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ABSTRACT 
Exploratory ad-hoc queries could return too many answers – a 
phenomenon commonly referred to as “information overload”. 
In this paper, we propose to automatically categorize the results 
of SQL queries to address this problem. We dynamically generate 
a labeled, hierarchical category structure – users can determine 
whether a category is relevant or not by examining 
simply its label; she can then explore just the relevant categories 
and ignore the remaining ones, thereby reducing information 
overload. We first develop analytical models to estimate 
information overload faced by a user for a given exploration. 
Based on those models, we formulate the categorization problem 
as a cost optimization problem and develop heuristic algorithms 
to compute the min-cost categorization.  
 

1. INTRODUCTION 
Database systems are being increasingly used for interactive and 
exploratory data retrieval [1,2,8,14]. In such retrieval, queries 
often result in too many answers. Not all the retrieved items are 
relevant to the user; typically, only a tiny fraction of the result set 
is relevant to her. Unfortunately, she often needs to examine all 
or most of the retrieved items to find those interesting ones. This 
too-many-answers phenomenon is commonly referred to as 
“information overload”. For example, consider a real-estate 
database that maintains information like the location, price, 
number of bedrooms etc. of each house available for sale.  
Suppose that a potential buyer is looking for homes in the 
Seattle/Bellevue Area of Washington, USA in the $200,000 to 
$300,000 price range. The above query, henceforth referred to as 
the “Homes” query, returns 6,045 homes when executed on the 
MSN House&Home home listing database. Information overload 
makes it hard for the user to separate the interesting items from 
the uninteresting ones, thereby leading to a huge wastage of 
user’s time and effort. Information overload can happen when the 
user is not certain of what she is looking for. In such a situation, 
she would pose a broad query in the beginning to avoid 
exclusion of potentially interesting results. For example, a user 
shopping for a home is often not sure of the exact neighborhood 
she wants or the exact price range or the exact square footage at 
the beginning of the query. Such broad queries may also occur 
when the user is naïve and refrains from using advanced search 
features [8]. Finally, information overload is inherent when users 

are interested in browsing through a set of items instead of 
searching among them.   

In the context internet text search, there has been two 
canonical ways to avoid information overload. First, they group 
the search results into separate categories. Each category is 
assigned a descriptive label examining which the user can 
determine whether the category is relevant or not; she can then 
click on (i.e., explore) just the relevant categories and ignore the 
remaining ones. Second, they present the answers to the queries 
in a ranked order. Thus, categorization and ranking present two 
complementary techniques to manage information overload.  
After browsing the categorization hierarchy and/or examining the 
ranked results, users often reformulate the query into a more 
focused narrower query. Therefore, categorization and ranking 
are indirectly useful even for subsequent reformulation of the 
queries. 

In contrast to the internet text search, categorization and 
ranking of query results have received much less attention in the 
database field. Only recently, ranking of query results has 
received some attention (see Section 2). But, no work has 
critically examined the use of categorization of query results in a 
relational database. This is the focus of this paper.  

Categorization of database query results presents some 
unique challenges that are not addressed in the approaches taken 
by likes of search engines/web directories (Yahoo!, Google) 
and/or product catalog search (Amazon, Ebay). In all the above 
cases, the category structures are created a priori. The items are 
tagged (i.e., assigned categories) in advance as well. At search 
time, the search results are integrated with the pre-defined 
category structure by simply placing each search result under the 
category it was assigned during the tagging process. Since such 
categorization is independent of the query, the distribution of 
items in the categories is susceptible to skew: some groups can 
have a very large number of items and some very few. For 
example, a search on ‘databases’ on Amazon.com yields around 
34,000 matches out of which 32,580 are under the “books” 
category. These 32,580 items are not categorized any further1 
(can be sorted based on price or publication date or customer 
rating) and the user is forced to go through the long list to find 
the relevant items. This defeats the purpose of categorization as it 
retains the problem of information overload.  

In this paper, we propose techniques to automatically 
categorize the results of SQL queries on a relational database in 
order to reduce information overload. Unlike the “a priori” 
categorization techniques described above, we generate a labeled 
hierarchical category structure automatically based on the 
contents of the tuples in the answer set.  Since our category 

                                                 
*Work done while visiting Microsoft Research. 
1 Typically, the category structure is created manually which 
deters the creation of a detailed category structure. That is why 
there are no subcategories under books. 
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Figure 1: Example of hierarchical categorization of query 
results (for the “Homes” query in Section 1) 

structure is generated at query time and hence tailored to the 
result set of the query at hand, it does not suffer from the 
problems of a priori categorization discussed above. This paper 
discusses how such categorization structures can be generated on 
the fly to best reduce the information overload. We begin by 
identifying the space of categorizations and develop an 
understanding of the exploration models that the user may follow 
in navigating the hierarchies (Section 3). Such understanding 
helps us compare and contrast the relative goodness of the 
alternatives for categorization. This leads to an analytical cost 
model that captures the goodness of a categorization.  Such a cost 
model is driven by the aggregate knowledge of user behaviors 
that can be gleaned from the workload experienced on the system 
(Section 4). Finally, we show that we can efficiently search the 
space of categorizations to find a good categorization using the 
analytical cost models (Section 5).  Our solution is general and 
presents a domain-independent approach to addressing the 
information overload problem. We perform extensive 
experiments to evaluate our cost models as well as our 
categorization algorithm (Section 6).  

 

2. RELATED WORK 
OLAP and Data Visualization: Our work on categorization is 
related to OLAP as both involve presenting a hierarchical, 
aggregated view of data to the user and allowing her to drill-
down/roll-up the categories [13]. However, in OLAP, the user 
(data analyst) needs to manually specify the grouping attributes 
and grouping functions (for the computed categories [13]); in our 
work, those are determined automatically. Information 
visualization deals with visual ways to present information [6]. It 
can be thought as a step after categorization to the further reduce 
information overload: given the category structure proposed in 
this paper, we can use visualization techniques (using shape, 
color, size and arrangements) to visually display the tree [6]. 
Data Mining: Our work on categorization is related to the work 
on clustering [11,17] and classification [12].  However, there are 
significant differences between those works and ours. Let us 
consider clustering first. First, the space in which the clusters are 
discovered is usually provided there whereas, in categorization, 
we need to find that space (the categorizing attributes). Second, 
existing clustering algorithms deal with either exclusively 
categorical [11] or exclusively numeric spaces [17]; in 
categorization, the space usually involves both categorical and 
numeric attributes. Third, the optimization criteria are different; 
while it is minimizing inter-cluster distance in clustering, it is 
minimizing cost (information overload) in our case. Our work 
differs from classification where the categories are already given 
there along with a training database of labeled tuples and we need 
predict the label of future, unlabeled tuples [12].   
Discretization/Histograms: In the context of numeric attributes, 
our work is related to the work on discretization [10] and 
histograms [5,15]. The discretization work assumes that there is a 
class assigned to each numeric value (as in classification) and 
uses the entropy minimization heuristic [10]. On the other hand, 
the histogram bucket selection is based on minimization of errors 
in result size estimation [5,15].   
Ranking: Previous work on overcoming information overload 
includes ranking and text categorization. Ranked retrieval has 
traditionally been used in Information Retrieval in the context of 
keyword searches over text/unstructured data [3] but has been 
proposed in the context of relational databases recently [2,4,14]. 
Ranking is a powerful technique for reducing information 

overload and can be used effectively in complement with 
categorization. Although categorization has been studied 
extensively in the text domain [9,16], to the best of our 
knowledge, this is the first proposal for automatic categorization 
in the context of relational databases. 
 

3. BASICS OF CATEGORIZATION 
In this section, we define the class of admissible categorizations 
and describe how a user explores a given category tree. 
 
