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ABSTRACT
Applications ranging from grid management to sensor nets
to web-based information integration and extraction can be
viewed as receiving data from some number of autonomous
remote data sources and then answering queries over this
collected data. In such environments it is helpful to inform
users which data sources are “relevant” to their query re-
sults. It is not immediately obvious what “relevant” should
mean in this context, as different users will have different
requirements. In this paper, rather than proposing a single
definition of relevance, we propose a spectrum of definitions,
which we term “k-relevance,” for k ≥ 0. We give algorithms
for identifying k-relevant data sources for relational queries
and explore their efficiency both analytically and experi-
mentally. Finally, we explore the impact of integrity con-
straints (including dependencies) and materialized views on
the problem of computing and maintaining relevant data
sources.
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1. INTRODUCTION
Many modern data management scenarios can be viewed

as a set of remote sources that periodically update a cen-
tralized database. Examples include sensor data manage-
ment, distributed system monitoring, and even web-based
data integration and extraction (here the remote “sources”
are web pages, and the “updates” are the results of running
extraction programs that add tuples corresponding to the
extracted information to the centralized database.) In such
scenarios, the central database is almost always out of date;
to make things worse, in some of the scenarios (for example,
the extraction scenario) the data is extracted by “fuzzy”
routines that may not do a perfectly accurate job, which
can frequently cause users to want to do some investigating
to understand their results. Interpreting or debugging the
results of queries in such systems can be difficult, especially
if there are a lot of sources.

Often the work of interpreting or debugging query results
requires that the user identify a set of sources to investi-
gate in order to figure out what is going on or to request
the most recent data from that source. For example, in an
information extraction system, if a user finds that some tu-
ple in the result to her query is surprising, she will likely
start her investigation by trying to figure out which source
or sources are responsible for the result, in order to see why
they might have contributed to the surprising answer. Or, if
a user suspects that some result that “should” be in her an-
swer is not there, she needs to find out which sources could
have contributed, to see if perhaps they have not updated
yet and the problem could be solved by processing an up-
date from that site. In another domain, which we explored
in [13], suppose in a distributed job execution system one
node says a job has been sent out for execution, but that
job is not listed in the database as currently running. The
user may wish to find out which nodes could have pending
updates that might show the job running.

In all of these examples, the user’s task is greatly sim-
plified if the system can restrict the set of nodes she must
consider — that is, the system can help the user understand
her query results by reporting which data sources were rel-
evant to her query. While this is straightforward, lurking in
this simple statement is the undefined phrase “relevant to
a query.” In this paper we propose a precise definition and
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Figure 1: An example web integration and extrac-

tion system and sample tables

explore how to compute relevant sources using this defini-
tion.

In prior work [13], we defined a data source to be rele-
vant to a query if and only if a single update from that data
source could change the result of the query. Although pos-
sibly useful in some scenarios, the definition is too narrow
to be useful in others. In particular, in some cases a user
may just want to know which data sources participated in
the derivation of an existing result tuple; telling her which
sources “could have” impacted the result may be confus-
ing. On the other hand, in other cases the user may be
expecting results that could only arise if there were multiple
updates to the database; this could happen if the result will
change when one source makes multiple updates, or when
several sources each make a single update, or both. In this
case sources that are relevant in the users opinion will be
deemed irrelevant by the definition from [13]. We illustrate
both problems with the following example.

EXAMPLE 1. Figure 1 shows a tiny system that extracts
author and paper information from two conference web sites
in the networking field and stores it in the two relations:
Authors and Papers. The two sources are the web pages
sigcomm.html and sigmetrics.html. Note that the “source”
column in the tables is system-maintained and that only tu-
ples resulting from extractions from the sigcomm.html page
will yield tuples with sigcomm.html in the source field, while
only updates from the sigmetrics.html page will yield tu-
ples with sigmetrics.html in the source field. Note also that
the extracted database is actually out of date, because the
sigmetrics.html page has been updated since it was last ex-
tracted.

If a user asks “what are the papers written by authors
from MIT with the word ’Ubiquitous’ in the titles?,” the
query will return an empty result. By the definition in [13],
the only relevant data source for the query is sigcomm.html.
The source sigcomm.html is deemed relevant by that defini-
tion because it is possible that an update from this source
could change the result of the query — for example, if an up-

date from sigcomm.html changes John’s affiliation to MIT,
the query result will indeed change to return the paper titled
“Ubiquitous Signal Coverage.” However, sigmetrics.html is
not deemed relevant because no single update from that
source to either the Authors or Papers tables in isolation
can change the result of the query.

Unfortunately this is misleading for this user, as the sig-
metrics.html really is relevant to the query — if the newly
updated version of the web page is crawled and extracted,
the resulting pair of updates, one each to the authors and
papers tables, will change the result, and the paper by Todd
from MIT will appear in the answer.

As an example in the other direction, suppose the user
now asks the query “Show the names of all authors from
CMU.” The result will be John and Scott. Furthermore,
suppose that the user is surprised at this result because she
knows Scott is actually an MIT student. Using the defini-
tion from [13], the relevant sources for this query will be
both sigcomm.html and sigmetrics.html, since a single up-
date from either could change the result of the query. Again,
this is perhaps unfortunate, because it is the (presumably)
faulty data at sigcomm.html that is the problem, and the
inclusion of sigmetrics.html is at best a distraction and at
worst misleading; this user really just wants to know that
the data in her answer came from sigcomm.html.

With only two web page sources to consult, telling the
user which sources is relevant is perhaps not very important.
However, in an example in which there are thousands of
sources, properly narrowing the set of “relevant” sources
will be the key to the user figuring out what is going on.

It is of course possible to generalize this example to cre-
ate scenarios in which updates to three relations (possibly
from different sites) are required, or four, or any number.
In some cases, users may ask “tell me all sources that could
impact this query result, no matter how many updates are
required.” Since it is impossible to identify in advance a
single definition of relevance that distinguishes all these dif-
ferent cases and covers them all, in this paper we propose a
spectrum of definitions, which we will call “k-relevance”, for
k ≥ 0. Intuitively a data source is “k-relevant” if there exist
potential updates to k relations, with at least one update
from the source in question, that will cause the result of a
query to change. The value of k can be interpreted as giving
some measure of how closely relevant a source is to a given
query.

