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ABSTRACT
An increasing number of data sources now become avail-
able on the Web, but often their contents are only acces-
sible through query interfaces. For a domain of interest,
there often exist many such sources with varied coverage
or querying capabilities. As an important step to the in-
tegration of these sources, we consider the integration of
their query interfaces. More specifically, we focus on the
crucial step of the integration: accurately matching the in-
terfaces. While the integration of query interfaces has re-
ceived more attentions recently, current approaches are not
sufficiently general: (a) they all model interfaces with flat
schemas; (b) most of them only consider 1:1 mappings of
fields over the interfaces; (c) they all perform the integra-
tion in a blackbox-like fashion and the whole process has to
be restarted from scratch if anything goes wrong; and (d)
they often require laborious parameter tuning. In this pa-
per, we propose an interactive, clustering-based approach to
matching query interfaces. The hierarchical nature of inter-
faces is captured with ordered trees. Varied types of com-
plex mappings of fields are examined and several approaches
are proposed to effectively identify these mappings. We put
the human integrator back in the loop and propose several
novel approaches to the interactive learning of parameters
and the resolution of uncertain mappings. Extensive exper-
iments are conducted and results show that our approach is
highly effective.

1. INTRODUCTION
With the increasing number of data sources available over

the Web, the integration of these sources is clearly an impor-
tant problem. It has been observed that a large number of
data sources on the Web are actually hidden behind query
interfaces [3, 15]. For a domain of interest, there often exist
numerous data sources on this “deep” Web, which provide
similar contents but with varied coverage or querying capa-
bilities. And it is often the case that the information a user
desires is distributed over many different sources. Conse-
quently, the user has to access each of these sources indi-
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vidually via its query interface, in order to find the desired
information. Thus, an important first step to the integra-
tion of these hidden sources is the integration of their query
interfaces.

Given a set of query interfaces in a domain of interest,
we aim to provide the users with a unified query interface
which combines sufficiently similar fields in these interfaces,
retains fields specific to some interface, and has a layout
which preserves the ordering of the fields and the structure
of the source query interfaces as much as possible.

The integration of source query interfaces can be divided
into two steps [11, 29]. At the first step, semantic map-
pings of fields over different interfaces are identified; and at
the second step, the interfaces are integrated based on the
identified mappings of fields at the first step. Clearly, the
accuracy of field mappings as the output from the first step
is of crucial importance to a successful integration of the in-
terfaces. In this paper, we will focus on the first step, that
is, to accurately identify the mappings of fields.

Although schema integration is a well-studied problem [6,
7, 14, 16, 18, 19, 25, 29], the integration of query inter-
faces on the Web has just received more attentions recently
[10, 11]. Unfortunately, current solutions suffer from the
following limitations. First, non-hierarchical modeling: All
current solutions model interfaces with flat schemas. In fact,
we show that interfaces have much richer structure. Second,
1:1 mapping assumption: Most of the current solutions only
consider 1:1 mappings of fields over the interfaces. In fact,
we show that more complex mappings are pervasive. Third,
blackbox operation: All current solutions perform the match-
ing and integration of interfaces in a blackbox-like fashion,
in which the integrator is typically only an observer once the
integration process starts. And the whole process has to be
restarted if anything is found wrong. Fourth, laborious pa-

rameter tuning: Most of the current “automatic” solutions
typically have a large set of parameters to be tuned in order
to yield good performance for a specific domain. Further-
more, when the system is applied to another domain, these
parameters frequently need to be re-tuned. The tuning pro-
cess is often done in a trial-and-error fashion, without any
principled guidance.

In this paper, we propose an interactive, clustering-based
approach to address these limitations. The major contribu-
tions of our approach are:

• Hierarchical modeling: We show that a hierarchical
ordered schema, such as an ordered tree, can capture
the semantics of an interface much better. Further-



more, we show that the structure of interfaces can be
exploited to help identify mappings of fields;

• Clustering: We examine the “bridging” effect in the
process of matching fields from a large set of query in-
terfaces [10]. The bridging effect is similar to the idea
of reusing past identified mappings [25]. For example,
two semantically similar fields, e1 and e2, might not be
judged as similar based on their own evidences. Never-
theless, both of them might be similar to a third field
e3 in different aspects. Thus, by considering matching
all three fields together, e3 can be effectively used to
suggest the mapping between e1 and e2. We will show
how the clustering algorithm exploits this observation
to help identify 1:1 mappings of fields;

• Complex mapping: We show that complex map-
pings, such as 1:m mappings, frequently occur among
fields in different interfaces. We propose several ap-
proaches to finding complex mappings by exploiting
the hierarchical nature of interfaces as well as the char-
acteristics of fields. We further show that how the
proposed clustering algorithm can be extended to ef-
fectively identify complex mappings among fields over
all interfaces;

• User interaction and parameter learning: We
put the human integrator back in the loop. We present
a novel approach to learning the threshold parameter
in the integration system by selectively asking the in-
tegrator certain questions. We further propose several
approaches to determining the situations where inter-
actions between the system and the integrator are nec-
essary to resolve uncertain mappings, with the goal of
reducing the amount of user interaction to the mini-
mum. To the best of our knowledge, this is the first
paper on the active learning of parameters in a schema
matching algorithm.

The rest of the paper is organized as follows. Section 2
describes the hierarchical modeling of interfaces. Section 3
discusses the challenges in interface matching. The cluster-
ing algorithm for finding 1:1 mappings of fields is presented
in Section 4.2. Section 4.3 extends the clustering process to
handle complex mappings. User interaction and parameter
learning are presented in Section 5. Section 6 reports re-
sults of our experiments. Section 7 contrasts our work with
related work. The paper is concluded in Section 8.

2. HIERARCHICAL MODELING OF QUERY
INTERFACES

In this paper, we start by considering query interfaces in
HTML forms. Most of the query interfaces to hidden sources
use HTML forms. We use field to refer to the building block
of query interfaces. Typically, a field is used to request one
piece of information from the user. A field can be in varied
formats. In HTML forms, possible formats of a field are:
text input box, selection list, radio button, and check box.
A text input box is typically rendered as an empty box where
the user can enter a suitable string. In a selection list, a list
of choices is provided to the user to select from. There are
two types of selection lists. In a single selection list, the user
may only select one of the choices at the same time; while
in a multiple selection list (or box), more than one choices

may be selected at once. Radio buttons and checkboxes are
used to explicitly display the choices to the user to facilitate
the selection. The difference is that when used in a group,
choices are exclusive in a radio button group, while multiple
check boxes may be selected at the same time in a check
box group. Thus, the former can be regarded as a variant
of a single selection list, while the latter as a variant of a
multiple selection list. In summary, there are two broad
types of fields: one without pre-specified values, such as
text input boxes; and the other with a set of values given
to facilitate the input, such as fields in all other formats in
HTML forms.

Each field in the interface typically has a label attached,
describing to the user what the field is about. But it is
possible that some fields do not have their own labels, rather
they share a group label with other related fields. In these
cases, the meaning of the field is conveyed to the user by
the group label and the values in the field. Each field is
also assigned with a name in the script for identification
purpose (such a name is known as the internal name of the
field). Related fields are usually placed close to each other
in the interface, forming a group, and several related groups
can further form a super-group, resulting in a hierarchical
structure of the interface.