3.1 Space of Categorizations 
Let R be a set of tuples. R can either be a base relation or a 
materialized view (for browsing applications) or it can be the 
result of a query Q (for querying applications). We assume that R 
does not contain any aggregated or derived attributes, i.e., Q does 
not contain any GROUP BYs or attribute derivations (Q is a SPJ 
query). A hierarchical categorization of R is a recursive 
partitioning of the tuples in R based on the data attributes and 
their values. Figure 1 shows an example of a hierarchical 
categorization of the results of the “Homes” query presented in 
Section 1. We define a valid hierarchical categorization T (also 
referred to as category tree) of R inductively as follows.  
Base Case: Given the root or “ALL” node (level 0) which 
contains all the tuples in R, we partition the tuples in R into an 
ordered list of mutually disjoint categories (level 1 nodes2) using 
a single attribute. For example, the root node in Figure 1 is 
partitioned into 3 mutually disjoint categories using the 
“Neighborhood” attribute: “Neighborhood: Redmond, Bellevue” 
followed by “Neighborhood: Issaquah, Sammamish” followed by 
“Neighborhood: Seattle”. 
Inductive Step: Given a node C at level (l-1), we partition the set 
of tuples tset(C) contained in C into an ordered list of mutually 
disjoint subcategories (level l nodes) using a single attribute 
which is same for all nodes at level (l-1). We partition a node C 

                                                 
2 We use the term node and category interchangeably in this 
paper. 
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Figure 2: Model of exploration of node C in ‘All’ Scenario 

only if C contains more than a certain number of tuples. The 
attribute used is referred to as the categorizing attribute of the 
level l nodes and the subcategorizing attribute of the level (l-1) 
nodes. For example, “Price” is the categorizing attribute of all 
nodes at Level 2 (also the subcategorizing attribute of all nodes at 
Level 1). Furthermore, once an attribute is used as a categorizing 
attribute at any level, it is not repeated at a later level, i.e., there is 
a 1:1 association between each level of T and the corresponding 
categorizing attribute. We impose the above constraints to ensure 
that the categorization is simple, intuitive and easily 
understandable to the user. 
Associated with each node C is a category label and a tuple-set as 
defined below: 
Category Label: The predicate label(C) describing node C. For 
example, the first child of root (rendered at the top) in Figure 1 
has label ‘Neighborhood ∈  {Redmond, Bellevue}’ (rendered as 
‘Neighborhood: Redmond, Bellevue’ in Figure 1) while the first 
child of the above category has label ‘Price: 200K–225K’.  
Tuple-Set: The set of tuples tset(C) (called the tuple-set of C) 
contained in C; either appearing directly under C (if C is a leaf 
node) or under its subcategories (if C is a non-leaf node). 
Formally, tset(C) is the set of tuples, among the ones contained in 
the parent of C, which satisfy the predicate label(C). In other 
words, tset(C) is the subset of tuples in R that satisfies the 
conjunction of category labels of all nodes on the path from the 
root to C.  For example, in Figure 1, tset(C) for the category with 
label ‘Neighborhood: Redmond, Bellevue’ is the set of all homes 
in R that are located either in Redmond or in Bellevue while 
tset(C) for its child with label ‘Price: 200K–225K’ is the set of 
all homes in R that are located either in Redmond or in Bellevue 
and priced between 200K and 225K.   

The label of a category, therefore, solely and 
unambiguously describes to the user which tuples, among those 
in the tuple set of the parent of C, appear under C. Hence, she can 
determine whether C contains any item that is relevant to her or 
not by looking just at the label and hence decide whether to 
explore or ignore C. As discussed above, label(C) has the 
following structure:  
If the categorizing attribute A is a categorical attribute: 
label(C) is of the form ‘A ∈ B’ where B ⊂ domR(A) (domR(A) 
denotes the domain of values of attribute A in R). A tuple t 
satisfies the predicate label(C) if t.A ∈ B, otherwise it is false (t.A 

denotes the value of tuple t on attribute A). 
If the categorizing attribute A is a numeric attribute: label(C) 
is of the form ‘a1 ≤ A < a2’ where a1, a2 ∈  domR(A). A tuple t 
satisfies the predicate label(C) is true if a1≤t.A<a2, otherwise it is 
false. 

So far, we have described the structure of a hierarchical 
categorization which defines the class of permissible 
categorizations. To generate a particular instance of hierarchical 
categorization, we need to do the following for each level l: 
•  Determine the categorizing attribute A for level l 
•  Given the choice A of categorizing attribute for level l, for 

each category C in level (l-1), determine how to partition the 
domain of values of A in tset(C) into disjoint groups and 
how do order those groups.  

We want to choose the attribute-partitioning combination at each 
level such that the resulting instance Topt has the least possible 
information overload on the user. For that purpose, we first need 
a model that captures how a user navigates the result set R using 
a given category tree T. 
 

3.2 Exploration Model 
We present two models capturing two common scenarios in data 
exploration. One scenario is that the user explores the result set R 
using the category tree T until she finds every tuple t ∈ R relevant 
to her, i.e., she does not terminate the exploration after she has 
found some (but not all) relevant tuples. For example, the user 
may want to find every home relevant to her in the “Homes” 
query. In order to ensure that she finds every relevant tuple, she 
needs to examine every tuple and every category label except the 
ones that appear under categories she deliberately decides to 
ignore. Another scenario is that the user is interested in just one 
(or two or a few) tuple(s) in R; so she explores R using T till she 
finds that one (or few) tuple(s). For example, a user may be 
satisfied if she finds just one or two homes that are relevant to 
her. For the purpose of modeling, we assume that, in this 
scenario, the user is interested in just one tuple, i.e., the user 
explores the result set until she finds the first relevant tuple. We 
consider these two scenarios because they both occur commonly 
and they differ in their analytical models; we do not consider 
additional scenarios as the above two represent the two ends of 
the spectrum of possible scenarios; other scenarios (e.g., user 
interested in two/few tuples) fall in between these two ends.  

 
3.2.1 Exploration Model for ‘All’ Scenario 
The model of exploration of the subtree rooted at an arbitrary 
node C is shown in Figure 2. The user starts the exploration by 
exploring the root node. Given that she has decided to explore the 
node C, if C is a non-leaf node, she non-deterministically (i.e., 
not known in advance) chooses one of the two options3:  
Option ‘SHOWTUPLES’: Browse through the tuples in tset(C). 
Note that the user needs to examine all tuples in tset(C)  to make 
sure that she finds every tuple relevant to her.  
Option ‘SHOWCAT’: Examine the labels of all the n 
subcategories of C, exploring the ones relevant to her and 
ignoring the rest. More specifically, she examines the label of 
each subcategory Ci starting from the first subcategory and non-
deterministically chooses to either explore it or ignore it. If she 
chooses to ignore Ci, she simply proceeds and examines the next 
label (of Ci+1). If she chooses to explore Ci, she does so 
recursively based on the same exploration model, i.e., by 
choosing either ‘SHOWTUPLES’ or ‘SHOWCAT’ if it is an 
internal node or by choosing ‘SHOWTUPLES’ if it is a leaf 

                                                 
3 We assume that the user interface displays sufficient 
information (in addition to the category label) to the user so that 
she can properly decide between SHOWTUPLES and 
SHOWCAT. 

Explore C 
if C is non-leaf node 
     CHOOSE one of the following: 

(1) Examine all tuples in  tset(C) // Option SHOWTUPLES 
(2) for (i=1; i ≤n; i++) // Option SHOWCAT 

                  Examine the label of ith subcategory Ci 

                           CHOOSE one of the following: 
                   (2.1) Explore Ci 
                   (2.2) Ignore  Ci 

else // C is a leaf-node 
     Examine all tuples in tset(C) //SHOWTUPLES is only option  



Figure 3: Model of exploration of node C in ‘One’ Scenario  

node. After she finishes the exploration of
 
Ci, she goes ahead and 

examines the label of the next subcategory of C (of Ci+1).   When 
the user reaches the end of the subcategory list, she is done. Note 
that we assume that the user examines the subcategories in the 
order it appears under C; it can be from top to bottom (as shown 
in Figure 1) or from left to right depending on how the tree is 
rendered by the user interface. 
If C is a leaf node, ‘SHOWTUPLES’ is the only option (option 
‘SHOWCAT’ is not possible since a leaf node has no 
subcategories). 
Example 3.1: Here is an example of an exploration on the tree in 
Figure 1 in the ‘ALL’ scenario: explore root using SHOWCAT, 
examine “Neighborhood:Redmond,Bellevue” and explore it 
using SHOWCAT, examine “Price:200K-225K” and ignore it, 
examine “Price:225K-250K” and explore it using 
SHOWTUPLES, examine all tuples under “Price:225K-250K”, 
examine “Price:250K-300K” and ignore it, examine 
“Neighborhood:Issaquah, Sammamish” and ignore it, examine 
“Neighborhood:Seattle” and ignore it . Note that examining a 
node means reading its label while examining a tuple means 
reading all the fields in the tuple.  