For the special case of k = 0, a data source is “0-relevant”
if an existing tuple from that source participates in the
derivation of the result for a query. Our solution encom-
passes the desired notions of relevance in the preceding ex-
ample: For the first query (all papers written by MIT au-
thors with “Ubiquitous” in the title), sigmetrics.html is 2-
relevant, sigcomm.html is 1-relevant, and none is 0-relevant.
For the second query (all CMU authors), sigcomm.html is
0-relevant while sigmetrics.thml is 1-relevant.

The set of “k-relevant” sources for a query is a function of
the given query and the database instance at the time the
query is submitted. Part of the contribution of this paper is
algorithms to compute these functions. Another contribu-
tion of our paper is to incorporate dependencies and domain
constraints and use them to reason about and restrict the
set of all possible “k-relevant” sources. (As we shall see,
such constraints on the updates sources can be the key to
limiting the set of relevant sources.)



Also, we consider the use of materialized views to speed
up user queries. The naive way to compute sets of relevant
sources for a query is to compute them afresh whenever a
query arrives. If the query is common, it may be more effi-
cient to materialize the set of sources relevant to the query.
In effect, this treats the query as a view, which can either be
materialized or not (if it is materialized, then of course the
query itself can be answered from the view; if not, the view
is just a mechanism by which to “memo” the set of relevant
sources for the query.) Accordingly, we investigate material-
izing the set of sources relevant to a view, and incrementally
maintaining this set. We provide such incremental algo-
rithms by utilizing previous techniques developed for mate-
rialized view maintenance. In addition to using materialized
view maintenance techniques to incrementally maintain sets
of relevant data sources, we explore a dual opportunity: by
detecting that updates are from data sources irrelevant to
a given materialized view, we can avoid materialized view
recomputation, thus improving the efficiency of the mainte-
nance of the view itself.

An interesting question that arises is how users might
make use of this notion when interpreting or refreshing their
query results — how do they know what kind of relevance
they want? The question is largely dependent on the con-
text of a problem a user is dealing with. If a user is de-
bugging a problem with incorrect result and suspects that
there are missing updates to at most k relations mentioned
in the query, then only k-relevant sources need be investi-
gated and possibly requested for new updates. The choice of
k can be made more mechanical in a framework where query
results are materialized and maintained incrementally when
updates come in from sources. If an incoming update makes
changes to k relations mentioned in a query, but the update
source is not k-relevant via any of the k relations involved,
then applying our theory we can skip the maintenance of the
query result for the update even though it makes changes
to relations mentioned in the query. The efficiency of such
a system is likely to improve because unnecessary computa-
tion for view maintenance (detected with our k-relevance)
is avoided, while the cost of maintaining k-relevance can be
amortized over all database updates.

Finally, we have evaluated the performance of the algo-
rithms for determining k-relevant data sources. Our results
show that efficient algorithms exist for small k (k near zero)
and for large k (k near kmax, the number beyond which k-
relevance does not change), although for intermediate values
the computation can be expensive.

2. RELATED WORK
Obviously “provenance” or “lineage” is related to our no-

tion of relevance; more precisely, 0-relevance by our defini-
tion is closely related to the provenance or lineage discussed
in [2, 4, 5, 8, 9]. (It is not identical because we are recording
sources that participated in an answer, while other kinds
of provenance record more detailed information, for exam-
ple, individual tuples that participated in the derivation of
an answer.) In [10], the authors make use of provenance to
help users and system builders debug an information extrac-
tion system. Lineage can help users reason about sources
that contribute to a query result, but does not directly help
users with problems that arise from sources that did not
contribute to the query result.

There is little other work that directly focuses on no-

tions related to our concept of “relevance.” However, other
work has incorporated notions of relevance. For example, in
database integration, [15] implemented a system that pro-
vides uniform access to a heterogeneous collection of more
than 100 information sources. It contains declarative de-
scriptions of the contents and capabilities of the information
sources. The system uses the source descriptions to prune
the set of information sources irrelevant for a given query
and generate executable query plans. The paper does not
give an explicit definition for “relevance”, but assumes that
a data source is implicitly “relevant” if there exists a poten-
tial tuple from it that will join with potential tuples from
other sources, which is the same as our definition for ∞-
relevance. The focus of their work is to eliminate irrelevant
sources only in the interest of performance.

In a more tangentially related paper, [7] applies a notion
of relevance in topic-specific focused crawling to reduce the
number of irrelevant pages that are fetched and discarded.
Here the definition of relevance is quite different from ours,
as it is a semantic notion that is a probabilistic measure of
the distance between a topic and a target page.

3. DEFINING K-RELEVANCE
We assume that each relation which can be updated by

any sources contains a data source column that identifies
the source where each tuple is from. Notice that our as-
sumption implies that each tuple in such a relation can be
updated by one and only one source, therefore two sources
will not contradict each other with their updates. We also
allow relations that are static, i.e., never affected by updates
from the data sources in question. Notice that in reality
these relations may not be fixed, because they may be up-
dated through other means (for example, manually by an
administrator). Therefore, for the purposes of this paper,
by “static relation” we mean a relation that is not affected
by data updates directly from the remote sources.

Within the scope of this paper, we assume that a query
Q is a single Projection-Selection-Join relational expression
with conjunctive predicates that mentions R1, R2, ..., Rm,...,
Rn, where Ri (1 ≤ i ≤ m) are updated and Rj (m < j ≤ n)
are static. Given a relation Ri (1 ≤ i ≤ m), its data source
domain is denoted as Ds. This paper will frequently refer
to a “potential tuple” or “real tuple” for a relation. By
a “potential” tuple for a relation, we mean a tuple that
could be inserted into the relation — that is, it satisfies any
constraints on the relation (including domain constraints.)
By a “real” tuple we mean one that is found in the current
instance of the relation. Lastly, we assume that a list of all
data sources known to the database is kept in a static table
called H . We use cs to refer to the data source column of
each table which has it.

We begin with a clarification of two kinds of relevance that
have fundamentally different semantics. In one kind, a data
source is relevant because it has contributed to the result of a
query. In the other kind, a data source may not contribute to
the result of a query, but is relevant because future updates
from that source could cause it to contribute to the result
if the query is re-run. We call the first kind of relevance
“lineage relevance” and the second kind of relevance “update
relevance”. More specifically, if a data source can contribute
updates to change the result of a query along with updates
that can affect at most k relations, we call it “k-relation
update relevant”. “Lineage relevance” is in fact equivalent
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Figure 2: 0-relevant sources contribute lineage tu-

ples to a query result, k-relevant sources contribute

updates to changing the query result when updates

affect at most k relations

to “0-relation update relevance.”
Figure 2 illustrates the two kinds of relevant sources in

the flow of database query and updates, where all update
sources stand for sources that have contributed updates to
the database, while k-relevant sources stand for sources that
are k-relevant for the query assuming the updates only af-
fect k relations mentioned in the query. The set of k-relevant
sources could be a much smaller subset of the set of all up-
date sources and only updates from k-relevant sources can
really contribute to change the query result. In the follow-
ing, we formally define these concepts, with k-relevance

standing for “k-relation update relevance” and 0-relevance

standing for “lineage relevance.”