Note that since labels are visible to the user but names
are not, as a consequence, words in the labels are usually
ordinary words which can be understood semantically, while
words in the names are often concatenated or abbreviated.
Nevertheless, in our experiments we find that, in many cases,
the name of a field can be very informative and especially
useful when the label of the field is absent. See, for example,
fields f3–f8 in Example 1 below. To capture the semantics
of fields, we define the following properties for each field.

Definition 1: (Properties of Field) A field f has three
properties: name(f), label(f), and dom(f). name(f) is the
name of f ; label(f) is the label attached to f in the interface
or empty string if no label is associated with f ; and dom(f)
is the domain of f , which contains a set of valid values which
f may take. �

Example 1: The left portion of Figure 1 shows a query in-
terface in the airfare domain. It expects several categories of
information from the user including the location, the date,
and the service type for the trip. The right portion of Fig-
ure 1 tabulates the fields in the interface. Fields are num-
bered in the order of their appearances in the interface. For
each field, its name, label, and instances are shown. For ex-
ample, the name of f1 is origin, its label is From: City, and
it accepts an arbitrary string. Note that some fields (e.g.,
f3) do not have labels themselves, rather they share a group
label with other fields (e.g., f4 and f5) and each field might
have a list of values suggesting what the field is about. �

To capture the structure of a query interface, we model
the interface with a hierarchical schema which is essentially
an ordered tree of elements. A leaf element in the tree corre-
sponds to a field in the interface. An internal element corre-
sponds to a group or a super-group of fields in the interface.
Elements with the same parent are sibling elements. Sibling
elements are ordered by the sequence of their corresponding
fields or groups of fields (if they are internal elements) ap-
pearing in the interface. Thus, the order semantics and the
nested grouping of the fields in an interface are captured in
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Figure 1: A query interface and its fields
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Figure 2: A schema tree

the structure of the schema tree corresponding to the inter-
face.

Example 2: Figure 2 shows the schema tree corresponding
to the query interface in Figure 1. The schema tree has four
levels. The first level contains a generic root element that
has four children, the first of which corresponds to the first
category in the search form, i.e., the origin and destination
cities. Each level except for the first level refines the ele-
ment(s) at the level above. Note that each node in the tree
except for the root is annotated with the label of its corre-
sponding field or group of fields (for a field without a label,
its name is shown instead). �

3. INTERFACE MATCHING, CHALLENGES
AND OUR APPROACH

We define interface matching as a problem of identify-
ing semantically similar fields over different query interfaces.
From the set of query interfaces we collected (see Section 6
for more details), we observe two broad types of semantic
correspondence between fields in different interfaces: sim-

ple (or 1:1) mappings and complex (such as 1:m) mappings.
In this section, we examine each type of mappings, discuss
the challenges in identifying these mappings, and give an
overview of our approach.

3.1 Simple Mappings
A simple mapping is a 1:1 semantic correspondence be-

tween two fields in different interfaces. For example, two
interfaces in the automobile domain can both have a field
for the make of automobiles.

The major challenge to the identification of 1:1 mappings
is the label mismatch problem. Label mismatch occurs when
similar fields in different interfaces are attached with differ-
ent labels. For instance, the following are some example
labels from several real-world query interfaces in the airfare
domain, used to annotate fields for the service class: class of

service, class of ticket, class, cabin, preferred cabin, and flight

class. Note that the label could be just a single word such

{0,1,2,..5}year

passengers

Adults
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from date

(b) Is−a

No. of
Passengers

Figure 3: 1:m mappings

as class and cabin; a phrase such as class of service and pre-

ferred cabin; or a sentence. The labels for semantically sim-
ilar fields often share common words (e.g., class appears in
four of the six labels above) or they might be synonyms (e.g.,
cabin and class). But note that a general-purpose semantic
lexicon such as WordNet [8] does not help much in the iden-
tification of domain-specific synonyms. For example, it is
difficult to infer from WordNet that cabin is synonymous to
class in the context of airline ticket reservation. Further-
more, domain-specific lexicons are not generally available
and they can be expensive to build.

3.2 Complex Mappings
While 1:1 mappings account for the majority of the map-

pings of fields, we found that 1:m mappings occur in every
domain we studied and very frequently in some domains. A
1:m mapping refers to that one field in an interface seman-
tically corresponds to multiple fields in another interface.
Most of the current solutions to interface matching [10, 11]
only consider 1:1 mappings, thus largely simplify the prob-
lem.

We observe that there exist two types of 1:m mappings
between fields: aggregate and is-a. For both types, fields
on the many side of the mapping refine the field on the one
side. The difference is: in the aggregate type, the content
of a field on the many side is part of the content of the field
on the one side; while in the is-a type, the content of the
field on the one side is typically the union (or sum) of the
content of fields on the many side. Figure 3 shows examples
of 1:m mappings of both types with interfaces in the airfare
domain. Note that for the fields on the many side, we also
show their parent node. (The reason for this will become
clear soon.)

Finding 1:m mappings is even more challenging than find-
ing 1:1 mappings. Note that domain-specific concept hier-
archies might help but again they are rarely available and
also expensive to construct manually.

3.3 Toward a Highly Accurate Field Matching
Handling 1:1 mappings: To cope with the label mismatch,

we exploit the “bridging” effect achieved by considering match-



ing fields of all interfaces at once rather than pairwise [10].
This can be illustrated with the following example. Note
that the bridging effect is similar to the idea of reusing ex-
isting mappings [25]. (See our related work section for more
details.) In Section 4.2, we propose a clustering algorithm
which exploits exactly this observation to accurately identify
1:1 mappings of the fields.

Example 3: Consider three fields, e, f , and g, from three
different interfaces in the computer hardware domain. Sup-
pose label(e) = cpu, dom(e) = {celeron, pentium, duron};
label(f) = processor, dom(f) contains any strings; and label(g)
= processors, dom(g) = {athlon, celeron, pentium, xeon}. For
the simplicity, we assume their names are all dissimilar to
each other. We note that neither the labels nor the domains
of e and f are similar. But the domain of e is similar to the
domain of g while the label of f is similar to the label of g.
Thus, g may serve as a potential “bridge” to relate e and f ,
making them similar. �

Handling 1:m mappings: To cope with the lack of domain-
specific concept hierarchy, we exploit the following obser-
vations to help identify 1:m mappings of fields: (1) Value

correspondence: The characteristics of values in the fields
involved in a 1:m mapping as described above can be uti-
lized to suggest the mapping. (2) Field proximity: Fields on
the many side are typically very close to each other in the
interface, which can be exploited to reduce the search space.
(3) Label similarity: The label of the field on the one side
often bears similarity with the parent label of fields on the
many side, which can be used to further improve the match-
ing accuracy. In Section 4.3, we will present our approach
to finding 1:m mappings and describe how the clustering
algorithm can be extended to handle 1:m mappings.

User interactions: The automatic solution for the field
matching proposed above has several parameters to be man-
ually set as is typical of many other similar automatic schema
matching approaches [11, 18]. In Section 5, we first propose
an approach to learning the parameters with a small amount
of user interaction. We then examine the errors made by the
field matching algorithm, determine the uncertainties during
the matching process which might cause these errors, and
propose several approaches to resolving these uncertainties
with user’s help. Our goal is to achieve a highly accurate
field matching with a minimum amount of user interaction.

