K-Relevance: A Spectrum of Relevance for Data Sources Impacting a Query Huang and Naughton (SIGMOD '07)

Demian Lessa

CSE Department, SUNY at Buffalo

Spring 2008

2 K-Relevance

3 Experiments

K-Relevance: A Spectrum of Relevance for Data Sources Impacting a Query

- Motivation

Modern data management systems

- Remote sources and central database
- Sources periodically update database
- Database is usually out of date
- For instance:

sensor data management distributed system monitoring web-based integration, etc

K-Relevance: A Spectrum of Relevance for Data Sources Impacting a Query

Motivation

Web Integration Architecture Overview

K-Relevance: A Spectrum of Relevance for Data Sources Impacting a Query

Intr	odu	ictic	on

Motivation

What are some of the issues?

- Data extraction might be fuzzy
 - updates to the database might be missing
 - users might not understand results completely
- Interpreting or debugging (results of) queries is challenging
 - especially in the presence of many sources

K-Relevance: A Spectrum of Relevance for Data Sources Impacting a Query

- Motivation

Investigating query answers

- Surprising tuples
 - which sources are responsible for the tuples?
 - why did they contribute such tuples?
- Suspiciously missing tuples
 - which sources could have contributed?
 - why did they not contribute such tuples?
 - could one or more (source) updates fix the problem?

K-Relevance: A Spectrum of Relevance for Data Sources Impacting a Query

Example 1

sigcomm.html •Fast Intrusion Detection, Scott, CMU, scott@vahoo.com •Ubiquitous Signal Coverage, John, CMU, john@google.com			W E B	•Boost Ub Todd, MI •A New Ne Tom, CM	gmetrics.html iquitous Access, ſ, <u>todd@msn.com</u> etwork Metric, J, <u>tom@cmu.edu</u>		
Last updated: Nov 19, 2006				Last	Last updated: Nov 20, 2006		
Last Cra	awled: Nov 20, 200	⁶ V SY	STE	M VLast	Crawled: Nov 19, 200)6	
	Integration and Extraction						
			V			_	
	source	authorNa	me	authorOrg	authorEmail		
Authors	sigcomm.html	John	John		John@google.con	n	
	sigcomm.html	Scott		CMU	Scott@yahoo.com	1	
	source	paperAut	hor	paperTitle			
Papers	sigcomm.html	John		Ubiquitous Signal Coverage			
	sigcomm.html	Scott		Fast Intrusion Detection			

schema: {Authors, Papers} sources: { S_1 , S_2 } S_1 = sigcomm (synced) S_2 = sigmetrics (not synced) notice: source column assume: joins on source Q_1 : papers by MIT authors with 'Ubiquitous' in title $A_1 = \emptyset$

 Q_2 : names of CMU authors

 $A_2 = \{ \mathsf{John}, \mathsf{Scott} \}$

ロト (個) (注) (注) き のへの

-Example 1

If only the system could restrict the sources to investigate...

Example 1

If only the system could restrict the sources to investigate...

Here comes into play the notion of relevant sources.

Relevant Source

What is a relevant source?

K-Relevance: A Spectrum of Relevance for Data Sources Impacting a Query

Relevant Source

What is a relevant source?

Relevance may mean different things to

- different users
- the same user when posing different queries

K-Relevance: A Spectrum of Relevance for Data Sources Impacting a Query

– Relevant Source

What is a relevant source?

Relevance may mean different things to

- different users
- the same user when posing different queries

Relevance depends on

- ${\ensuremath{\, \bullet }}$ the query Q posed by the user
 - $\, \bullet \,$ a source might be relevant to Q_1 and not to Q_2
- $\bullet\,$ the database instance I against which Q is executed
 - ${\, \bullet \,}$ a source might be relevant to Q in I_1 and not in I_2

K-Relevance: A Spectrum of Relevance for Data Sources Impacting a Query

Relevant Source

Definition (attempt #1)

Relevant Source. A source s is relevant to a query Q iff a single update to s could change the result of Q.

 \diamond

– Relevant Source

Definition (attempt #1)

Relevant Source. A source s is relevant to a query Q iff a **single update** to s **could change** the result of Q.

 \diamond

The definition above does not address important scenarios...

• Which sources participate in the derivation of a result tuple?

 $\bullet\,$ non-relevant sources are considered by attempt #1

• What results to expect when multiple updates to one source, single updates to multiple sources, or both are made?