3.1 K-Relevance

DEFINITION 1. A data source s ∈ Ds is k-relevant for
Q via Ri if there exists at most k updated relations including
Ri, such that there is a potential tuple from s for Ri if k > 0,
a potential tuple from any source for the other k − 1 chosen
relations if k > 1, and a real tuple for each of the remaining
relations such that they join to satisfy Q. A data source
s ∈ Ds is k-relevant for Q if there exists Ri such that s is
k-relevant for Q via Ri.

The intuition of this definition is that if there are potential
tuples for up to k updated relations that join with real tuples
in the remaining relations to satisfy a query, then the data
sources that the potential tuples come from are k-relevant.
For a query referencing m updated relations, by the defini-
tion, k-relevance is equivalent to m-relevance when k > m.
Obviously any finite m is less than ∞, therefore ∞-relevance
is equivalent to m-relevance.

A subtle point in the definition is that when a relation
is mentioned multiple times in a query, each mention of
it is counted as a different relation for the deciding of k-
relevance of a source. For example, assume there are two
additional sources now: mobihoc.html and ipsn.html, nei-
ther of which has data extracted to the database instance in
Example 1. Then the query “Tell me all authors who have
published in both MobiHoc and IPSN” can be answered by
doing a self join of the Authors table (this answer will be
empty for the sample data set.) Therefore, the Authors
table appears twice in the query. Because we treat each
mention of Authors as a different relation, mobihoc.html is
2-relevant, which matches our intuition because two updates

(one from mobihoc.html and the other from ipsn.html), on
to each mention of the Authors table in the query, can make
a change in the query result.

Another point is that when k = 0, a data source is 0-
relevant via a relation if there exists a real tuple in the re-
lation from the source that joins with real tuples of other
relations to satisfy the query. Therefore a 0-relevant data
source participates in the derivation of query answers, which
matches our intuitive notion of “lineage relevance.”

Given a database with instance I , we denote the set of
k-relevant data sources for a query Q via Ri as Sk

Ri
(Q, I)

and the set of k-relevant data sources for a query Q via
any relation as Sk

all(Q, I) =
S

Sk
Ri

(Q, I). We abbreviate

Sk
Ri

(Q, I) as Sk
Ri

when Q and I are clear from the context.

EXAMPLE 2. Consider the schema and dataset in Ex-
ample 1 and the question: “What papers have been pub-
lished by authors from MIT?” The question can be an-
swered with the following SQL query. The query will re-
turn an empty result, therefore it is obvious that S0

Authors =
∅, S0

Papers = ∅, S0
all = ∅.

SELECT Papers.paperTitle FROM Authors, Papers

WHERE Authors.authorOrg=’MIT’

AND Authors.source = Papers.source

AND Authors.authorName = Papers.paperAuthor;

Now consider 1-relevant sources. It is possible that sig-
comm.html might change some existing author’s affiliation
from “CMU” to “MIT”. Therefore, Authors has a potential
tuple from sigcomm.html that could join with a real tuple
in Papers to satisfy the query. This means sigcomm.html
is 1-relevant via the Authors table. Because all existing au-
thors are from “CMU”, no potential tuples of Papers from
sigcomm.html will be able to join with a real tuple in Au-
thors to satisfy the query. Therefore sigcomm.html is not
1-relevant via the Papers table. For sigmetrics.html, be-
cause neither Authors nor Papers has any data from it, no
potential tuples from it to either Authors or Papers alone
will be able to join with any real tuple of the other table
to satisfy query. Therefore sigmetrics.html is not 1-relevant
via any of the tables. To sum up, the 1-relevant sources
are the following (Notice that from here on we use s1 and
s2 as identifiers for sigcomm.html and sigmetrics.html for
brevity): S1

Authors = {s1}, S
1
Papers = ∅, S1

all = {s1}.
Now let us consider 2-relevant sources. The source sig-

metrics.html can contribute a paper written by someone
from “MIT” into the database and such a paper will satisfy
the query. Therefore there are potential tuples for Authors
and Papers from sigmetrics.html that will join to satisfy the
query. This means sigmetrics.html is 2-relevant via both
tables. Similarly sigcomm.html can also change the title
of a paper and its author to be from “MIT”, which means
there are also potential tuples from sigcomm.html for both
tables which will satisfy the query. Thus sigcomm.html is
also 2-relevant via both tables. The summarized result is:
S2

Authors = {s1, s2}, S
2
Papers = {s1, s2}, S

2
all = {s1, s2}.

We only need to compute up to 2-relevant sources for the
example since there are only two relations mentioned in the
query. The sources not in the set of S2

all(Q, I) are always
irrelevant to the query and can be ignored for monitoring,
debugging or result maintenance purposes because they will
never contribute any data to satisfy the query. As an exam-



ple, if another user asks the question: “What papers from
the source sigcomm.html have been published by authors
from MIT?”, then sigmetrics.html is not 2-relevant.

3.2 K-Relevance and Change
We now look into how the type of relevance for data

sources updating the tables in the database can be used to
determine whether the sources are able to impact a query
result and a query’s relevant sources. (It is possible that an
update, in addition to changing the result of a query, can
also change the set of relevant sources for a query.) We start
with a result stating that no updates from a data source that
is not ∞-relevant will ever impact the result of the query. In
other words, a data source that is not ∞-relevant is always
irrelevant to the query. The proof is clear and omitted. In
the last example of the preceding section, the source sigmet-
rics.html was not ∞-relevant.

Corollary 3.1. If a source s ∈ Ds is not ∞-relevant

for a query Q via a relation Ri, then no updates from the

data source to the relation Ri will change the result of Q in

any database state.

If a data source s is not k-relevant via a relation R, any
updates from s to R will not change the query result un-
less more than k other relation updates occur. Notice that
the subtlety here is that these updates to the other at most
(k−1) relations may in fact change the query result, but the
updates to the concerned relation from the non k-relevant
data source will not make any difference in the result. Fur-
thermore, this does not mean that the updates from the
data source can be ignored forever. When the number of
relations being updated exceeds k, these updates may be
able to change the query result if the data source happens
to be (k + 1)-relevant. The following results formalize the
discussion. The proofs are omitted.