3.2.2 Exploration Model for ‘One’ Scenario 
The model of exploration of an arbitrary node C of the tree T is 
shown in Figure 3. Once again, the user starts the exploration by 
exploring the root node. Given that the user has decided to 
explore a node C, she non-deterministically chooses one of the 
two options:  
Option ‘SHOWTUPLES’: Browse through the tuples in tset(C) 
starting from the first tuple in tset(C) till she finds the first 
relevant tuple. In this paper, we do not assume any particular 
ordering/ranking when the tuples in tset(C) are presented to the 
user. 
Option ‘SHOWCAT’: Examine the labels of the subcategories 
of C starting from the first subcategory till the first one she finds 
interesting. As in the ‘ALL’ scenario, she examines the label of 
each subcategory Ci starting from the first one and non-
deterministically chooses to either explore it or ignore it. If she 
chooses to ignore Ci, she simply proceeds and examines the next 
label. If she chooses to explore Ci, she does so recursively based 
on the same exploration model. We assume that when she drills 
down into Ci, she finds at least one relevant tuple in tset(Ci); so, 
unlike in the ‘ALL’ scenario, the user does not need to examine 
the labels of the remaining subcategories of C. 

If C is a leaf node, ‘SHOWTUPLES’ is the only option (browse 
through the tuples in tset(C) starting from the first one till she 
finds the first relevant tuple). 
Example 3.2: Here is an example of an exploration using the tree 
in Figure 1 in the ‘ONE’ scenario: explore root using 
SHOWCAT, examine “Neighborhood:Redmond,Bellevue” and 
explore it using SHOWCAT, examine “Price:200K-225K” and 
ignore it, examine “Price:225K-250K” and explore it using 
SHOWTUPLES, examine tuples under “Price:225K-250K” 
starting with the first one till she finds the first relevant tuple. 
 

4. COST ESTIMATION 
Since we want to generate the tree imposes the least possible 
information overload on the user, we need to estimate the 
information overload that a user will face during an exploration 
using a given category T. We describe how to estimate that in this 
section. 
 
4.1 Cost Models 
4.1.1 Cost Model for ‘ALL’ Scenario 
Let us first consider the ‘ALL’ scenario. Given a user exploration 
X using category tree T, we define information overload cost, or 
simply cost (denoted by CostAll(X,T)), as the total number of 
items (which includes both category labels and data tuples) 
examined by the user during X.  The above definition is based on 
the assumption that the time spent in finding the relevant tuples is 
proportional to the number of items the user needs to examine: 
more the number of items she needs to examine, more the time 
wasted in finding the relevant tuples, higher the information 
overload.  
Example 4.1: We compute the cost CostAll(X,T) of the 
exploration in Example 3.1.  Assuming 0 cost for examining the 
root node (for simplicity) and assuming that there are 20 tuples 
under “Price:225K-250K”, the cost is 3 (for examining the labels 
of the 3 first-level categories) + 3 (for examining the labels of the 
3 subcategories of “Neighborhood:Redmond,Bellevue”) + 20 
(examining the tuples under “Price:225K-250K”) = 26. 
If we knew the mind of the user, i.e., we deterministically knew 
what choices in Figure 2 a particular user will make (which 
categories she will explore and which ones she will ignore, when 
she will use SHOWTUPLES and when SHOWCAT, etc.), we 
could generate the tree that would minimize the number of items 
this particular user needs to examine. Since we do not have that 
user-specific knowledge4, we use the aggregate knowledge of 
previous user behavior in order to estimate the information 
overload cost CostAll(T) that a user will face, on average, during 
an exploration using a given category tree T. Based on the 
definition of information overload, CostAll(T) is the number of 
items (which includes category labels and data tuples) that a user 
will need to examine, on average, during the exploration of R 
using T till she finds all tuples relevant to her. Subsequently, we 

                                                 
4 We can get some of this knowledge by observing past behavior 
of this particular user (known as ‘personalization’). We do not 
pursue that direction in this paper. As a result, our technique does 
not produce the optimal tree for any user in particular but for the 
(hypothetical) average user (the tree produced is the same for any 
user for a given query). Since we are optimizing for the average 
case, we expect it to be reasonably good, on average, for 
individual users assuming that the individual users conform to the 
previous behavior captured by the workload. 

Explore C 
if C is non-leaf node 
     CHOOSE one of the following: 

(1) Examine tuples in  tset(C) from beginning till 1st relevant 
tuple found // Option SHOWTUPLES 

(2) for (i=1; i ≤n; i++) // Option SHOWCAT 
                  Examine the label of ith subcategory Ci 

                           CHOOSE one of the following: 
                   (2.1) Explore Ci 
                   (2.2) Ignore  Ci 

                           if (choice = Explore) break; // examine till 1st relevant 
else // C is a leaf-node 
         Examine all tuples in tset(C) from beginning till 1st relevant 
tuple found  // Option  SHOWTUPLES is the only option 



can find the category tree that minimizes this average cost of 
exploration. Since the user choices in Figure 2 are non-
deterministic and not equally likely, we need to know the 
following two probabilities associated with each category of T in 
order to compute CostAll(T): 
Exploration Probability: The probability P(C) that the user 
exploring T explores category C, using either SHOWTUPLES or 
SHOWCAT, upon examining its label. The probability that the 
user ignores C upon examining its label is therefore (1-P(C)).  
SHOWTUPLES Probability: The probability Pw(C)5 that the 
user goes for option ‘SHOWTUPLES’ for category C given that 
she explores C. The SHOWCAT probability of C, i.e., the 
probability that the user goes for option ‘SHOWCAT’ given that 
she explores C is therefore (1- Pw(C)). If C is a leaf category, 
Pw(C) = 1 because given that the user explores C, 
‘SHOWTUPLES’ is the only option.  
How we compute these probabilities using past user behavior is 
discussed in Section 4.2. We next discuss how to compute 
CostAll(T) assuming we know the above probabilities. 
 

 Let us consider a non-leaf node C of T. Let C1, C2, …, Cn 
be the n subcategories of C. Let us consider the cost CostAll(TC) 
of exploring the subtree TC rooted at C given that the user has 
chosen to explore C. Since the cost is always computed in the 
context of a given tree T, for simplicity of notation, we 
henceforth denote CostAll(TC) by CostAll(C); CostAll(T) is simply 
CostAll(root). If the user goes for option ‘SHOWTUPLES’ for C, 
she examines all the tuples in tset(C), so the cost is |tset(C)|. If 
she goes for option ‘SHOWCAT’, the total cost is the cost of 
examining the labels of all the subcategories plus the cost of 
exploring the subcategories she chooses to explore upon 
examining the labels. The first component is K*n where K is the 
cost of examining a category label relative to the cost of 
examining a data tuple; the second cost is CostAll(Ci) if she 
chooses to explore Ci, 0 if she chooses to ignore it. Putting it all 
together,  
CostAll(C) =  

Pw(C)*|tset(C)| + (1-Pw(C)) * (K*n + 
n

i 1=
Σ  P(Ci)*CostAll(Ci) )    (1) 

If C is a leaf node, CostAll(C) = |tset(C)|. Note that the above 
definition still holds as Pw(C) = 1 for a leaf node.  
 