4. FIELD MATCHING VIA CLUSTERING

4.1 Field Similarity Function
As proposed earlier, each field is characterized by three

properties: name, label, and domain. The semantic sim-
ilarity of two fields is evaluated on the similarity of their
properties. More specifically, we compute an aggregate sim-
ilarity of two fields, e and f , denoted as AS(e, f), based on
two component similarities, the linguistic similarity and the
domain similarity, as follows:

λls ∗ lingSim(e, f) + λds ∗ domSim(e, f), (1)

where λls and λds are two weight coefficients, reflecting the
relative importance of the component similarities.

4.1.1 The Linguistic Similarity

The name and the label of a field can be regarded as
two description-level properties of the field. Two fields are
linguistically similar if they have similar names or labels.

Fundamental to the computation of linguistic similarities
is the measure of the similarity of two strings of words.
For this, we employ the Cosine [4, 27] function in Infor-
mation Retrieval which we now briefly describe. Suppose s
and p are two strings of words. First, stop words (or non-
content words) such as “the”, “a”, and “an”, are removed
from each string. Suppose the number of distinct content
words (or terms) in the resulted strings is m. We then rep-
resent each string as an m-dimensional vector of terms with
weights, e.g., ~s = (w1, w2, . . . , wm), where wi is the num-
ber of occurrences of the i-th term ti in the string s. Then,
the similarity of the two strings, s and p, is computed as:
Cosine(~s, ~p) = ~s · ~p/(‖~s‖ ∗ ‖~p‖). In the following, to simplify
notations, we will also denote Cosine(~s, ~p) as Cos(s, p). In
the experiments, words in strings are also stemmed [22].

The linguistic similarity of two fields, e and f , denoted
as lingSim(e, f), is a weighted average of the similarities of
their names, their labels, and their name vs. label:

λn ∗ nSim(e, f) + λl ∗ lSim(e, f) + λnl ∗ nlSim(e, f), (2)

where nSim(e, f) is the name similarity of two fields, com-
puted as Cos(name(e), name(f)); lSim(e, f) is their label
similarity, similarly computed as Cos(label(e), label(f)); and
nlSim(e, f) is their name vs. label similarity, given by:
max{Cos(name(e), label(f)), Cos(label(e), name(f))}. Note
that if a field does not have a label itself, the label of its
parent, if available, will be used instead.

Normalization: As mentioned earlier, names often contain
concatenated words and abbreviations. Thus, they first need
to be normalized before they are used to compute linguistic
similarities. We apply the following normalizations [18, 30].

(a) Tokenization is used to cope with concatenated words.
First, delimiter and case change in letters are used to suggest
the breakdown of concatenated words. For example, “de-
partCity” into “depart City”, and “first name” into “first
name”; Second, we utilize words appearing in the labels to
suggest the breakdown. A domain dictionary is constructed
automatically for this purpose, which contains all the words
appearing in the labels of fields in a set of interfaces from
the same domain. For example, “deptcity” will be split into
“dept” and “city” if “city” is a word in some label.

(b) Transformation is used to expand the abbreviations.
For example, “dept” into “departure”. We again utilize the
domain dictionary constructed above to suggest the expan-
sion. To avoid false expansions, we require that word to be
expanded is not in the dictionary, with at least three letters,
and having the same first letter with the expanding word.

4.1.2 The Domain Similarity
The domain similarity of two fields, e and f , is the similar-

ity of their domains: dom(e) and dom(f). For the simplicity,
we also denote the similarity of two domains, d and d′, as
domSim(d, d’).

Simple Domain: We first consider simple domains where
each value in the domain contains only one component. The
simple domains can be of varied types. In this paper, we con-
sider the following simple domain types: time, money, area,
calendar month, int, real, and string. Usually, the domain
type of a field is not specified in the interface. But it can
often be inferred from the values in the domain. The in-



ference is carried out via pattern matching: for each simple
domain type, a regular expression is defined, which specifies
the pattern of the values in the domain. For example, the
regular expression for the time type can be defined as “[0-
9]{2}:[0-9]{2}” which recognizes values of the form “03:15”
as of the time type.

For some fields, especially those which do not have pre-
determined values, the label of the field might contain some
information on the type of the values expected by the field.
For example, a field whose label contains “$” or keyword
“USD” expects an input of the monetary type. For all fields
which we are not able to infer their domain types, we assume
their domains are of string type with an infinite cardinality.

Similarity of Two Simple Domains: The similarity of
two simple domains, d and d′, denoted as domSim(d, d′), is
judged on both the type of the domain and the values in the
domain as follows:

λt ∗ typeSim(d, d′) + λv ∗ valueSim(d, d′). (3)

For two domains of the same type, typeSim is 1 and we
further evaluate their value similarity; otherwise, their sim-
ilarity is defined to be zero. First, let’s consider two char-
acter domains, d and d′. Suppose the set of values in d is
{u1, u2, . . . , um} and similarly, d′ = {v1, v2, . . . , vn}. All ui’s
and vj ’s are strings. With a desired threshold τ , we deter-
mine all pairs of similar values, one from each domain, by
the following Best-Match procedure: (1) We compute the
pairwise Cosine similarity for every pair of values, one from
d and the other from d′. (2) The pair with the maximum
similarity among all pairs is chosen and the corresponding
two values are deleted from d and d′. (3) Repeat step 2 on
all remaining values in the domains until no pair of values
has a similarity greater than τ . Let the pairs of values cho-
sen be C. The valueSim(d, d’) is then computed with the

Dice’s function [5, 6] as 2∗|C|
|d|+|d′|

.

For two numeric domains, we measure their value similar-
ity by the percentage of the overlapping range of values in
the domains. More specifically, the valueSim(h, h′) of two
such domains, h and h′, is evaluated as follows:

min{max(h), max(h′)} − max{min(h), min(h′)}

max{max(h), max(h′)} − min{min(h), min(h′)}
,

where min(x) and max(x) give the minimum and the maxi-
mum of the values in the domain x, respectively. Note that
the numerator is the range where the two domains overlap
and the denominator is the outer span of the two domains.
For two identical domains, the similarity is 1. The similarity
is defined to be zero if two domains do not overlap. For dis-
crete numeric domains such as int, the above formula might
underestimate their value similarity. For these domains, we
adjust the formula by adding constant 1 to both the numer-
ator and the denominator but only when the numerator is
greater than zero.

For a field whose domain type is string with an infinite
cardinality, we assume that its domain is dissimilar to the
domain of any other field, be it finite or infinite.

4.2 Finding 1:1 Mappings
We employ a hierarchical agglomerative clustering algo-

rithm [13] to identify 1:1 mappings of fields. The clustering
algorithm is shown in Figure 4. It expects three inputs: a
set of interfaces S, the similarity matrix M of fields in S,
and a stopping threshold τc ≥ 0. The result of the clustering

Cluster(S, M , τc) → P :
(1) place each field in S in a cluster by itself.
(2) while there are two clusters with similarity > τc,

(a) choose two clusters, ci and cj , whose similarity
is the largest over all pairs of clusters.

(b) resolve the ties if necessary.
(c) merge ci and cj into a new cluster ck, and

remove clusters ci and cj .
(d) remove all rows and columns associated with ci and

cj in M , and add a new row and column for ck.
(e) compute similarities of ck with other clusters

using Formula 4.
(3) return the clusters of fields.

Figure 4: The clustering algorithm

process is a partition over fields such that similar fields are
in the same partition while fields in different partitions are
dissimilar.