Lemma 3.2. Sk−1
Ri

(Q, I) ⊆ Sk
Ri

(Q, I), k ≥ 1.

Corollary 3.3. For k ≥ 1, if s ∈ Sk
Ri

(Q, I)−Sk−1
Ri

(Q, I),
then any updates from s to Ri will not contribute to change

the query result until at least k − 1 other tables are also up-

dated.

Corollary 3.3 means that if updates are made only to one
relation (e.g., Ri), only updates from sources in S1

Ri
(Q, I)

can possibly change the query result. If updates are made
to only two relations (e.g., Ri, Rj), we only need to watch
sources in S2

Ri
(Q, I) or S2

Rj
(Q, I) for updates that are able

to make an impact in changing the query result, and so on.
Next we present some results that are related to the po-

tential changes in the “relevant” sources themselves. The
proofs for the first two corollaries are omitted because they
easily follow from Definition 1.

Corollary 3.4. The sources in S∞
Ri

(Q, I) never change

as a result of database updates.

Corollary 3.5. The sources in Sk
Ri

(Q, I), k > 0, never

change as a result of database updates to Ri alone.

Theorem 3.6. If an update is made to a relation Rj and

the source for the update is not in S∞
Rj

(Q, I), then Sk
Ri

(Q, I),
for any k ≥ 0, is unchanged.

Proof. We assume k > 0 in the proof, as k = 0 can
be handled similarly. Assume s /∈ Sk

Ri
(Q, I), and after the

update to the relation Rj from a source s1 /∈ S∞
Rj

(Q, I),

s ∈ Sk
Ri

(Q, I ′) where I ′ is the new database instance after
the update. By the definition, with respect to the instance I
there exists a potential tuple for Ri from s, a potential tuple
(guaranteed by the update) for Rj from the data source s1,
potential tuples for k − 1 other relations and a real tuple
for each of the remaining relations that satisfy Q. This
also means s1 ∈ Sk+1

Rj
(Q, I). By Lemma 3.2 Sk+1

Rj
(Q, I) ⊆

S∞
Rj

(Q, I), therefore s1 ∈ S∞
Rj

(Q, I). This is a contradiction.
Similarly a contradiction can be reached by assuming s ∈
Sk

Ri
(Q, I) before the update and s /∈ Sk

Ri
(Q, I ′) after the

update.

4. COMPUTING K-RELEVANCE
In this section we present algorithms to compute Sk

Ri
(Q, I)

0 ≤ i, k ≤ m, given a database instance I and a query Q,
where m is the number of updated relations mentioned in
the query. A subtle technicality arises for the computation
of Sk

Ri
(Q, I) if k > 0. If a query contains predicates that are

not satisfiable at all by potential tuples of mentioned rela-
tions, no data source can possibly be k-relevant for the query
(because the query’s result will be empty for any database
instance.) We regard this as an unlikely occurrence, hence
in our algorithms do not check for query satisfiability (there
is ample precedent for this — how many query optimizers
check for general satisfiability before executing a query?)

This means that our algorithms are technically only exact
with the proviso that the queries themselves do not contain
unsatisfiable sets of predicates (such as the predicate P (x) :
x = 1 ∧ x = 2.) If there are unsatisfiable predicates, our
algorithms could deem a source relevant when it really is
not, although they will never deem a source irrelevant if it
actually is relevant. If a system really needs to remove this
proviso so that our algorithms are exact in the presence of
unsatisfiable predicates this can be accomplished performing
a satisfiability check, such as the one proposed in [17], before
passing a query to our algorithms.

4.1 Computing S0
Ri

(Q, I), 1 ≤ i ≤ m

One method for computing S0
Ri

(Q, I) can be developed
based on the work of lineage tracking in [8], where for a
given data item in a materialized warehouse view, they pre-
sented methods for identifying the set of source data items
that produced the view item. Based on their results, they
implemented a lineage tracing package in the WHIPS data
warehousing system prototype. Their lineage queries return
tuples, not data sources; to convert their techniques to re-
turn data sources, one would have to add a data source
column for each mentioned table. The data source column
for each Ri then could be projected out from the lineage
results to get S0

Ri
(Q, I).

The overhead of this approach can be high as this lineage
tracing itself is not cheap. We propose an alternative algo-
rithm shown in Algorithm 1. The idea is to directly modify
a user query to include data source columns for each men-
tioned table and load the result of the modified query into
a temporary table, and then query the set of data sources
0-relevant via each table (S0

Ri
(Q, I)) from the temporary ta-

ble. Finally the added data source columns can be filtered
out from the temporary table before returning the query



Description: Given a query Q and a
database with instance I , evaluate the
query and derive its 0-relevant sources
Input: a query Q and a database with
instance I
Output: query result and S0

Ri
(Q, I), 1 ≤

i ≤ m
Algorithm 1 (piggyback 0-relevance)
(1) Adorn Q with the data source col-

umn for each relation in the re-
turned column list;

(2) Let Q’ be the adorned query;
(3) Evaluate Q’ and load the result

into a temporary table T;
(4) Project out the data source

columns for Ri, 1 ≤ i ≤ m from
T;

(5) Assign the result respectively to
S0

Ri
(Q, I), 1 ≤ i ≤ m;

(6) Assign the union of all S0
Ri

(Q, I)

to S0
all(Q, I);

(7) Project out the original column
list from T for the query result;

result back to a user. We call this a piggyback algorithm
because we piggyback the computation of 0-relevant sources
with the evaluation of the original user query. In addition
to avoiding the extra query evaluation, there is the potential
for some savings as we only retain information on the data
sources that contributed to the result, not the specific tuples
that contributed to the result.

The cost of this algorithm involves writing the result to a
temporary table and scanning it twice: once for retrieving
the results for S0

Ri
(Q, I), 1 ≤ i ≤ m and the second time

for retrieving the result for the original query. The signif-
icance of the cost depends on how large a query result is
compared to the input tables that the query is scanning and
the complexities of the SQL processing.

4.2 Computing S∞
Ri

(Q, I), 1 ≤ i ≤ m

According to the definition of an ∞-relevant source, the
current instances of updated relations in the database will
not play a role in computing S∞

Ri
(Q, I). What matters are

the predicates in the query and constraints (if any) on the
column domains for each mentioned relation.