4.1.2 Cost Model for ‘ONE’ Scenario 

In this scenario, the information overload cost CostOne(T) 
that a user will face, on average, during an exploration using a 
given category tree T is the number of items that a user will need 
to examine, on average, till she finds the first tuple relevant to 
her. Let us consider the cost CostOne(C) of exploring the subtree 
rooted at C given that the user has chosen to explore C; 
CostOne(T) is simply CostOne(root). If the user goes for option 
‘SHOWTUPLES’ for C and frac(C) denotes the fraction of tuples 
in tset(C) that she needs to examine, on average, before she finds 
the first relevant tuple, the cost, on average, is frac(C)*|tset(C)|. If 
she goes for option ‘SHOWCAT’, the total cost is (K*i + 
CostOne(Ci)) if Ci is the first subcategory of C explored by the user 
(since the user examines only i labels and explores only Ci). 
Putting it all together,  

                                                 
5 The subscript ‘w’ denotes that the user examines the whole set 
of tuples in SC. 

CostOne(C) =Pw(C)*frac(C)*|tset(C)| + (1-Pw(C)) * 
n

i 1=
Σ  (Prob. 

that Ci is the first category explored* (K*i + CostOne(Ci)))                        
The probability that Ci is the first category explored (i.e., 
probability that the user explores Ci but none of C1 to C(i-1)), is 
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(1-P(Cj)) * P(Ci)* (K*i + CostOne(Ci)) )(2) 

If C is a leaf node, CostOne(TC) = frac(C)*|tset(C)|; so the above 
definition still holds as Pw(C) = 1 for a leaf node.  
 

4.2 Using Workload to Estimate Probabilities 
As stated in Section 4.1, we need to know the probabilities Pw(C) 
and P(C) to be able to compute the average exploration cost 
CostAll(T) (or CostOne(T)) of a given tree T (all other variables in 
the equations (1) and (2) are either constants or known for a 
given T). To estimate these probabilities automatically (without 
any input from domain expert), we use the aggregate knowledge 
of previous user behavior. Specifically, we look at the log of 
queries that users of this particular application have asked in the 
past (referred to as ‘workload’). Our technique only requires the 
log of SQL query strings as input; this is easy to obtain since the 
profiling tools that exist on commercial DBMSs log the queries 
that executes on the system anyway. Since we use the aggregate 
knowledge, our categorization is the same for all users for the 
same result set; it only varies with the result set.  
Computing SHOWTUPLES Probability: Given that the user 
explores a non-leaf node C, she has two mutually exclusive 
choices: do SHOWTUPLES or do SHOWCAT. Let us first 
consider the SHOWCAT probability of C, i.e., the probability 
that the user does SHOWCAT given that she explores C. We 
presume that the user does SHOWCAT for C (given that she 
explores C) if the subcategorizing attribute SA(C) of C is such 
that user is interested in only a few of the subcategories (i.e., in 
only a few values of SA(C)); in this situation, using SHOWCAT 
enables her to ignore a large fraction of the subcategories and 
hence significantly cut down the number of tuples she needs to 
examine. On the other hand, if she is interested in all or most of 
the subcategories of C, i.e., in all or most values of SA(C), she 
will go for SHOWTUPLES. For example, in Figure 1, suppose 
the user has decided to explore the 
“Neigborhood:Redmond,Bellevue” category. If the user is 
sensitive about ‘Price’ and cares only about 200K-225K homes, 
she is most likely to request SHOWCAT and thereby avoid 
examining the 225K-250K and 250K-300K homes (by ignoring 
those categories). On the other hand, if she does not care about 
the ‘Price’ of the home, the user is most likely to request 
SHOWTUPLES for that category because she would need to 
explore all the subcategories if she does SHOWCAT. We 
estimate the SHOWCAT probability of C using the workload as 
follows. Suppose that the workload query Wi represents the 
information need of a user Ui. If Ui has specified a selection 
condition6 on SA(C) in Wi, it typically means that she is 

                                                 
6 We assume that the workload queries are SPJ queries on a 
database with star schema, i.e., they are equivalent to select 
queries on the wide table obtained by joining the fact table with 
the dimension tables. The attributes and values used in the 



interested in a few values of SA(C). On the other hand, absence of 
selection condition on SA(C) means that she is interested in all 
values of SA(C).  If NAttr(A) denotes the number of queries in the 
workload that contain selection condition on attribute A and N is 
the total number of queries in the workload, NAttr(SA(C))/N is the 
fraction of users that are interested in a few values of SA(C). 
Assuming that the workload represents the activity of a large 
number of diverse users and hence forms a good statistical basis 
for inferencing user behavior, the probability that a random user 
is interested in a few values of SA(C), i.e., the SHOWCAT 
probability of C is NAttr(SA(C))/N. The SHOWTUPLES 
probability Pw(C) of C (probability that the user goes for option 
‘SHOWTUPLES’ for C given that she explores C) is therefore 1 
– NAttr(SA(C))/N. 
Computing Exploration Probability: We now discuss how we 
estimate the probability P(C) that the user explores category C, 
either using SHOWTUPLES or SHOWCAT, upon examining its 
label.  By definition, P(C) = P(User explores C | User examines 
label of C). Since user explores C implies that user has examined 
label of C, P(C) = P(User explores C) / P(User examines label of 
C). Since user examines label iff she explores the parent (say C’) 
of C and chooses SHOWCAT for C’, 

P(C)=
)C'for  SHOWCAT chooses and C' exploresP(User 

C) exploresP(User          

)C' exploresUser |C'for  SHOWCAT choosesP(User *)C' exploresP(User 

C) exploresP(User  =

P(User chooses SHOWCAT for C’|User explores C’) is the 
SHOWCAT probability of C’ = NAttr(SA(C’))/N.  
A user explores C if she, upon examining the label of C, thinks 
that there may be one or more tuples in tset(C) that is of interest 
to her, i.e., the full path predicate of C (the conjunction of 
category labels of all nodes on the path from the root to C) is of 
interest to her. Assuming that the user’s interest in a label 
predicate on one attribute is independent of her interest in a label 
predicate on another attribute, P(User explores C) / P(User 
explores C’) is simply the probability that the user is interested in 
the label predicate label(C). 

So, P(C)= 
(SA(C))/NAttrN

  label(C)) predicatein  interestedP(User   

Again suppose that the workload query Wi in the workload 
represents the information need of a user Ui. If Wi has a selection 
condition on the categorizing attribute CA(C) of C and that 
selection condition on CA(C) overlaps with the predicate 
label(C), it means that Ui is interested in the predicate label(C). If 
NOverlap(C) denotes the number of queries in the workload whose 
selection condition on CA(C) overlaps with label(C), P(User 
interested in predicate label(C)) = NOverlap(C)/N.  So, P(C) = 
NOverlap(C)/NAttr(SA(C’)). Since the subcategorizing attribute 
SA(C’) of C’ is, by definition, the categorizing attribute CA(C) of 
C,  P(C) = NOverlap(C)/ NAttr(CA(C)). We finish this discussion by 
stating what we mean by overlap: if CA(C) (say A) is a 
categorical attribute, the selection condition “A IN {v1,…, vk)” 
on CA(C) in Wi overlaps with the predicate label(C) = ‘A∈ B’ if 
the two sets {v1,…, vk} and B are not mutually disjoint; if CA(C) 
(again say A) is a numeric attribute, the selection condition “vmin 
≤ A ≤ vmax” on CA(C) in Wi overlaps with the predicate label(C) 

                                                                                 
selection conditions in the queries therefore reflect the user’s 
interest in those attributes and values while searching for items in 
the fact table. 

= ‘a1 ≤ A < a2’ iff the two ranges [vmin,vmax] and [a1,a2] 
overlap.  
 

5. CATEGORIZATION ALGORITHM 
Since we know how to compute the information overload cost 
CostAll(T) of a given tree T, we can enumerate all the permissible 
category trees on R, compute their costs and pick the tree Topt 
with the minimum cost.  This enumerative algorithm will produce 
the cost-optimal tree but could be prohibitively expensive as the 
number of permissible categorizations may be extremely large. In 
this section, we present our preliminary ideas to reduce the search 
space of enumeration. We will first present our techniques in the 
context of 1-level categorization (i.e., a root node pointing to a 
set of mutually disjoint categories which are not subcategorized 
any further). In Section 5.2, we generalize that to multi-level 
categorization.   
 

5.1 One-level Categorization 
We now present heuristics to (1) eliminate a subset of relatively 
unattractive attributes without considering any of their 
partitionings (Section 5.1.1) and (2) for every attribute selected 
above, obtain a good partitioning efficiently instead of 
enumerating all the possible partitionings (Sections 5.1.2 and 
5.1.3).  Finally, we choose the attribute and its partitioning that 
has the least cost.  
 