The similarity matrix M is obtained as follows. Suppose
the total number of fields over all interfaces in S is m. We
compute the aggregate similarity for every pair of fields in
different interfaces, which results in an m × m symmetric
matrix M , whose entry M [i, j] gives the aggregate similarity
between the i-th field and the j-th field. Since two fields, say
the k-th and the l-th fields, from the same interface should
not be merged, such an entry M [k, l] is set to zero.

The algorithm starts by placing each field in a cluster by
itself. Then, it repeatedly selects two clusters which have the
largest similarity to merge until none of the remaining pairs
of clusters has a similarity greater than the given threshold.
In the following, we first discuss the greedy property of the
algorithm and its implication to the field matching. We
then give the formula for the cluster similarity. Finally, we
discuss the tie resolution technique employed at step (2b) of
the algorithm.

Greedy Matching: Typically, for each field e, there are
a large number of candidate mappings from the interfaces
other than the one which e belongs to, and we have to decide
which choices are the “best”. The well-studied matching
problem in graph theory [17] provides a rich set of possi-
ble criteria such as: maximum cardinality, maximum total
weight, and stable marriage. A matching has the maxi-
mum cardinality if it has the largest number of mappings;
a matching has the maximum total weight if the sum of
weights of its mappings is the largest; and the stable mar-
riage property requires that there are no two mappings (x, y)
and (x′, y′) such that x prefers y′ to y and y′ prefers x to x′.
Empirical studies in [19] show that the perfectionist egalitar-

ian polygamy selection metric (that is, no male or female is
willing to accept any partner(s) but the best) produces best
results in a variety of schema matching tasks. The greedy

choice step of the clustering process for the identification of
1:1 mappings can be regarded as the monogamy version of
this metric.

More specifically, the clustering process involves in the
repeated application of the following two procedures: (i)
Greedy choice: Two clusters, ci and cj , with the maximum

similarity are chosen to merge into a new cluster ck. All
fields in ck are considered to be 1:1 mapped to each other.
(ii) Constraint enforcement: Consider two fields, fi and fj ,
in ck and suppose that fi belongs to interface Su and fj to
interface Sv. Since all we consider here are 1:1 mappings,
clearly fi can not be mapped to any field in Sv other than
fj ; similarly, fj can not be mapped to any field in Su other
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than fi. Procedure (i) corresponds to steps (2a–c) in Fig-
ure 4 and procedure (ii) corresponds to steps (2d–e), where
Formula 4 is to be introduced below. It can be shown that
the matching obtained by the greedy strategy is stable. The
following example further illustrates the greedy strategy by
contrasting it with the maximum cardinality criterion.

Example 4: Consider two interfaces, E and F , in Figure 5.
E has three fields, e1, e2, and e3; F also has three fields,
f1, f2, and f3. Suppose their aggregate similarities are as
shown in Figure 5 in the form of the similarity graph and
the clustering threshold τc = .6. When the clustering begins,
each field is in one cluster itself. For example, f2 is in cluster
{f2}. The greedy strategy first chooses to merge {e1} and
{f1} since they have the maximum similarity. Then, {e2}
can not be merged with the resulted cluster {e1, f1} by the
constraint enforcement. This is achieved by removing the
edges associating e1 with all fj ’s and f1 with all ei’s.

Accordingly, {e3} and {f2} will be merged next since they
have the maximum similarity among the remaining clusters.
The final partition of fields resulted from the clustering pro-
cess is P1. It can be verified that the mappings in P1 are
stable. In contrast, the maximum cardinality criterion yields
matching P2 whose cardinality is 3, the largest size of match-
ing possible for this example. Clearly, P1 does not have the
maximum cardinality. �

The Cluster Similarity: Consider two clusters, ci and cj ,
each of which contains a set of fields. Suppose there are m
fields: {ci1 , ci2 , . . . , cim

} in ci, and n fields: {cj1 , cj2 , . . . , cjn
}

in cj . The similarity between ci and cj , denoted as Sim(ci, cj),
is then given as follows:

max
1≤u≤m,1≤v≤n

{AS(ciu
, cjv

)}. (4)

If a field in ci and a field in cj belong to the same inter-
face, then Sim(ci, cj) = 0. Formula 4 yields a single-link
algorithm.

Ordering-based Tie Resolution: Tie occurs when there
are more than one pairs of clusters with the same maxi-
mum similarity and there are at least one clusters involved
in two or more such pairs. Intuitively, this situation occurs
when the aggregate similarities alone are not sufficient for
the proper identification of equivalent pairs of fields. Tie
frequently occurs in some domains (see our experiment sec-
tion for more details), thus a proper resolution of the ties is
very important to the accuracy of field matching.

We resolve the ties by exploiting the order semantics of
fields in the involved clusters. Consider a cluster c which
has the maximum similarity with a set s of other clusters.
First, we decide on two interfaces to be used as our reference
to resolve the ties. The first of such interfaces, S1, is chosen
to be any interface whose fields appear in at least one of
the clusters in s. We select any interface in cluster c to
be our second reference interface, S2. Next, we identify all
pairs of fields having the maximum similarity, with each pair

S1

departure city return city from city to city

where to travel?where to go? S2

Figure 6: Tie resolution

containing a field from each of the two reference interfaces.
We then select a reference field pair (e, f), where e from S1

and f from S2, such that no other field appearing before f
in S2 has the maximum similarity with e and vice versa (in
other words, e and f are each other’s first best choice). If
such a pair is found, we merge the cluster where e appears
with the cluster where f appears. Otherwise, we randomly
choose two clusters with the maximum similarity to merge.

Example 5: Consider two such reference interfaces in the
airfare domain as shown in Figure 6, where four pairs of
fields have the maximum similarity. (departure city, from

city) will then be chosen as the reference field pair. Note that
this corresponds to the intuition that normally the departure
information appears before the information on the returning
trip in the interface. �

4.3 Finding Complex Mappings
In this section, we extend the clustering process to han-

dle 1:m mappings of the fields. Two additional phases are
introduced: a preliminary-1-m-matching phase before the
clustering process and a final-1-m-matching phase after the
clustering process. In the preliminary-1-m-matching phase,
we exploit the properties of the fields and the structure of
the interfaces to identify an initial set of 1:m mappings. At
the end of this phase, all fields which are involved in the one
side of at least one 1:m mappings will be removed before the
clustering algorithm is applied. After the clustering process
is completed, the result from the preliminary-1-m-matching
phase will be combined with the clustering result to obtain
the final set of 1:m mappings. Figure 7 shows the complete
field matching algorithm which we now describe in detail.
We start with a necessary definition.

Definition 2: (Composite Domain & Field) A compos-
ite domain d of arity k is a set of ordered k-tuples, where
the i-th component of the tuple is a value from the i-th sub-
domain of d, denoted as di. Each di is a simple domain. The
arity of domain d is denoted as φ(d). A field is composite if
its domain is composite. �

The domain type of a composite domain is also composite,
consisting of an ordered list of simple domain types, each
defined for one of its sub-domains. A special composite type,
date, is pre-defined.

