,j ’s are rational num-
bers. If some ofpi,j ’s are irrational, we can convert the problem to
an equivalent problem with rationalpi,j ’s. Details of this conver-
sion are omitted.

First note that there exists a rational numberq such that∀i, j,
pi,j

q
is a positive integer. The existence of such aq follows from

the fact that allpi,j ’s are rational. We transform the set of cor-
respondencesC to a new set of correspondencesC′ as follows:
for each correspondenceCi,j ∈ C with probability pi,j , there is
a correspondenceC′

i,j ∈ C′ with weightci,j =
pi,j

q
, which is an

integer. Intuitively, between each pair of attributes there areci,j

unit correspondences, each of which has probabilityq.
Let M be the maximum number of correspondences for any

source or mediated attribute. That is,
M = max{maxi(

∑
j
ci,j), maxj(

∑
i
ci,j)}.

Therefore, using the condition from the theorem we haveM ·q ≤ 1.
Hence it is sufficient for us to find a p-mapping that hasM + 1
mappings, among whichM mappings each has probabilityq and
one mapping is empty and has probability(1 − M · q). For each
mapping to have probabilityq, we need to pick at most one unit
correspondence for every source or mediated attribute. Considering
attributes as nodes, and correspondences as edges, we can reduce



our problem of finding such a p-mapping to the following bi-partite
matching problem:

Consider a bipartite graphG(V1, V2, E), whereE is a
multi-set of edges between a vertex inV1 and a vertex
in V2. Suppose all vertices are associated with at most
M edges. FindM bipartite matchings betweenV1 and
V2 such that every edge inE appears in exactly one bi-
partite matching.

We prove the existence of a solution to the above problem by
induction onM . SupposeM = 1, then every vertex is involved
in at most one edge, and hence the set of all edges constitutesa
bipartite matching. Let us now suppose there exists a solution for
the problem whenM ≤ k; we prove the existence of a solution
whenM = (k + 1). SupposeM = (k + 1), consider all vertices
that have(k + 1) edges. Pick exactly one edge from every such
vertex and add it to a setB. (First pick edges between a pair of
nodes that each have(k + 1) edges, and then pick edges with one
endpoint having(k+1) edges.) SinceB contains at most one edge
per vertex, it is a matching. And since the remaining graph has at
mostk edges per node, using the induction hypothesis we can find
a set ofk bipartite matchingsS. The set of matchingsS ∪ {B} is
a solution to the problem. 2