5.1.1 Reducing the Choices of Categorizing Attribute  
Since the presence of a selection condition on an attribute in a 
workload query reflects the user’s interest in that attribute (see 
Section 4.2), attributes that occur infrequently in the workload 
can be discarded right away while searching for the min-cost tree. 
Let A be the categorizing attribute chosen for the 1-level 
categorization. If the occurrence count NAttr(A) of A in the 
workload is low, the SHOWTUPLES probability Pw(root) of the 
root node will be high. Since the SHOWTUPLES cost of a tree is 
typically much higher than its SHOWCAT cost and the choice of 
partitioning affects only the SHOWCAT cost, a high 
SHOWTUPLES probability implies that the cost of the resulting 
tree would have a large first component (Pw(root)*|tset(root)|) 
which would contribute to a higher total cost. Therefore, it is 
reasonable to consider eliminating such low occurring attributes 
without considering any of their partitionings.  

Specifically, we eliminate the uninteresting attributes using 
the following simple heuristic: if an attribute A occurs in less 
than a fraction x of the queries in the workload, i.e., NAttr(A)/N < 
x, we eliminate A. The threshold x will need to be specified by 
the system designer/domain expert. For example, for the home 
searching application, if we use x=0.4, only 6 attributes, namely 
neighborhood, price, bedroomcount, bathcount, property-type 
and square footage, are retained from among 53 attributes in the 
MSN House&Home dataset. For attribute elimination, we 
preprocess the workload and maintain, for each potential 
categorizing attribute A, the number NAttr(A) of queries in the 
workload that contain selection condition on A. At query time, 
for each retained attribute, we obtain a good partitioning by 
invoking the partitioning function discussed in Sections 5.1.2 and 
5.1.3 below and choose the attribute-partitioning combination 
that has the minimum CostAll(T). 
 
5.1.2 Partitioning for Categorical Attributes 
We present an algorithm to obtain the optimal partitioning for a 
given categorizing attribute A that is categorical. Consider the 



Figure 4: Example of AttributeUsageCounts table and 
OccurrenceCounts table 

case where the user query Q contains a selection condition of the 
form “A IN {v1, …, vk}” on A. We only consider single-value 
partitionings of R in this paper, i.e., we partition R into k 
categories – one category Ci corresponding to each value vi in the 
IN clause (e.g., “Neighborhood:Redmond”, 
“Neighborhood:Bellevue”, etc.). The advantage of single-value 
partitionings is that the category labels are simple and easy to 
examine; multi-valued categories, on the other hand, would have 
more complex category labels. Among the single-value 
partitionings, we want to choose the one with the minimum cost. 
Since the set of categories is identical in all possible single-value 
partitionings, the only factor that impacts the cost of a single-
valued partitioning is the order in which the categories are 
presented to the user. The order affects the cost because our 
exploration models (see Section 3.2) assume that the user always 
starts examining the labels of the subcategories from the top and 
goes downwards (or from left going rightwards depending on the 
rendering). The cost CostAll(T) to find all tuples relevant to her is 
not affected by the order, so we only consider the cost CostOne(T) 
to find one relevant tuple. It can be shown from Equation (2) that 
among all possible orderings, CostOne(T) is minimum when the 
categories are presented to the user in increasing order of  1/P(Ci) 
+ CostOne(Ci); the proof can be found in Appendix A. Intuitively, 
if the probability P(Ci) of drilling into the category is high, it is 
better to present it to the user earlier since that would reduce the 
number of labels of uninteresting categories the user needs to 
examine. Also, it is better to place the categories with lower 
exploration cost earlier as that would reduce the overall cost as 
well.  Although the above optimality criterion can be evaluated to 
obtain the optimal 1-level category tree, it is hard to use the 
criteria for multilevel category trees due to the complexity of 
computing CostOne(Ci). However, in contrast, P(Ci) can be 
evaluated for the multilevel category tree without any complexity. 
Therefore, we have adopted the heuristic to present the categories 
in the decreasing order of P(Ci), i.e., we only use the first term in 
the above formula. Although the above is tantamount to assuming 
equality of CostOne(Ci)’s, our experimental results have been 
encouraging.  Recall from Section 4.2 that P(Ci) = 
NOverlap(Ci)/NAttr(A). Since each category Ci corresponds to a 
single value vi, NOverlap(Ci) is the number of queries in the 
workload whose selection condition on A contains vi in the IN 
clause (called the occurrence count occ(vi) of vi). To obtain the 

partitioning, we simply sort the values in the IN clause in the 
decreasing order of occ(vi).   

To retrieve the occurrence count occ(vi) of a given value vi 
efficiently, we preprocess the workload and maintain, for each 
categorical attribute A separately, the occurrence count of each 
distinct value of A in a database table (see Figure 4(b)). For each 
occurrence count table, we can build an index on the value to 
make the retrieval efficient. If necessary, standard compression 
techniques (e.g., prefix compression, histogramming techniques) 
can be used to compress the occurrence count table as well. 
 
5.1.3 Partitioning for Numeric Attributes 
We present a heuristic to obtain a good partitioning for a given 
categorizing attribute A that is numeric. Let vmin and vmax be the 
minimum and maximum values that the tuples in R can take in 
attribute A. If the user query Q contains a selection condition on 
A, vmin and vmax can be obtained directly from Q. Let us first 
consider the simple case where we want to partition the above 
range (vmin, vmax] into two mutually disjoint buckets, i.e., 
identify the best point to split. Let us consider a point v (vmin < v 
< vmax). If a significant number of query ranges (corresponding 
to the selection condition on A) in the workload begin or end at 
v, it is a good point to split as the workload suggests that most 
users would be interested in just one bucket, i.e., either in the 
bucket (vmin, v] or in the bucket (v, vmax] but not both (see 
Figure 5(a)). In this situation, she will be able to ignore one of 
the buckets and hence avoid examining all the items under it, 
thereby reducing information overload. On the other hand, if few 
or none of the ranges begin or end at v (i.e., all or most of them 
spans across v), most users would be interested in both buckets 
(see Figure 5(a)). In this case, the user will end up examining all 
the items in R and hence incur a high exploration cost; v is 
therefore not a good point to split.  If we are to partition the range 
into m buckets, where m is specified by the system designer, 
applying the above intuition, we should select the (m-1) points 
where most query ranges begin and/or end as the splitpoints. 
However, our cost model suggests that the start and end counts of 
the splitpoints are not the only factors determining the cost; the 
other factor is the number of tuples that fall in each bucket. The 
above splitpoint selection heuristic, therefore, may not always 
produce the best partitioning in terms of cost, especially if there 
is a strong correlation between start/end counts of the splitpoints 
and the number of tuples in each bucket. Such correlations 
occured rarely in the real-life datasets we used in our experiments 
and the above heuristic produced low-cost partitionings for those 
datasets.  

 Let us consider the point v again (vmin < v < vmax). Let 
startv and endv denote the number of query ranges in the 
workload starting and ending at v respectively. We use 
SUM(startv, endv) as the “goodness score” of the point v. The 
above heuristic is an approximation of the optimal goodness 
score suggested by the cost model; in the special case where we 
are selecting a single splitpoint and the resulting two buckets 
have equal number of tuples, the above heuristic matches the 
optimal goodness score (i.e., produces the cost-optimal 
partitioning). Since the above goodness score depends only on v, 
we can precompute the goodness score for each potential 
splitpoint and store it in a table7; Figure 5(b) shows the 
precomputed goodness scores for all potential splitpoints in the 

                                                 
7 We assume that the potential splitpoints are separated by a 

fixed interval (e.g., 1000 in Figure 5(b)).  
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Figure 5: (a) Intuition behind splitpoint selection heuristic 
(b) Part of Splitpoints table for Price attribute (only 
splitpoints in the range (0, 10000] are shown). The 
separation interval is 1000. 
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range (0,10000]). At query time, to produce m buckets, we pick 
the top (m-1) splitpoints in the range (vmin, vmax] based on 
goodness scores, leaving out the ones that are unnecessary. Of 
course, a splitpoint is unnecessary for a range if it contains too 
few tuples. We will discuss this aspect in greater details in 
Section 5.2. We examine the splitpoints in the range (vmin, 
vmax] in decreasing order of goodness score; if we get an 
unnecessary one, we simply skip it (otherwise we select it) and go 
to the next one till we select m splitpoints.  Finally, note that the 
goodness metric may be used as a basis for automatically 
determining m instead of being specified externally.  
Example 5.1: In the example in Figure 5(b), if m=3, we will 
select 5000 and 8000 if both are necessary (since the have the 
highest goodness values, 130 and 100 respectively). If the 
splitpoint 8000 is unnecessary, we skip it and pick the next best 
splitpoint, i.e., 2000; so we will select 5000 and 2000. We always 
present the categories in ascending order of the values of the split 
points (i.e., 0-2000 followed by 2000-5000 followed by 5000-
10000 in the latter case). 