To determine if a field is composite, we adopt a simpli-
fied structure extraction process as employed in [26] for data
cleaning. In particular, we exploit the delimiters in the val-
ues to suggest the structure of the domain, where the de-
limiters we consider include punctuation characters, white
spaces, and special words such as “to”. For a field to be
composite, we require that the overwhelming majority of
the values of the field can be consistently decomposed into
the same number of components. For the fields which do
not have instances, we also try to exploit the format in-
formation which might appear in the label of the field to
help determine if the field has a composite domain and the
type of its sub-domains. For example, “mm/dd/yyyy” or
“mm/dd/yy” are commonly used to annotate a field which



FieldMatch(S) → P and Q′

(1) /* Preliminary-1-m-matching phase: */
Q← IdentifyInitialOneToManyMappings(S)

(2) /* Clustering phase: */
(a) /* compute pairwise aggregate similarities of fields */

M ← ComputeAggregateSimilarities(S)
(b) /* identify 1:1 mappings via clustering */

P ← Cluster(S,M ,τc)
(3) /* Final-1-m-matching phase:

combine P and Q to obtain final 1:m mappings */
Q′ ← ObtainFinalOneToManyMapping(P , Q)

Figure 7: The field matching algorithm

expects an input of the date type in the format: month, day,
and year.

Similarity of Composite vs. Simple/Composite Do-
mains: Consider two domains, d and d′, at least one of
which is a composite domain. In other words, either φ(d) >
1, or φ(d′) > 1, or both. The similarity of two such do-
mains (each of which can be a composite domain) is then
evaluated based on the extent by which their sub-domains
are similar. Since sub-domains are all simple domains, their
similarity is evaluated by Formula 3 and they are deter-
mined to be similar if their similarity value, domSim, ex-
ceeds a threshold τ ′. We employ the Best-Match proce-
dure to determine the set of pairs of similar sub-domains:
{(di, d

′
j)|domSim(di, d

′
j) > τ ′}, denoted as C′. The similar-

ity of d and d′ is then evaluated also via the Dice’s function

as: 2∗|C′|
φ(d)+φ(d′)

.

4.3.1 Identify a Preliminary Set of 1:m Mappings
Aggregate Type: To identify the initial set of aggregate
1:m mappings of fields, we proceed as follows. Consider all
fields over all interfaces. For each field e in interface S, we
first check if it is a composite field as described above. If e
is composite, then in every interface other than S, denoted
as X, we look for a set of fields f = {f1, f2, . . . , fn}, where
n > 1, such that the following conditions are satisfied:

1. fi’s are siblings, that is, they share the same parent p
but the set of fi’s might be a proper subset of the set of
all children of p.

2. The label of the parent of fi’s is highly similar to the
label of e.

3. There is a subset s of sub-domains of domain of e such
that there is a 1:1 correspondence between each sub-
domain in s and the domain of some field fj (or sub-
domain if fj is composite) in f in the sense that they
have high similarity (according to Formula 3).

If there exists such a f in interface X, a 1:m mapping of
aggregate type is then identified between e and fields in f ,
denoted as e ↔ {f1, f2, . . . , fn}.

Note that the field proximity observation as discussed in
Section 3.3 is exploited in condition (1): since the fields on
the many side are closely related, they are typically placed
close to each other in the interface, forming a group, and
the fields of the same group in the interface are siblings in
the schema tree. Note also that it is possible that the field
on the one side only matches with some of fields in the same
group. See Figure 3(a) for such an example where day field
does not participate in the 1:m mapping shown in the figure.
Further note that condition (3) essentially captures the part-

of relationship between the content of a field on the many
side and that of the field on the one side in a 1:m mapping

of the aggregate type.

Is-a Type: The identification of aggregate 1:m mappings
of fields relies on the detection of composite fields and then
the discovery of the corresponding sub-fields in another in-
terface. Typically, the domains of the sub-fields may be dif-
ferent. In contrast, the identification of is-a 1:m mappings
of fields requires that the domain of each corresponding sub-
field is similar to that of the general field. More precisely,
for each non-composite field e′, we check if there exists a set
of fields f = {f1, f2, . . . , fn}, n > 1, in another interface X,
which meets the following conditions:

1. All fi’s are siblings and their parent does not have any
children other than fi’s.

2. The label of the parent of fi’s is highly similar to the
label of e.

3. The domain of each fi is highly similar to the domain of
e.

If yes, a 1:m mapping of is-a type is then identified between
e′ and fields in f , denoted as e′ ↔ {f1, f2, . . . , fn}.

Dealing with Infinite Domains: As described above,
there are some fields which we are not able to infer their
domain types and assume that they have domains of string
type with an infinite cardinality. Since the similarity of an
infinite string domain with any other domain is zero, the
above procedures can not be employed.

To cope with this situation, we introduce an additional
approach which utilizes the label information extensively
to identify fields which map to several other fields in an-
other interface. In detail, we consider all fields which are
not involved in any 1:m mappings of both types identified
above. For each such field g, we seek a set of sibling fields
f = {f1, f2, . . . , fn}, n > 1, such that one of the following
two conditions is satisfied. (1) fi’s are the only children of
their parent, p, and the label of g is identical to the label of
p. (2) The label of g can be decomposed into several com-
ponent terms with ‘,’, ‘/’, ‘or’ as delimiters, and the label of
each fi is one of the component terms in the label of g.

4.3.2 Obtain the Final 1:m Mappings of Fields
Our experiments show that the mappings identified in the

preliminary-1-m-matching phase are quite accurate (i.e. of
high precision). But there are cases where direct evidences
between the fields involved in a 1:m mapping might not be
sufficient to meet the required conditions as described above.
As a result, these mappings fail to be identified, reducing the
recall. To cope with this, in the final-1-m-matching phase,
an inference process is carried out where the 1:m mappings
identified in the premilinary-1-m-matching phase are com-
bined with the 1:1 mappings identified in the clustering pro-
cess to infer additional 1:m mappings. We also require that
the fields on the many side of new 1:m mappings are siblings.
We use the following example to illustrate this inference pro-
cess.

Example 6: Suppose the preliminary-1-m-matching phase
is able to identify a 1:m mapping a ↔ {b1, b2}, where a
comes from interface A, and both b1 and b2 from interface
B. Suppose further that the clustering process discovers two
1:1 mappings: b1 ↔ c1 and b2 ↔ c2, where c1 and c2 are
from interface C. Then, a new 1:m mapping a ↔ {c1, c2}
will be inferred by the final-1-m-matching phase, given that
c1 and c2 are siblings in interface C. �



5. USER INTERACTIONS
Our experiments show that the automatic field matching

algorithm proposed above can achieve high accuracy over
different domains. As typical of many schema matching
algorithms, the algorithm first requires a set of parame-
ters to be manually set, then it proceeds to the end with-
out human’s intervention. Since these parameters are often
domain-specific or even field-specific, when the system is ap-
plied to a different domain, a different set of parameters may
need to be used. Usually, these parameters are tuned in a
trial-and-error fashion with no principled guidance. Further-
more, since there might not exist a best set of parameters
or a perfect similarity function, errors might still occur: (1)
some mappings might fail to be identified (i.e. false nega-

tives); and (2) some identified mappings are not correct (i.e.
false positives).

In this section, we make our field matching algorithm in-
teractive by putting the human integrator back in the loop.
We first propose a novel approach to learning the parameters
by selectively asking the user (that is, the integrator) some
questions. We then propose several approaches to reducing
errors in both 1:1 and 1:m mappings with user’s help. For a
question on 1:1 mapping, we present the corresponding pair
of fields to the user, showing both their labels and instances,
and the user only needs to give “yes”/“no” responses. For
a question on 1:m mapping, all fields on the many side of
the suggested mapping are shown to the user. The empirical
evaluation of the user interactions will be given in Section 6.