A pre-processing phase should be done first on the query
predicates to discover implicit constraints on the data source
column of each relation using the transitivity laws of com-
parison operators. This technique has been studied previ-
ously and is known as constant propagation [14]. Integrity
constraints including domain constraints that can be ex-
pressed in terms of predicates can be simply appended to
a user query before our processing. It is less obvious about
how to utilize general dependencies, which are especially
useful for restricting the relevant data sources. We will ad-
dress the issue in Section 4.4.

In the following we use P i
s to stand for the selection pred-

icates referencing only the data source column of Ri, J i
s to

stand for join predicates referencing only the data source col-
umn from Ri, and lastly P i

o to stand for all the other pred-
icates of Q excluding the ones referencing any columns of

Description: Given a query Q and a
database with instance I , compute its ∞-
relevant sources for the query
Input: a query Q and a database in-
stance I
Output: S∞

Ri
(Q, I), 1 ≤ i ≤ m

Algorithm 2 (∞-relevance)
(1) foreach (1 ≤ i ≤ m)
(2) Extract P i

s from Q;
(3) Replace Ri.c

i
s with H.cs in P i

s

to get P i′

s ;
(4) Evaluate πcs(σ

P i′
s

(H));

(5) Assign the result to S∞
Ri

(Q, I)
and continue;

(6) Assign the union of all S∞
Ri

(Q, I)
to S∞

all(Q, I);

Ri. We use P i′

s and J i′

s to denote the predicates after Ri.cs

is replaced with H.cs in P i
s and J i

s where H is a static table
containing all data sources as introduced in Section 3. Given
our assumption that Q is satisfiable and all implicit con-
straints on Ri.cs are discovered, S∞

Ri
(Q, I) = πcs(σ

P i′
s

(H)).

This forms the basis for Algorithm 2 to compute ∞-relevant
sources.

The main costs of the algorithm are associated with the
query generated against the H . The table is static in the
sense that it is not affected by updates from data sources
and also tend to be much smaller than the updated tables
which store application data. In practice we expect that the
cost of the algorithm will be small compared to the cost of
evaluating a user query and remain flat as a database scales
up to larger sizes when new data stream in from sources.

4.3 Computing Sk
Ri

(Q, I), 1 ≤ k < m, 1 ≤ i ≤ m

From the definition of k-relevance, we will show that a
straightforward method is available to compute Sk

Ri
(Q, I)

when 1 ≤ k < m. However, as we shall see, the cost of the
method grows combinatorially as k approaches the middle
of the range 1 ≤ k < m. A closer examination reveals
that under some conditions the computation of Sk

Ri
(Q, I)

for many values of k can be avoided.
A similar observation we make here is that some join

predicates involving the data source column of a relation
Ri and another relation may follow implicitly from predi-
cates in a query. For example, if a query has predicates
R.cs = S.c1 ∧ S.c1 = T.c1, then R.cs = T.c1 is an implicit
join predicate by transitivity laws. Such implicit join predi-
cates should be discovered and included in J i

s for computing
relevant data sources; otherwise we could miss some implicit
constraints useful for computing relevant sources.

When k ≥ 1, if a data source s is k-relevant via Ri, there
exists a potential tuple from s for Ri, a potential tuple for
each of k − 1 more relations, and an existing tuple for each
of the remaining relations such that they join to satisfy the
query. Let us assume that the potential tuples are for rela-
tions Rj1 , ..., Rjk−1

in addition to Ri and the existing tuples
are for Rjk

, ..., Rjm−1
. Then s is an element of the following

set

πcs(σ
P i′

s ∧Ji′
s ∧P i

o
(H ×

Y

k≤l≤(m−1)

Rjl
)) (1)

The reverse is also true. If s is an element of the set evalu-



Description: Given a query Q and
a database instance I , compute its k-
relevant sources (0 < k < m)
Input: a query Q and a database with
instance I
Output: Sk

Ri
(Q, I), 1 ≤ i ≤ m

Algorithm 3 (k-relevance)
(1) foreach (1 ≤ i ≤ m)
(2) Extract P i

s from Q;
(3) Replace Ri.c

i
s with H.cs in P i

s

to get P i′

s ;
(4) foreach choice of

Rjk
, ...,Rjm−1

out of the
updated relations except Ri

(5) Extract J i
s (joining with

the selected relations
only) from Q;

(6) Replace Ri.c
i
s with H.cs in

J i
s to get J i′

s ;
(7) Extract P i

o (of the selected
relations only) from Q;

(8) Evaluate πcs(σ
P i′

s ∧Ji′
s ∧P i

o

(H ×
Q

k≤l≤(m−1)Rjl
));

(9) Union the result to
Sk

Ri
(Q, I) and continue;

(10) Assign the union of all Sk
Ri

(Q, I)

to Sk
all(Q, I);

ated by (1), then s satisfies the definition of k-relevance via
Ri.

The above discussion means that Sk
Ri

(Q,I), k ≥ 1 can be
computed by doing the union of all such sets evaluated by
(1) over all possible ways to choose Rjk

, ..., Rjm−1
. Corre-

spondingly we have Algorithm 3 for computing Sk
Ri

(Q, I).

EXAMPLE 3. This example illustrates Algorithm 3 and
the importance of implicit constraints for computing rele-
vant data sources. Suppose the following additional table is
added to Example 1:
Committee(source, memberName, memberTitle)

Assume each table’s data source column has the same do-
main {s1, s2, ..., s100}. Suppose the Authors table has tuples
from only the three sources {s1, s2, s3}, the Papers table has
tuples only from {s1} and the Committee table has tuples
only from {s2}. A user asks “which papers have authors
that are committee members, and what are the affiliations
of those authors?” and answers it by joining these tables on
the data source column with the following query:

SELECT Papers.paperTitle, Papers.paperAuthor,

Authors.authorOrg, Committee.memberTitle

FROM Authors, Papers, Committee

WHERE Authors.source = Papers.source

AND Papers.source = Committee.source

AND Authors.authorName = Papers.paperAuthor

AND papers.paperAuthor = Committee.memberName;

For this query, if we do not derive implicit constraints
before applying Algorithm 3, then S2

Authors(Q, I) is equal
to the following expression which evaluates to {s1} ∪ {s1,

s2,..., s100} = {s1, s2,...,s100}.

πcs(σH.cs=Papers.source(H × Papers))∪
πcs(H × Committee)

On the other hand if we derive the implicit constraint
“Authors.source = Committee.source” before applying Al-
gorithm 3, we will have the following expression instead for
S2

Authors(Q, I) which now evaluates to {s1} ∪ {s2} ={s1, s2}.
The answer is much smaller than the previous result. This
shows that the implicit constraints on the data source col-
umn can be critical in computing relevant data sources.