As mentioned before, we preprocess the workload and 
maintain, for each numeric attribute separately, the goodness 
scores of each potential splitpoint in a database table (one such 
splitpoints table per numeric attribute as shown in Figure 5(b)); 
this eliminates the need to access the workload at query time. We 
index the table based on v to speed up the retrieval of goodness 
scores of the splitpoints in the desired range.  

We conclude this section with a note on how the 
partitioning technique presented above differs from existing 
histogram techniques. Traditional histogram techniques try to 
reduce estimation error by grouping together values that has 
similar source parameter values (e.g., frequencies, areas, spreads) 
[15]. In contrast, our partitioning tries to reduce cost by grouping 
together values that are likely to be co-accessed during an 
exploration, based on workload statistics like access counts.  
 

 

5.2 Multilevel Categorization 
For multilevel categorization, for each level l, we need to (1) 
determine the categorizing attribute A and (2) for each category C 
in level (l-1), partition the domain of values of A in tset(C) such 
that the information overload is minimized. We partition a node 
C iff C contains more than M tuples where M is a given 
parameter. Otherwise, we consider its partitioning unnecessary. 
There are several advantages to introducing the parameter M: 
first, it guarantees that no leaf category has more than M tuples 
(only if there is sufficient number of attributes available for 
categorization). This is important because, in an interactive 
environment, we often need to fit all the tuples in a category in 
the display screen; we can ensure that by choosing M 
accordingly. We choose M=20 in our user study.  Second, it 
gives the user an opportunity to control the granularity of 
categorization. A simple level-by-level categorization algorithm 
is shown in Figure 6. 
The algorithm creates the categories level by level (starting with 
level 0), i.e., all categories at level (l-1) are created and added to 
tree T before any category at level l. A new level is necessary iff 
there exists at least one category with more than M tuples in the 
current level; otherwise, the categorization is complete and the 
algorithm terminates. If the next level is necessary, let S denote 
the set of categories at level (l-1) with more than M tuples. Any 
attribute that has been retained after the attribute elimination step 
described in Section 5.1.1 and not used as a categorizing attribute 
in an earlier level is a candidate for the categorizing attribute at 
this level. For each such candidate attribute A, we partition each 
category C in S using the partitioning algorithm described in 
Sections 5.1.2 and 5.1.3 (depending on whether A is categorical 
or numeric). Much of the work of partitioning is done just once 
for the entire level (e.g., sorting the values based on occ(vi) in the 
categorical case or determining the best splitpoints in the numeric 
case); only the determination of which subcategories are 
necessary are done on a per-category basis. We compute the cost 
of the attribute-partitioning combination for each candidate 
attribute A and select the attribute α with the minimum cost. For 
each category C in S, we add the partitions of C based on α to T. 
This completes the creating of nodes at level l after which we 
move on to the next level.  
The above algorithm relies on the assumption that the values the 
user is interested in for one attribute are independent of those she 
is interested in for another attribute; the quality of the 
categorization can be improved by weakening this independence 
assumption and leveraging the correlations captured in the 
workload. The efficiency of the algorithm can also be improved 
by avoiding repeated work; we are pursuing such improvements 
in our ongoing work. 
 

6. EXPERIMENTAL EVALUATION 
In this section, we present the results of an extensive empirical 
study we have conducted to (1) evaluate the accuracy of our cost 
models in modeling information overload and (2) evaluate our 
cost-based categorization algorithm and compare it with 
categorization techniques that do not consider such cost models. 
Our experiments consist of a real-life user study as well as a 
novel, large-scale, simulated, cross-validated user-study. The 
major findings of our study can be summarized as follows: 



Figure 6: Multilevel Categorization Algorithm 

•  Accurate Cost Model: There is a strong positive correlation 
between the estimated average exploration cost and actual 
exploration cost for various users. This indicates that our 
workload-based cost models can accurately model 
information overload in real life. 

•  Better Categorization Algorithm: Our cost-based 
categorization algorithm produces significantly better 
category trees compared to techniques that do not consider 
such analytical models. 

 Thus, our experimental results validate the thesis of this paper 
that intelligent automatic categorization can reduce the problem 
of information overload significantly. In the following two 
subsections, we describe the large-scale, simulated user study and 
the real-life user study respectively. Both studies were conducted 
in the context of the home searching application using a real-life 
home listing database obtained from MSN House&Home. M 
(max tuples per category) was set to 20 for both studies. All 
experiments reported in this section were conducted on a 
Compaq Evo W8000 machine with 1.7GHz CPU and 768MB 
RAM, running Windows XP. 
 
6.1 Experimental Methodology 
Dataset: For both studies, our dataset comprises of a single table 
called ListProperty which contains information about real homes 
that are available for sale in the whole of United States. The table 
ListProperty contains 1.7 million rows (each row is a home) and, 
in addition to other attributes, has the following non-null 
attributes: location (neighborhood, city, state, zipcode), price, 
bedroomcount, bathcount, year-built, property-type (whether it is 
a single family home or condo etc.) and square-footage.  
 Workload & Preprocessing: Our workload comprises of 
176,262 SQL query strings representing searches conducted by 
real home buyers on the MSN House&Home web site (tracked 
over several months). These query strings are selection queries on 

the ListProperty table with selection conditions on one or more of 
the attributes listed above. During the preprocessing phase, we 
scan the workload and build the following tables: the 
AttributeUsageCounts table (as shown in Figure 4(a)), one 
OccurrenceCounts table (as shown in Figure 4(b)) for each 
potential categorizing attribute that is categorical (viz, 
neighborhood, property-type) and one SplitPoints table (as 
shown in Figure 5(b)) for each potential categorizing attribute 
that is numeric (viz, price, bedroomcount, square-footage, year-
built). For the numeric attributes, viz. price, square-footage and 
year-built, the separation interval between the splitpoints was 
chosen to be 5000, 100 and 5 respectively. 
Comparison: In both studies, we compare our cost-based 
categorization algorithm to two techniques, namely, ‘No Cost’ 
and ‘Attr-cost’. The ‘No cost’ technique uses the same level-by-
level categorization algorithm shown in Figure 6 but selects the 
categorizing attribute at each level arbitrarily (without 
replacement) from a predefined set of potential categorizing 
attributes (the set comprises of neighborhood, property-type, 
bedroomcount, price, year-built and square-footage). The 
partitioning based on a categorical attribute simply produces 
single valued categories in arbitrary order while that based on a 
numeric attribute partitions the range into equal width buckets of 
width 5 times the width of the separation interval (i.e., for price,  
the range (vmin,vmax] is split at every multiple of 25000; for 
square footage,  at every multiple of 500, etc.). Subsequently, all 
the empty categories are removed. The ‘Attr-cost’ technique 
selects the attribute with the lowest cost as the categorizing 
attribute at each level but considers only those partitionings 
considered by the ‘No cost’ technique, i.e., arbitrarily ordered, 
single-valued categories for a categorical attribute and equiwidth 
buckets for a numeric attribute. 
 