5.1 Parameter Learning
First, we observe that the field similarity, denoted as fs, is

actually a linear combination of the component similarities:
csi’s. That is, fs = a1 ∗ cs1 + a2 ∗ cs2 + · · · + an ∗ csn, where
ai’s are weight coefficients reflecting the relative importance
of different component similarities. And the field matching
algorithm can be regarded as a thresholding function: fs >
τ , or a1 ∗ cs1 + a2 ∗ cs2 + · · · + an ∗ csn > τ . Two fields are
judged to be similar if their field similarity fs > τ ; and not
otherwise.

Consider a simple case where the field similarity fs has
only two component similarities, cs1 and cs2. Figure 8 plots
the distribution of field similarities in two dimensions, one
for each component similarity. A point is shown in ‘+’ sign
if two fields with the corresponding component similarities
indeed match; and in ‘-’ sign otherwise. If the component
similarity functions are reasonably accurate in capturing the
similarity of fields, we expect a typical distribution as shown
in the figure. That is, matching fields typically have at least
one large component similarities and non-matching fields
normally would have low values in both of their component
similarities. Clearly, a good thresholding function should
be such a dividing line that the majority of positive points
lie above it and the majority of negative points lie below it.
There are different ways of learning a thresholding function.
Here, we propose an approach to learning the threshold τ ,
while ai’s are set to some domain-independent empirical val-
ues (see Section 6 on how this is done in our experiments).

Learning the Threshold: We further observe that there
are only two possibilities for each field in an interface: either
it matches with some field in some other interface, or it does
not match with any field in any other interface. Assuming
that our similarity function is reasonably accurate, we will
have relatively larger similarity values for the fields in the
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Figure 8: Thresholding function

former case; and relatively smaller similarity values for the
fields in the latter case. In other words, there will be a
gap between these two types of similarity values and a good
threshold can be set to any value within this gap.

Based on this observation, we propose an approach to de-
termining a boundary for a good threshold. We first set the
boundary to some reasonable range [a, b]. Then, we apply
the following process on all interfaces. For each interface
under consideration, we obtain, for each field in the inter-
face, the maximum similarity of this field with other fields
in all other interfaces. We arrange these similarities into a
list by the descending order of their values. Next, starting
from the first value in the list which is within the current
boundary, and for each such value v, we examine if v is sig-
nificantly lower, say by percent p, than the previous value
in the list. If yes, we ask the user to determine if the pair of
fields corresponding to v is matching. If the answer is yes,
we lower the upper bound to v and continue on the list; if
the answer is no, we increase the lower bound to v and stop
further processing down the list. The result of the process
is an updated boundary [a’, b’].

If the obtained boundary is still too rough, a refinement
process is carried out. For this process, we reconsider the
lists of maximum similarities obtained above, one for each
interface, and select the one with the largest number of val-
ues within [a’, b’]. Instead of asking the user to determine
if all these values correspond to correct matches, we adopt
a bisection-like strategy to reduce user interactions: given a
list of values, the first question is on the middle, and depend-
ing on the answer, the remaining questions will be restricted
to either the first or the second half of the list.

5.2 Resolving the Uncertainties
The analysis of our experimental results reveals that most

of the errors occur are: (1) false positive 1:1 mappings due
to homonyms; (2) false negative 1:1 mappings; and (3) false
negative 1:m mappings. To reduce these errors, in this sec-
tion, we propose several methods to determine the uncer-
tainties arising in the mapping process and resolve them
with user’s interactions.

Determine Possible Homonyms: Homonyms are two
words pronounced or spelled the same but with different
meanings. Here, we use homonyms to refer to two fields
which have very large linguistic similarity but rather small
domain similarity. For example, type of job might mean the
duration of the job such as part time and full time, but it
might also mean the specialty of the job such as accountant,
clerk, and lawyer. Intuitively, the domain of a field reflects
its extensional semantics, while the label/name of a field
conveys its intensional semantics. Two fields with highly
similar names/labels but very different domains resemble



% of

Max Avg Min Max Avg Min Max Avg

20

0

0

0

0

26

37

24

53

39

0

0

0

0

0

26

0

0

0

0

0

0

2

1

21

715 10.75

10 5.1 42

102

4.6

3 6.7 1 6

5.4 2

23

14

7 1

1

1

1 2 3.6

2.4

2 2.3

2 2.1

2 2.7

2

4

3

3

3

55.1

1.3

1.7

1.1

2.4

Internal NodesLeaf Nodes Depth

71.9

61.4

25.4

70.0

67.8

TimeInt StringReal Area CalMonMoney
Domain

Airfare

Automobile

Book

Job

Real Estate

Comp. TypesDistribution of Simple Domain Types

Date Other

0

4

0

0

5

7

6 9

1

12

0

0

0

0

18

76

2

0

12

20

Fields
w/ InstMin

Table 1: Domain and characteristics of interfaces for our experiments

homonyms in linguistics.
Again, we use Figure 8 to illustrate homonym fields and

their relationship with the thresholding function. Consider
cs1 as the linguistic similarity, and cs2 as the domain simi-
larity. Note that the lower right area of the figure is where
potential homonyms could occur, since this is the area where
the linguistic similarity is high but the domain similarity is
low. Further note that homonym fields could have a similar-
ity value large enough to be placed above the thresholding
line.

To resolve homonym fields, user is asked to confirm when
the system discovers two fields with rather high linguistic
similarity but very low domain similarity. Since homonym
fields could potentially confuse the process of learning the
clustering threshold, they are resolved first before the learn-
ing starts. If two fields are determined to be homonyms,
they will not be utilized during the process.

Determine Possible Synonyms: Possible synonyms refer
to two fields which could still be semantically similar even
if neither their linguistic similarity nor their domain simi-
larity is very high. Possible reasons for the low similarity of
two such fields are: (1) their labels/names do not have any
common words; and (2) their domains are actually seman-
tically similar but might not contain a sufficient number of
common values so that their domain similarity will be large
enough. Examples of such fields are those positive points
located below the thresholding line in Figure 8.

To determine potential synonyms, an additional Check-

Ask-Merge procedure is introduced right after the end of
step 2 of the clustering process in Figure 4. The procedure is
a repeated application of: (1) check if there are two clusters
which contain fields with some common instances and if yes,
we choose two such fields with the largest number of common
instances; (2) ask the user if two chosen fields match; and
(3) if they match, merge the corresponding two clusters.

Determine Possible 1:m Mappings: Although the pro-
cedure given in Section 4.3 is quite accurate (see our ex-
perimental results) in identifying 1:m mappings, there are
some potential 1:m mappings which do not satisfy the rules
which are designed to find only the 1:m mappings the system
is highly confident of.

Intuitively, field e could potentially map to fields f and
g if: (1) the similarity between e and f is very close to the
similarity between e and g; (2) f and g are very close to
each other in the interface; and (3) there is no other field
in the interface containing e, which also satisfies conditions
(1) and (2). To reduce the number of questions asked, we
further require that f and g are adjacent to each other in
the interface. Note that condition (3) is necessary since oth-
erwise there might as well be multiple 1:1 mappings instead
of one 1:m mapping.