πcs(σH.cs=Papers.source(H × Papers)) ∪
πcs(σH.cs=Committee.source (H×Committee))

In Algorithm 3, the number of ways to choose Rjk
, ...,

Rjm−1
out of all updated relations except Ri is (m−1)!

(m−k)!(k−1)!
.

The combinatorial number indicates that this approach is
expensive for any k values in the middle of the range when
m is large. Therefore any alternative that is more efficient
to obtain the result for Sk

Ri
(Q, I) is preferred.

A useful condition for avoiding the expense of Algorithm 3
is when Sk

Ri
(Q, I) is equal to Sh

Ri
(Q, I) for some pair of 0 ≤

k < h ≤ m. When this happens, there is no need to com-
pute Sj

Ri
(Q, I) for k < j < h because it has to be the same

as Sh
Ri

(Q, I) given the monotonicity property of Sk
Ri

(Q, I)
stated in Lemma 3.2. Notice that to check this condition
one only has to keep cardinalities for Sk

Ri
(Q, I) and com-

pare them between two sets instead of comparing element
by element. Given this alternative and the observation that
the above combinatorial number is first increasing and then
decreasing after k passes a median number between 1 and m,
the best order to compute Sk

Ri
(Q, I) is to alternate between

the two ends and close in, i.e., 0, m, 1, m−1, 2, m−2, ... until
the list is exhausted.

Lastly, if the previous condition fails to avoid the compu-
tation for some Sk

Ri
(Q, I), 1 ≤ k < m, Theorem 4.1 provides

another useful condition that can be checked to see if there
is still a possibility to avoid it.

Theorem 4.1. If there exists a combination Rjk
, ...,Rjm−1

,

of which none is joined with Ri through the J i
s of a query

Q, and σP i
o
(
Q

k≤l≤(m−1) Rjl
) is not empty, then Sk

Ri
(Q, I)

is equal to S∞
Ri

(Q, I).

Proof. Given the combination Rjk
, ..., Rjm−1

, the set of
k-relevant sources computed through Algorithm 3 includes
at least the following:

πcs(σ
P i′

s ∧P i
o
(H ×

Q

k≤l≤(m−1) Rjl
))

Notice that there is no join predicates between H and any of
Rjk

, ..., Rjm−1
in the expression because none is joined with

Ri through J i
s. Because σP i

o
(
Q

k≤l≤(m−1) Rjl
) is not empty,

the above expression is the same as πcs(σP i′
s

(H)), which is

the result for S∞
Ri

(Q, I) as computed by Algorithm 2.

4.4 Source - Non-Source Dependencies
As we have hinted earlier on, often the implementers of

databases that are repositories for distributed sources have
information about data values that can come from the indi-
vidual sources. In our toy example, perhaps we could add a
“confName” field and note that sigcomm.html will only gen-
erate tuples with “confName” set to “SIGCOMM.” Or in a



sensor network application, if each source is a (non-mobile)
sensor, an “area of coverage” field might be restricted based
upon the identity of the sensor. More generally, we may
know that a bookseller web site will only publish adver-
tisements for books. Such dependencies can be the key to
narrowing sets of relevant sources for some queries.

The dependencies we support here are not limited to func-
tional dependencies. For example in an e-commerce applica-
tion site-1 can generate books and videos tuples, site-2 can
generate books and cd’s tuples. In this paper we propose
modeling such dependencies by a separate static lookup ta-
ble. Notice that the static table modeling a dependency this
way does not have to maintain a tuple for every potential
“key” value in its domain (which could be infinite), but only
values for sources known to the system. Finally, a depen-
dency modeled this way can be enforced on target tables by
creating a foreign key on the list of key columns and the
data source column which references the primary key on the
same set of columns of the static lookup table.

The following theorem takes a materialized dependence
table into consideration for computing ∞-relevant sources.
To simplify our notation we assume only one column is as-
sociated with the data source column in a dependency in
the following. We use Fi to stand for a static table mod-
eling a dependency of the table Ri from a regular column
(referred to as the “key” column) to the data source column.
The “key” column of the dependency has the column name
ci
f in both Fi and Ri. P i

f is the predicate in the query Q

which references only the ci
f column of Ri. P i′

f is the result-

ing predicate after the variable Ri.c
i
f is replaced by Fi.c

i
f in

predicate P i
f .

Theorem 4.2. If Ri has a dependency from a column ci
f

to its data source column and the dependency is captured in

a static table Fi, then

S∞
Ri

(Q, I) = (πcs(σ
P i′

s
(H)) ∩ πcs(σ

P i′

f

(Fi)))

Algorithm 2 can be modified accordingly to incorporate
the use of dependencies. To save space, the extension to
incorporate dependencies into Algorithm 3 is omitted due
to space considerations.

5. MAINTAINING K-RELEVANCE
Materialized view maintenance has been studied widely

in the past [1, 3, 6, 11, 12, 16, 18, 19]. In this section we
discuss efficient strategies for a related problem — main-
taining up-to-date relevant sources for a query in response
to database updates. The idea is that for a commonly asked
query, it may be better to materialize the set of relevant
sources for that query once and maintain it incrementally
than to compute it from scratch every time the query is
asked. Furthermore, we will show that the relevant sources
information we maintain can also be leveraged in reducing
the cost of maintaining the query result itself (that is, the
materialized view defined by the query.)

The view maintenance algorithms presented in [11] can
be used to maintain materialized query results. We can
adopt these algorithms to maintain sets of relevant sources.
One reasonable algorithm is the counting algorithm [12],
which we will use as a basic building block. We describe
the main steps in Algorithms 4 and 5 respectively for the

Description: Given a query Q and a
database with instance I , maintain the k-
relevant sources for the query
Input: materialized results for Sk

Ri
(Q, I)

and updates
Output: new results Sk

Ri
(Q, I), 1 ≤ i ≤

m, 1 ≤ k < m
Algorithm 4 (k-relevance maintenance)
(1) foreach (update)
(2) if (the update is made to re-

lation Rj and the source for
update is not in S∞

Rj
(Q, I))

(3) ignore the update in this
algorithm;

(4) if (no more updates left)
(5) no need to do maintenance at

this time, return;
(6) foreach (1 ≤ i ≤ m)
(7) foreach (update)
(8) if (update is made to Ri)
(9) ignore the update for

the maintenance of
Sk

Ri
(Q, I);