6.2 Large-scale, simulated user-study 
Due to the difficulty of conducting a large-scale real-life user 
study, we develop a novel way to simulate a large scale user study. 
We pick a subset of 100 queries from the workload and imagine 
them as user explorations, i.e., each workload query W in the 
subset represents a user who drills down into those categories of 
the category tree T that satisfy the selection conditions in W and 
ignores the rest. We refer to a workload query W as a synthetic 
exploration. Since the category tree T must subsume the synthetic 
exploration W on T, we obtain the user query Qw (for which T is 
generated) corresponding to W by broadening W. In this study, we 
broaden W by expanding the set of neighborhoods in W to all 
neighborhoods in the region (e.g., examples of regions are 
Seattle/Bellevue, NYC – Manhattan, Bronx etc.) and removing all 
other selection conditions in W; we have tried other broadening 
strategies and have obtained similar results.  For the chosen subset 
of 100 synthetic explorations, we remove those queries from the 
workload and build the count tables based on the remaining 
workload. Subsequently, for each user query Qw (obtained by 
broadening W) and for each technique (viz., Cost-based, Attr-cost 
and No cost), we generate the category tree T based on those count 
tables, compute the estimated (average) cost CostAll(T) of 
exploration and compute the actual cost CostAll(W,T) of 
exploration (i.e., actual number of items examined by user during 
the synthetic exploration W using T assuming that she drills down 
into all categories of T overlapping with W and ignores the rest). 
For cross validation purposes, we repeat the above procedure for 8 
mutually disjoint subsets of 100 synthetic explorations each, each 
time building the count tables on the remaining workload and 

Algorithm CategorizeResults(R) 
begin 
Create a root (“ALL”) node (level = 0) and add to T  
l = 1;   // set current level to 1 
while there exists at least one category at level l-1 with |tset(C)|>M 
    S ← {C | C is a category at level (l-1) and |tset(C)|>M} 
    for each attribute A retained and not used so far 
        if A is a categorical attribute 
            SCL←list of single value categories in desc order of occ(vi)  
            for each category C in S                 
                Tree(C,A)←Tree with C as root and each non-empty cat   
                                    C’∈ SCL   in same order as children of C   
        else // A is a numeric attribute 
             SPL←list of potential splitpoints sorted by goodness score 
             for each category C in S             
                 Select (m-1) top necessary splitpoints from SPL 
                 Tree(C,A)←Tree with C as root with corr. buckets in 
                                      ascending order  of values as children of C    
        COSTA   ← ∑C∈ S   P(C)*CostAll(Tree(C,A)) 
     Select α = argminA COSTA as categorizing attribute for level l 
     for each category C in S 
         Add partitioning  Tree(C,α)obtained using attribute α to T 
     l = l + 1; //finished creating nodes at this level, go to next level 
end 



generating the categorizations based on those tables. Figure 7 plots 
the estimated cost against the actual cost for the 800 explorations. 
The plot along with the trend line (best linear fit with intercept 0 is 
y = 1.1002x) shows that the actual cost incurred by (simulated) 
users has strong positive correlation with the estimated average 
cost. To further confirm the strength of the positive correlation 
between the estimated and actual costs, we compute the Pearson 
Correlation Coefficient for each subset separately as well as 
together in Table 1.8 The overall correlation (0.9) indicates almost 
perfect linear relationship while the subset correlations show either 
weak (between 0.2 and 0.6) or strong (between 0.6 and 1.0) 
positive correlation. This shows that our cost models accurately 
model information overload faced by users in real-life. Figure 8 
compares the proposed technique with the Attr-cost and No cost 
techniques based on  AVGW∈ subset CostAll(W,T)/|Result(Qw)|, i.e., 
the fractional cost averaged over the queries in a subset. We 
consider the fractional cost CostAll(W,T)/|Result(Qw)| instead of the 
actual cost CostAll(W,T) to be able to average it across different 
queries (with different result set sizes) meaningfully. For each 
subset, the cost-based technique is significantly better (factor of 3-
8) compared to the other techniques. Not only did the other 
techniques produce larger trees, the explorations drilled into more 
categories due to poor choice of categorizing attributes as well as 
poor choice of partitions resulting in higher cost.  Even though 
these synthetic explorations touched more tuples than real-life 
explorations (since the synthetic explorations are actually queries 
in real-life), users needed to examine less than 10% of the result 
set when they used cost-based categorization compared to 
scanning the whole result set (which is the cost if no categorization 
is used). We expect this percentage to be much lower is real life as 
confirmed by our real-life user study described in Section 5.2. 
Surprisingly, Attr-cost is often worse than No cost because the 
former often produced bigger category trees indicating that cost-
based attribute selection is beneficial only when used in 
conjunction with a cost-based intra-level partitioning.  

 
 
 

                                                 
8 The Pearson Coefficient measures the strength of a linear 
relationship between two variables. The definition as well as a 
discussion on how to interpret the values can be found at 
http://www.cmh.edu/stats/definitions/correlation.htm. 
 

6.3 Real-life user-study 
We conducted a real-life user study with 11 subjects (employees 
and interns at our organization). We designed 4 search tasks 
based on familiarity of the subjects with the regions, namely find 
interesting homes in: 
1. Any neighborhood in Seattle/Bellevue, Price < 1 Million 
2. Any neighborhood in Bay Area – Penin/SanJose, Price 
between 300K and 500K 
3. 15 selected neighborhoods in NYC – Manhattan, Bronx, Price 
< 1 Million 
4. Any neighborhood in Seattle/Bellevue, Price between 200K 
and 400K, BedroomCount between 3 and 4.  
Our tasks are representative of the typical home searches on the 
MSN House&Home web site. We evaluated the 3 techniques for 
each task (which were named 1, 2 and 3 in order to withhold their 
identities from the subjects); so 12 task-technique combinations 
in total. We assigned the task-technique combinations to the 
subjects such that (1) no subject performs any task more than 
once (2) the techniques are varied across the tasks performed by a 
subject (so that she can comment on the effectiveness of the 
techniques) and (3) each task-technique combination is 
performed by at least 2 (typically more) subjects. For the user 
study, we built a web-based interface that allows searching the 
database using a specified categorization technique and renders 
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the category tree using a treeview control, all via the web-
browser. The treeview allows the user to click on a category to 
view all items in the category (option SHOWTUPLES) or drill-
down/roll-up into categories using expand/collapse operations 
(option SHOWCAT). We asked the subjects to explore the results 
using the treeview (exploring, using either SHOWTUPLES or 
SHOWCAT, only those categories they are interested in and 
ignoring the rest) till they find every relevant tuple. We also 
asked the subjects to click on the relevant tuples. To compute the 
measurements reported in this section, we record the following 
information for each exploration: the subject, the task number, 
the categorization technique used, the tree generated, the 
click/expand/collapse operations on the treeview nodes and the 
clicks on the data tuples along with the timing information. We 
gave a short demonstration of the system to each subject before 
the experiment to familiarize them to the system. 
Table 2 shows the Pearson’s correlation between the estimated 
average cost CostAll(T) and the actual cost (actual number of 
items examined by the user during the exploration till she found 
all relevant tuples).  On average, there is a strong positive 
correlation (0.67) between the two costs; in 9 out of the 11 cases, 
the correlation was strongly positive (between 0.6 and 1.0). This 
confirms that our cost models accurately model information 
overload in real life. Figure 9 compares the cost (number of items 
examined till all relevant tuples found) of the various techniques 
for each task, averaged across all user explorations for that task-
technique combination. For each task, the cost-based technique 
consistently outperforms the other techniques. We have no results 
for Task 1-Technique 2 because the tree was very large for this 
task-technique combination and subjects had problems viewing it 
on the web browser. The above cost, however, is not the fairest 
metric for comparison. Unlike in the simulated user study, 
subjects actually found different number of relevant tuples for the 
same task when they used different techniques. For a particular 
categorization technique, if users explored more categories 

because the categorizations produced by the technique were 
useful and were helping them to find more relevant tuples, the 
above metric would unfairly penalize that technique. Figure 10 
shows that subjects typically found many more relevant tuples (3-
5 times) using the cost-based categorization compared to the no 
cost technique. This indicates that a good categorization 
technique not only reduces the effort to find the relevant tuples 
but also helps users to find more relevant tuples. Figure 11 shows 
a better comparison of the various techniques based on the 

normalized cost (
found uplesrelevant t #

found uplesrelevant t all  tillexamined items # ), 

averaged across all user explorations for that task-technique 
combination. The cost-based technique consistently outperforms 
the no cost technique by one to two orders of magnitude. Using 
the cost-based technique, subjects typically needed to examine 
about 5-10 items to find each relevant tuple; that is 3 orders of 
magnitude less compared to size of the result set (which is the 
cost if no categorization is used) as shown in Table 3. Figure 12 
shows the average cost of the various techniques in the scenario 
when the user is interested in just one relevant tuple. As in the 
‘all’ case, subjects examined significantly fewer items to find the 
first relevant tuple using the cost-based technique compared to 
the other ones. At the end of the study, we asked the subjects 
which categorization technique worked the best for them among 
all the tasks they tried. The result of that survey is reported in 
Table 4. 8 out of 9 users that responded considered technique 1 
(which was the cost-based technique) to be the best. Figure 13 
shows the execution times of our hierarchical categorization 
algorithm for various values of M (averaged over 100 queries 
taken from the workload, average result set size about 2000). 
Although our algorithm can be further optimized for speed, the 
current algorithm has about 1 sec response time (including the 
time to access the count tables in the database which is a 
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significant portion of the response time) for reasonably large 
sized queries. 