We apply similar rules to find potential 1:m mappings
with more than two fields on the many side. The resolution

of uncertain 1:m mappings is carried out in the preliminary-
1-m-matching phase but after all other automatic means of
identifying 1:m mappings are completed.

6. EXPERIMENTS
To evaluate our approach, we have conducted extensive

experiments over several domains of sources on the Web.
Our goal was to evaluate the matching accuracy and the
contribution of different components.

Data Set: We consider query interfaces to the sources on
the “deep” Web in five domains: airfare, automobile, book,
job, and real estate. For each domain, 20 query interfaces
were collected by utilizing two online directories. First,
we searched listed sources in invisibleweb.com (now pro-
fusion.com) which maintains a directory of hidden sources
along with their query interfaces. We also utilized the Web
directory maintained by yahoo.com. Since yahoo.com does
not focus on listing hidden sources, for the sources in the do-
main of our interest, we examine if they are hidden sources
and if yes, we identify their query interfaces. After query
interfaces were collected, they were manually transformed
into schema trees. Note that it is possible to utilize the
techniques developed in [24] to facilitate the transformation.

Table 1 shows the characteristics of interfaces used in our
experiments. For each domain, the table shows the mini-
mum, the maximum, and the average of the number of leaf
nodes and internal nodes, and of the depth of the schema
trees representing the interfaces. For leaf nodes, the table
also shows the percentage of their corresponding fields which
contain instances. The last two portions of the table show
the distribution of simple and composite domain types of
the fields.

Performance Metrics: Similar to [10, 19], we measure the
performance of field matching via three metrics: precision,
recall, and F-measure [31]. Precision is the percentage of
correct mappings over all mappings identified by the system,
while recall is the percentage of correct mappings identified
by the system over all mappings as given by domain experts.
F-measure incorporates both precision and recall. We use
the F-measure where precision P and recall R are equally
weighted: F = 2PR/(R + P ). Note that a 1:m mapping
is counted as m 1:1 mappings, each of which corresponds
to one of the m mapping elements. For example, a 1:m
mapping from element ei to ej and ek are considered as two
1:1 mappings: ei ↔ ej and ei ↔ ek.

Experiments: For each domain, we perform three sets of
experiments. First, we measure the accuracy of our auto-
matic field matching algorithm. Second, we examine the
effectiveness of user interactions in improving the accuracy.
Third, we evaluate the contribution of different components.

For all the experiments we conduct, the weight coefficients
for the component similarities are set as follows: (1) λls = .6



Domain Prec. Rec. F

Airfare 92.0 90.7 91.4
Auto 92.8 92.3 92.6
Book 93.5 92.5 93.0
Job 81.8 83.5 82.6

Real Est. 81.0 96.7 88.1

Average 88.2 91.1 89.5

Table 2: The automatic field
matching accuracy

Domain Prec. Rec. F

Airfare 94.1 90.5 92.3
Auto 96.3 91.4 93.8
Book 97.8 92.5 95.1
Job 90.0 71.8 79.9

Real Est. 97.6 93.6 95.6

Average 95.2 88.0 91.3

Table 3: The accuracy with
learned thresholds

Domain Prec. Rec. F

Airfare 94.1 90.6 92.3
Auto 96.5 97.6 97.0
Book 98.5 97.1 97.8
Job 95.0 86.4 90.5

Real Est. 95.6 97.6 96.6

Average 96.0 94.0 94.8

Table 4: The accuracy with
all user interactions

Domain Thres. Hom. 1:m Syn. Total

Airfare 4 0/0 1/2 0/0 7
Auto 2 0/1 3/1 0/0 7
Book 2 0/1 5/0 0/1 9
Job 5 3/3 0/3 3/14 31

Real Est. 5 0/2 4/4 2/0 17

Table 5: Distribution of different types of questions

and λds = .4. This reflects the observation that both the
description-level and the instance-level properties of a field
are very important evidences in identifying the semantics of
the field, and further that labels are typically more informa-
tive than instances; (2) λn = 1/6, λl = 3/6, and λnl = 2/6.
This reflects the observation that the label of a field is more
informative than the name of a field which often contains
acronym and abbreviation; (3) For the domains (such as
money, time, and area) whose types convey significant se-
mantic information, we set λt = .8 and λv = .2. For other
domains (such as int, real, and string), we set λt = 0 and
λv = 1.

6.1 Automatic Field Matching Accuracy
For all the experiments with the automatic field match-

ing algorithm, the clustering threshold is set to zero for all
domains (so that as long as two fields have some non-zero
similarities, they will be matched). Table 2 shows the ac-
curacy of our automatic field matching algorithm. Columns
2–4 show precision, recall, and F-measure, respectively. We
observe that precisions range from 81% to 93.5%, recalls
from 83.5% to as high as 96.7% over five domains, and that
it achieves about 90% in F-measure on average. These indi-
cate the effectiveness of our automatic field matching algo-
rithm.

6.2 Results on User Interactions
In the user interaction experiments, we want to observe

whether the proposed methods for the interactive learning
of thresholds and the resolution of uncertainties are effec-
tive. Table 3 shows the field matching accuracy with learned
thresholds. That is, the only user interaction is to determine
the threshold. Table 4 shows the accuracy of the interac-
tive field matching algorithm which incorporates both the
threshold learning and the resolution of uncertainties.

Table 5 shows, for each domain, the number of questions
asked for each type of questions. The second column shows
the number of questions asked to determine the thresh-
old. The third column shows the number of questions asked
to determine homonyms (x/y means that x questions were
asked with a “yes” response while y questions were asked
with a “no” response). For example, for the book domain,
one homonym question was raised but the user responded
with a “no” answer. The fourth column shows the number

of 1:m questions asked. The fifth column shows the number
of questions asked at the end of the clustering algorithm to
determine potential 1:1 mappings. The last column shows
the total number of questions asked.

Threshold learning: Compare Table 3 with Table 2,
we observe that precisions increase significantly and con-
sistently over all five domains while recalls are all around
90% except for the job domain. The reason for the lower
recall for the job domain is that one of questions raised to
the user during the threshold learning process happened to
be homonym fields with relatively large similarity, driving
up the threshold. This indicates the importance of detect-
ing homonyms, particularly before the threshold learning
process. Note that, in general, a larger threshold will lead
to higher precision but lower recall. Thus, in order to im-
prove over the automatic field matching algorithm, it is crit-
ical that the learned threshold does not lead to a dramatic
decrease in the recall while improving the precision signifi-
cantly. The above results indicate that our threshold learn-
ing process is very effective. Moreover, this is achieved with
a small amount of user interaction: on average less than four
questions were asked for each domain.

All user interactions: Compare Table 4 with Table 3, we
observe that recalls improve consistently over all domains,
with nearly 15% for the job domain. Detailed analysis on the
results for the job domain reveals that the increase in recall
is largely due to the resolution of homonyms. In fact, from
Table 5 we observe that six homonyms questions were asked
for the job domain and three of them were confirmed by the
user. We also observe that the most common type of ques-
tions is 1:m mapping question and at least one proposed 1:m
mappings were confirmed by the user for all domains except
for the job domain. The resolution of potential 1:1 map-
pings is most effective in the real estate domain. Overall,
the total number of questions asked ranges from 7 for the
airfare and automobile domains, to 31 for the job domain.

The overall improvement due to the user interactions can
be observed by contrasting Table 4 with Table 2. We note
that the average precision increases by 7.8%, the average
recall by 2.9%, and the average F-measure by 5.3%. These
indicate the effectiveness of the user interactions.