(10) if (no more updates left for
the maintenance of Sk

Ri
(Q, I))

(11) no need to do maintenance
for Sk

Ri
(Q, I) at this time,

continue;
(12) foreach (1 ≤ k < m)
(13) Use the counting algo-

rithm to compute delta for
Qk

i with the remaining up-
dates;

(14) Apply the delta to the
materialized result of
Sk

Ri
(Q, I);

maintenance of Sk
Ri

(Q, I) (1 ≤ k < m) and S0
Ri

(Q, I). Algo-
rithm 5 incorporates the maintenance of 0-relevant sources
into the maintenance of query results to further reduce the
cost. Notice that Algorithm 5 relies on Sk

Ri
(Q, I), there-

fore in practice Algorithm 4 should be run before running
Algorithm 5 to guarantee correctness. There is no need to
maintain S∞

Ri
(Q, I) because it never changes according to

Corollary 3.4.
In Algorithm 4, Qk

i stands for the query that we build in
Algorithm 3 for computing each Sk

Ri
(Q, I). The algorithm’s

basic idea is to apply Corollary 3.5 and Theorem 3.6 to skip
updates that cannot possibly change Sk

Ri
(Q, I), and then to

process surviving updates using the counting algorithm.
In Algorithm 5, Q′ is the same as the adorned query pro-

duced in Algorithm 1. To simplify the description of the
algorithm, we assume that there is a count associated with
every data source in S0

Ri
(Q, I). If the count is zero for a

data source, it means the data source does not belong to
S0

Ri
(Q, I). For clarity, we also assume that the count and

data sources with count zero will be filtered out before the
result is presented to a user. Therefore the maintenance al-
gorithms we describe here ignore such issues so that we can
focus on the key steps.

This algorithm is different from previous view mainte-
nance algorithms in that it leverages information about the



relevant sources for the query defining the view to ignore up-
dates from sources that cannot affect the materialized view
in a maintenance call. Specifically by applying Corollary 3.3,
Algorithm 5 ignores updates to a relation Rj if their data
sources are not in Sk

Rj
(Q, I).

Description: Maintenance algorithm for
the query result of Q and its 0-relevant
sources
Input: materialized results for Q, Q′,
S0

Ri
(Q, I) and updates

Output: new results for Q, Q′ and
S0

Ri
(Q, I), 1 ≤ i ≤ m

Algorithm 5 (0-relevance maintenance)
(1) Let k = the number of relations

all updates are made to;
(2) foreach (update)
(3) if (the update is made to re-

lation Rj and the source for
update is not in Sk

Rj
(Q, I))

(4) ignore the update in this
algorithm;

(5) if (no more updates left)
(6) return;
(7) Use the counting algorithm to

compute delta for Q’;
(8) Apply the delta to the material-

ized result of Q’;
(9) foreach (tuple in the delta)
(10) foreach (1 ≤ i ≤ m)
(11) Project out the data

source column for Ri;
(12) if (the tuple is to be in-

serted)
(13) Add the count in

the tuple to the
corresponding tuple
in S0

Ri
(Q, I) and

S0
all(Q, I) with the

same data source;
(14) else if (the tuple is to be

deleted)
(15) Subtract the count

in the tuple from
the corresponding
tuple in S0

Ri
(Q, I) and

S0
all(Q, I) with the

same data source;
(16) Project out the original col-

umn list from the tuple and
apply to the materialized re-
sult of Q;

6. EXPERIMENTAL EVALUATION
The goal of our experiments is 1) to compare the cost of

the computation and maintenance of k-relevant sources rel-
ative to the cost for the original query; 2) to understand the
dependence of this overhead on the number of data sources
and the size of data; 3) to gain some insight into how effec-
tive our algorithms are in limiting the number of relevant
data sources.

Our experimental schema contains the tables listed in the
following. Both Authors and Papers have a domain con-
straint enforcing their sourceIds to have “conf” as a prefix,
and Students has a domain constraint enforcing its sourceIds
to have “student” as a prefix. The static ConfSourceFD ta-
ble is an explicit representation of a dependency from (conf-
Name, confYear) to sourceId for Authors and Papers. The
static StudentSourceFD table models the dependency from
(name, org) to sourceId for Students. The static AllSources
table contains the ids for all sources. We created B-tree in-
dices for each set of underlined columns.

Authors (sourceId, confName, confYear, name,

org, position, email)

Papers (sourceId, confName, confYear,

authorName, authorOrg, title)

Students (sourceId, name, org, advsr, prog, yr)

ConfSourceFD (confName, confYear, sourceId)

StudentSourceFD (name, org, sourceId)

AllSources (id, url)

When generating datasets, we assumed each type of con-
ference has been held for 30 years. We also assumed there
were 100 author organizations, each of which has 10 stu-
dents and 5 professors. Three datasets are generated with
the following combinations: 1) 500 conferences per year and
200 papers per conference, 2) 5000 conferences per year and
200 papers per conference, 3) 500 conferences per year and
400 papers per conference. Lastly we also simulate missing
updates from data sources by allowing a small percentage
of conferences or students randomly chosen to not have any
data, with the meaning that the data from these sources
are missing. All the conferences are independently gener-
ated and the authors for each paper are randomly chosen
from the pool of students and professors using a uniform
distribution.

To evaluate maintenance cost of materialized views, we
simulate updates with pairs of delta tables for Authors and
Papers. All the data in one pair of delta tables are from
0-relevant sources, which is the worst case scenario for the
maintenance of Q and its k-relevant sources. For the other
pair of delta tables, all the data are from sources that are
not ∞-relevant.

The following experimental query (referred to as Q) finds
papers published by students in a list of 10 conferences with
year unspecified and for each student reports the program
in which he studies, the year of graduation, and his advisor.

SELECT A.name,A.org,P.title,S.prog,S.yr,S.advsr

FROM Authors AS A, Papers AS P, Students AS S

WHERE A.confName IN [list of 10 conf types]

AND A.position = ’student’

AND A.name = P.authorName

AND A.org = P.authorOrg

AND A.confName = P.confName

AND A.confYear = P.confYear

AND A.name = S.name AND A.org = S.org

For the algorithms, we only evaluated the costs of queries
generated for computing relevant sources, which did not in-
clude costs for pre- and post-processing (e.g., SQL parsing,
result merging etc.) Our experimental setup used Tao Linux
1.0 on top of a 2.4 GHZ Intel Pentium with 512MB memory
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Figure 4: Comparison of costs for evaluating Q and

k-relevant sources for Q via Authors with variation

on the number of conferences per year.

running the PostgreSQL 8.1.5 database platform. The de-
fault settings were used for the shared buffer pool size (8MB)
and work memory (1MB). Each query was run 11 times and
we report the response time averaged over the last 10 runs.