 
7. CONCLUSION 
In interactive and exploratory retrieval, queries often return too 
many answers – a phenomenon referred to as “information 
overload”. In this paper, we proposed automatic categorization of 
query results to address the above problem. Our solution is to 
dynamically generate a labeled, hierarchical category structure – 
the user can determine whether a category is relevant or not by 
examining simply its label and explore only the relevant 
categories, thereby reducing information overload. We developed 
analytical models to estimate information overload faced by 
users. Based on those models, we developed algorithms to 
generate the tree that minimizes information overload. We 
conducted extensive experiments to evaluate our cost models as 
well as our categorization algorithms. Our experiments show that 
our cost models accurately model information overload in real-
life as there is a strong positive correlation (90% Pearson 
Correlation) between estimated and actual costs. Furthermore, 
our cost-based categorization algorithm produces significant 
better category trees compared to techniques that do not consider 
such cost-models (one to two orders of magnitude better in terms 
of information overload). Our user study shows that using our 
category trees, users needed to examine only about 5-10 items per 
relevant tuple found which is 3 orders of magnitude less 
compared to the size of the result set (which is the cost if no 
categorization is used).  
 

8. ACKNOWLEDGEMENTS 
We thank Venky Ganti and Raghav Kaushik for their valuable 
comments on the paper. 
 

9. REFERENCES 
[1] S. Agrawal, S. Chaudhuri and G. Das. DBExplorer: A System 
for Keyword Search over Relational Databases. In Proceedings 
of ICDE Conference, 2002.  
[2] S. Agrawal, S. Chaudhuri, G. Das and A. Gionis. 
Automated Ranking of Database Query Results. In Proceedings 
of First Biennial Conference on Innovative Data Systems 
Research (CIDR), 2003. 
[3] R. Baeza_yates and B. Ribiero-Neto, Modern Information 
Retrieval, ACM Press, 1999.  
[4] N. Bruno, L. Gravano and S. Chaudhuri, Top-k Selection 
Queries over Relational Databases: Mapping Strategies and 
Performance Evaluation. In ACM TODS, Vo, 27, No. 2, June 
2002. 
[5] N. Bruno, S. Chaudhuri and L. Gravano. STHoles: A 
Multidimensional Workload-Aware Histogram. Proc. of 
SIGMOD, 2001. 
[6] S. Card, J. MacKinlay and B. Shneiderman. Readings in 
Information Visualization: Using Vision to Think, Morgan 
Kaufmann; 1st edition (1999). 
[7] J. Chu-Carroll, J. Prager, Y. Ravin and C. Cesar, A Hybrid 
Approach to Natural Language Web Search, In Proc. of 
Conference on Empirical Methods in Natural Language 
Processing, July 20 
[8] S. Dar, G. Entin, S. Geva and E. Palmon,  DTL’s DataSpot: 
Database Exploration Using Plain Language, In Proceedings of 
VLDB Conference, 1998. 

[9] S. Dumais, J. Platt, D. Heckerman and M. Sahami, Inductive 
learning algorithms and representations for text categorization, In 
Proc. Of CIKM Conference, 1998.    
[10] U. Fayyad and K. Irani. Multi-Interval Discretization of 
Continuous-Valued Attributes for Classification Learning. Proc. 
of  IJCAI, 1993. 
[11] V. Ganti, J. Gehrke and R. Ramakrishnan. CACTUS - 
Clustering Categorical Data Using Summaries. KDD, 1999. 
[12] J. Gehrke, V. Ganti, R. Ramakrishnan, W. Loh. BOAT-
Optimistic Decision Tree Construction. Proc. of SIGMOD, 1999. 
[13] J. Gray,  S. Chaudhuri, A. Bosworth, A. Layman, D. 
Reichart, M. Venkatrao, F. Pellow and H. Pirahesh. Data Cube: 
A Relational Aggregation Operator Generalizing Group-By, 
Cross-Tab, and Sub-Totals. Journal of Data Mining and 
Knowledge Discovery", Vol  1, No. 1, 1997. 
 [14] V. Hristidis and Y. Papakonstantinou, DISCOVER: 
Keyword Search in Relational Databases, In Proc. of VLDB 
Conference, 2002 
[15] V. Poosala, Y. Ioannidis, P. Haas, E. Shekita. Improved 
Histograms for Selectivity Estimation of Range Predicates. Proc. 
of SIGMOD, 1996. 
 [16] F. Sebastiani, Machine learning in automated text 
categorization, ACM Computing Surveys, Vol. 34, No. 1, 2002. 
 [17] T. Zhang, R. Ramakrishnan and M. Livny. BIRCH: an 
efficient data clustering method for very large databases. Proc. 
of ACM SIGMOD Conference, 1996. 
 

APPENDIX A 
Let us consider 2 different orderings of the same set of n 
subcategories of a non-leaf category C:  
Ordering 1: C1, C2, …., Ci-1, CA, CB, Ci+1, …, Cn 
Ordering 2: C1, C2, …., Ci-1, CB, CA, Ci+1, …, Cn 

The two orderings are identical except that the ith  and (i+1)th 
categories are swapped: while CA is the ith subcategory and CB 

the (i+1)th subcategory in ordering 1, CB is the ith subcategory 
and CA be the (i+1)th subcategory in ordering 2. Based on 
equation 2, CostOne for ordering 1 is: P(C1)*Cost(C1) + (1-

P(C1)*P(C2)*Cost(C2) + …  +
)1(

1

−

=
∏
i

j

(1-P(Ci))*P(CA)*Cost(CA) +  

)1(

1

−

=
∏
i

j

(1-P(Ci))*(1-P(CA))* P(CB)*Cost(CB) + … 

We consider just the SHOWCAT cost since SHOWTUPLES cost 
is not affected by the choice of partitioning. 
CostOne for ordering 2 is: P(C1)*Cost(C1) + (1-

P(C1)*P(C2)*Cost(C2) + … +
)1(

1

−

=
∏
i

j

(1-P(Ci))*P(CB)*Cost(CB) +  

)1(

1

−

=
∏
i

j

(1-P(Ci)) *( 1-P(CB))* P(CA)*Cost(CA) + … 

Ordering 1 is better than ordering 2 if the CostOne for ordering 1is 
less than that for ordering 2. Since all terms except the ith and 
(i+1)th terms are identical, the first ordering is better if 

)1(
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(1-P(Ci))*P(CA)*Cost(CA) + 
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(1-P(Ci))*(1-P(CA))* 

P(CB)*Cost(CB) <  
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(1-P(Ci))*P(CB)*Cost(CB) + 
)1(

1
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=
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j

(1-P(Ci)) 

*( 1-P(CB))* P(CA)*Cost(CA) 
⇒   P(CA)*Cost(CA) + (1-P(CA))*P(CB)*Cost(CB)  
       <  P(CB)*Cost(CB) + (1-P(CB))* P(CA)*Cost(CA) 
⇒   1/P(CA) + Cost(CA) < 1/P(CB) + Cost(CB) 
By induction, it follows that the ordering in increasing values of 
1/P(Ci) + Cost(Ci) produces the optimal ordering. 