6.3 Studies on Component Contribution
Table 6 shows the contribution of different components in

the automatic field matching algorithm to the overall per-
formance. We examine three important components: (1)
handling of 1:m mappings; (2) utilization of instance infor-
mation; and (3) tie resolution. For each component, we show
the accuracy of the automatic field matching algorithm if the
component is removed. To ease the comparison, we repro-
duce the results for the complete automatic field matching
algorithm in the last three columns.
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RecPrec Rec F Prec F Prec Rec FPrec Rec PrecF Rec

No Tie Res.
Domain

Airfare

Average

None AllNo 1:m Handling No Instances

Automobile

Book
Job

Real Estate

91.487.481.8 87.093.0 86.184.982.883.482.273.366.981.0 90.792.0

90.385.5 86.788.181.678.585.1 88.386.685.585.785.6 91.188.2 89.5

96.081.3 80.679.8 87.380.185.592.279.676.675.477.8 96.781.0 88.1

83.581.0 81.381.6 82.681.878.477.279.776.874.779.1 83.581.8 82.6

92.592.0 92.893.5 93.093.592.187.297.791.986.897.7 92.593.5 93.0

92.391.2 92.092.7 92.692.888.788.588.989.588.890.1 92.392.8

F

Table 6: Comparisons of contribution of different components

Handling of 1:m mappings: Columns 5–7 show the results
with the component of handling 1:m mappings removed. In
comparison with the results for the complete algorithm, we
observe that 1:m mapping of fields occur in all five domains.
With the handling of 1:m mappings, the recall increases over
all domains, with the largest increase as much as 15.4% in
the real estate domain. The precision either increases or re-
mains the same for all domains except for the airfare domain.
The slight decrease in precision in the airfare domain is due
to the relatively worse performance (83.8% in precision) of
1:m matching for the domain.

Utilization of instances: Since some solutions to interface
matching do not utilize the instance information, we want
to observe the effectiveness of exploiting instances for the
field matching. Columns 8–10 show the results without uti-
lizing the instances. We observe significant and consistent
increases in recall over all domains if the instance informa-
tion is utilized, with the largest increase 7.3% in the airfare
domain. This confirms the importance of the instance infor-
mation to the field matching and also our “bridging” effect
observation.

Tie resolution: Our tie resolution strategy was actually
first motivated by some example interfaces from the airfare
domain. The results shown in columns 11–13 indicate that
the strategy is indeed effective, achieving over 7% increase in
precision and over 3% increase in recall. The improvement
can also be observed in the real estate domain.

The aggregate contribution of these three components can
be observed by contrasting columns 2–4 with the last three
columns. As expected, we observe dramatic increases in
recall over all five domains, ranging from 3.5% in the auto-
mobile domain to as much as 23.8% in the airfare domain.
Overall, the average recall over five domains increases by
12.6%.

7. RELATED WORK
We discuss our work with the related works from the fol-

lowing perspectives.

Schema and Interface Matching: There is a large body
of works on schema matching and integration [6, 7, 9, 10, 11,
14, 16, 18, 19, 23, 29]. [25] gives a taxonomy of approaches
to schema matching. Most of the current works on schema
matching only consider 1:1 mappings of elements [6, 7]. [18,
19] also handle 1:m mappings but the techniques utilized
are completely different from ours. The average accuracy
of matching reported in [19] (52%) is substantially worse
than our accuracy rate although the test data are different.
And since [18] only reports the comparison of their approach
with several other systems on two example schemas, it is not
clear how their system performs on a large data set. The
importance of instances in schema matching has also been

observed in [7, 11]. Our utilization of instances in suggest-
ing possible mappings resembles the value correspondence
problem in [20].

Two recent works [10, 11] also study interface matching.
While 1:m mappings frequently occur among fields in the
interfaces as we observed, both of them only consider 1:1
mappings of fields. Furthermore, both of them model inter-
faces as flat schemas and do not utilize the ordering, the sib-
ling, and the hierarchical structure of the interfaces, which
are highly valuable in improving the matching accuracy as
we have shown.

User Interaction and Parameter Learning: Thresh-
olding function can be regarded as a linear classification
function. Learning of classifiers is extensively studied in the
machine learning literature [21]. Interactive learning of clas-
sifiers is explored in [28] in the context of deduplication. Our
approach to the interactive learning of thresholds is similar
to [28] in the goal of reducing the number of user interac-
tions, but our application area, namely schema matching,
is different. Our experiments show that our approach can
effectively shrink the confusion region with a small amount
of user interaction.

In [7], users provide feedback on the system identified
mappings. The feedback is captured as constraints which are
utilized in future matching tasks. In our approach, users in-
teract to resolve the uncertainties arising during the match-
ing process.

Bridging Effect vs. Mapping Reusing: Reusing past
identified mappings to help identify new mappings is an ef-
fective way of improving matching accuracy [25]. Consider
three elements, a, b, and c. It might be difficult to match a
with c directly, but if b has been previously matched with c
and a is very similar to b, we could use the mapping of b and
c to suggest the mapping of a and c. The bridging effect is
similar to the idea of mapping reusing.

Our bridging effect observation is also motivated in part
by the works done in [10, 12, 16], in particular by the holis-
tic approach to interface matching in [10]. The bridging
effect for 1:1 mappings has been discussed in Section 3. The
bridging effect for 1:m mappings can be observed in Sec-
tion 4.3.2, where 1:1 mappings obtained from the clustering
process serve as the “bridges” for the identification of new
1:m mappings.

We further note that [32] exploits a unlabeled corpus to
connect new examples with labeled examples in the context
of text classification, to achieve a similar bridging effect.

8. CONCLUSIONS & FUTURE WORK
We have presented an approach to interface matching

which achieves high accuracy across different domains. Our
approach captures the hierarchical nature of interfaces, han-



dles both simple and complex mappings of fields, and in-
corporates user interactions to learn the parameters and to
resolve the uncertainties in the matching process. Both the
description-level and the instance-level information of fields
are utilized. Our results indicate that our approach is highly
effective.

While our work is done in the context of interface match-
ing, we believe our approach contributes to the general schema
matching problem from several aspects. First, our bridging
effect observation further shows that rather than matching
two schemas at a time, we can exploit the evidences from a
large set of schemas at once to help identify mappings. Sec-
ond, our approach shows that user interactions can be intro-
duced during the matching process, thus complementing the
approaches where the user feedback is provided at the end of
the matching process. Third, our approach shows that it is
possible to utilize both the structural and the instance-level
information of schemas to help identify complex mappings.
Fourth, our approach for the active learning of parameters
constitutes an important step towards a systematic tuning
of the parameters in schema matching algorithms.

Although our approach has achieved a remarkable accu-
racy, there is still some room for improvement. Currently,
we are investigating the possibility of user interactions in
resolving other uncertainties in the matching process. One
interesting interaction would be to help break ties when
the ordering-based strategy fails. Another direction we are
working on is to incorporate an automatic interface model-
ing procedure into our approach and to further evaluate our
approach on the automatically generated schema trees.

Additional information on our work, including further ex-
perimental evaluation of the “bridging” effect, can be found
on our project’s Web site [1]. The data set used in our exper-
iments is available from the UIUC Web integration reposi-
tory [2] to facilitate related research.
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