Figures 3 and 4 compare the costs for evaluating Q and
the k-relevant sources for Q via Students and Authors while
varying the number of sources. Both figures show that the
costs of 0-relevant and ∞-relevant sources are insignificant
compared to the cost of the original query. While costs of
1-relevant and 2-relevant sources for Q via Authors are not
significant, the cost of sources 1-relevant via Students is ap-
proximately as high as the cost of Q, and the cost of sources
2-relevant via Students is twice as high as the cost of Q.
This is because the queries generated for computing sources
relevant via Students access more large tables than those
generated for computing sources relevant via Authors. The
results agree well with our analysis in Section 4. The costs of
0-relevant sources are low because this does not require any
additional query processing. The costs of ∞-relevant source
are also low because they only require access to AllSources
and the dependence tables, which are much smaller than the
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Figure 5: Comparison of costs for evaluating Q and
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Figure 6: Comparison of costs for evaluating Q and

k-relevant sources for Q via Authors with variation

on the number of papers per conference

other tables. Notice that the costs for sources 2-relevant via
Authors are zeros because there is no need to compute them
according to Theorem 4.1.

When the number of conferences per year increases by a
factor of 10 from 500 to 5000, it affected 3-relevant sources
the most in terms of the cost increase ratio. This is mainly
because the queries for evaluating them all need to do a
full scan of AllSources to evaluate the domain constraints.
While queries for evaluating 1-relevant or 2-relevant sources
also contain full scans of AllSources for checking domain
constraints, their cost increase ratio are lower because the
accesses to Authors or Papers or both in these queries domi-
nate the cost and the cost of index accesses over these tables
are not affected by the increase of the number of conferences.

Figures 5 and 6 investigate the cost of computing sources
k-relevant via Students and Authors while varying the size of
the data. The result shows that the cost overhead ratios for
computing k-relevant (except 0-relevant) sources are stable
or decreasing as the size of data increases. Specifically, the
costs for 1-relevant sources and 2-relevant sources increase
proportionally with the cost of Q because they all access Au-
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rialized views for Q and k-relevant sources for Q via

Students when updates are from 0-relevant sources
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Figure 8: Comparison of costs for maintaining ma-

terialized query result with and without filtering of

updates from sources not ∞-relevant

thors or Papers or both, which are affected by the increase
of papers per conference. The cost for 3-relevant sources is
roughly unchanged because their computation only involves
access to the AllSources or dependence tables, which are
not affected by the papers per conference factor. Finally,
for 0-relevant sources, the cost overhead is insignificant.

Figure 7 compares the cost of maintenance for the materi-
alized views of Q and sources k-relevant via Students while
varying the number of conferences per year. It shows that
the overhead for the maintenance of k-relevant sources with
respect to the maintenance of the materialization of Q is
at worst similar to the overhead for the computation of k-
relevant sources with respect to the computation of Q shown
in Figures 3, 4, 5 and 6. Figure 8 shows that the cost for
maintaining the materialized query result can be reduced by
filtering out updates from irrelevant sources. Notice that the
more an updated table is mentioned in a query, the larger
the savings will be due to the reduction in the amount of
updated data a maintenance query has to access.

Figure 9 gives an example where the cost of computing
k-relevant sources is very high. The example query does a
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Figure 9: A scenario when k-relevant sources is ex-

pensive to compute
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Figure 10: The importance of using dependency in

computing k-relevant sources

20-way self join on the Students table to print the names
of each student 20 times. The query has a chain join on
the name and organization columns of Students. The re-
sult shows that it is very expensive to compute 10-relevant
sources for such a query. The high cost is largely due to the
number of ways to choose 10 relations out of 19 relations
for the computation of 10-relevant sources according to Al-
gorithm 3. While our algorithms can be improved to avoid
redundant evaluations of the same query generated for this
particular example, it provides an idea on how bad the cost
of computing k-relevance can be in a complex query with
lots of joins on data source columns.

Figure 10 compares the cardinalities of sources k-relevant
via Authors computed with and without consideration of
dependencies. The experimental query has predicates spec-
ified on the columns that determine the data source, but
not directly on the data source column (e.g., A.confName IN

[list of 10 conf types].) The result indicates that de-
pendencies can dramatically reduce the number of k-relevant
sources when k > 0.

The experimental results have validated our argument
that the costs of 0-relevant and ∞-relevant sources are rel-
atively insignificant compared to the cost of a query itself.



If a query has limited number of join predicates on the data
source column or those determining it through dependen-
cies, the cost of computing k-relevant sources is not far from
that of computing the query itself in the worst cases. How-
ever, if the query has a large number of join predicates on
such columns, the cost could be prohibitive, in which case it
may be wiser to just use the upper bound provided by the
computation of ∞-relevant sources.

The conclusions from our experiments that can be applied
to real-world data sets are more qualitative than quantita-
tive - for example, in our experiments, the overhead is low
for small k and large k, but more substantial for interme-
diate values. We expect our experimental results to be a
general trend that holds for real-world data sets as well. We
evaluated the cost of k-relevance for each k separately to ex-
pose the difference in costs associated with each k. If a user
is interested in multiple k’s, the cost needs to be summed
up over these k’s.

7. CONCLUSION AND FUTURE WORK
In any data management scenario in which data from

remote sources is captured, stored, and queried in a cen-
tral repository, in their quest for interpreting or debugging
their query results, users can benefit from being told which
sources were relevant to their query. This is especially true
in scenarios where there are lots of sources and parts of
the centralized database are likely to be out of date, or the
data acquired from the remote sources is potentially impre-
cise, or both. It turns out that defining what is meant by
“relevant” is non-trivial and there exists a rich structure of
different types of relevance for different queries and data
configurations. In this paper we have proposed a spectrum
of definitions for relevance unified under a common notion
of k-relevance.

Our notion of k-relevance essentially captures whether up-
dates to a relation from a source are able to change the result
of query, along with updates to additional k − 1 relations.
An interesting area for future work is to explore other no-
tions of relevance that may be more intuitive to end users.
For example, it may be desirable to tell a user which specific
sources or transactions need to update the database before
the result of a query could possibly change. We hope that
our paper serves as the groundwork that will pave the way
for this effort.
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