 $\bullet\,$ relevant sources are not considered by attempt #1

– Relevant Source

Definition (attempt #1)

Relevant Source. A source s is relevant to a query Q iff a **single update** to s **could change** the result of Q.

 \Diamond

The definition above does not address important scenarios...

• Which sources participate in the derivation of a result tuple?

ullet non-relevant sources are considered by attempt #1

• What results to expect when multiple updates to one source, single updates to multiple sources, or both are made?

 $\bullet\,$ relevant sources are not considered by attempt #1

Let's illustrate this with an example!

K-Relevance: A Spectrum of Relevance for Data Sources Impacting a Query

Example 1

•Fast Ir Scott, •Ubiqui John, o Last upo	sigcomm.html htrusion Detection CMU, scott@yah tous Signal Cove CMU, john@goo dated: Nov 19, 200	n, hoo.com erage, gle.com	W E B	•Boost Ub Todd, Mi •A New Ne Tom, CMI Last	gmetrics.html iquitous Access, r, todd@msn.com etwork Metric, J, tom@cmu.edu updated: Nov 20, 2006		
Last Cra	wled: Nov 20, 200	⁶ v sy	S⊤e	M Last	Crawled: Nov 19, 2006		
	Integration and Extraction						
			V			_	
	source	authorNa	me	authorOrg	authorEmail		
Authors	sigcomm.html	John		CMU	John@google.com		
	sigcomm.html	Scott		CMU	Scott@yahoo.com		
	source	paperAut	hor	paperTitle		-	
Papers	sigcomm.html	John		Ubiquitous Signal Coverage			
	sigcomm.html	Scott		Fast Intrusion Detection			

schema: {Authors, Papers} sources: $\{S_1, S_2\}$

 $S_1 = sigcomm (synced)$ $S_2 = sigmetrics (not synced)$

notice: source column

K-Relevance: A Spectrum of Relevance for Data Sources Impacting a Query

Example 1

•Fast Ir Scott, •Ubiqui	sigcomm.html ntrusion Detection CMU, <u>scott@yah</u> tous Signal Cove	n, 100.com erage,	W E B	•Boost Ub Todd, MIT •A New Ne	<u>gmetrics.html</u> iquitous Access, ſ, <u>todd@msn.com</u> etwork Metric,		
John, CMU, john@google.com Last updated: Nov 19, 2006				Tom, CMI Last	J, <u>tom@cmu.edu</u> updated: Nov 20, 2006		
Last Cra	wled: Nov 20, 200	⁶ V SY	STE	EM Last	Crawled: Nov 19, 2006		
	Integration and Extraction						
			V				
	source	authorNa	me	authorOrg	authorEmail		
Authors	sigcomm.html	John		CMU	John@google.com		
	sigcomm.html	Scott		СМИ	Scott@yahoo.com		
	source	paperAut	hor	paperTitle			
Papers	sigcomm.html	John		Ubiquitous Signal Coverage			
	sigcomm.html	Scott		Fast Intrusion Detection			

assume: join on source Q: papers by MIT authors with 'Ubiquitous' in title $A = \emptyset$

attempt #1:

 $\rightarrow S_1$ is relevant (requires one update) $\rightarrow S_2$ is not relevant (requires two updates)

misleading: A will change if S_2 is crawled!

K-Relevance: A Spectrum of Relevance for Data Sources Impacting a Query

Example 1

	sigcomm.html			si	gmetrics.html
•Fast Ir Scott, •Ubiqui John, (Last upo	ntrusion Detection CMU, <u>scott@yah</u> tous Signal Cove CMU, <u>john@goo</u> dated: Nov 19, 200	n, hoo.com erage, gle.com 6	W E B	•Boost Ub Todd, MI •A New Ne Tom, CMI	iquitous Access, I, todd@msn.com stwork Metric, J, tom@cmu.edu updated: Nov 20, 2006
Last Cra	wled: Nov 20, 200	⁶ v sy	STE	M Last	Crawled: Nov 19, 2006
			\mathbf{v}		
	source	authorNa	me	authorOrg	authorEmail
Authors	sigcomm.html	John		CMU	John@google.com
	sigcomm.html	Scott		CMU	Scott@yahoo.com
	source	paperAut	nor	paperTitle	
Papers	sigcomm.html	John		Ubiquitous Signal Coverage	
	sigcomm.html	Scott		Fast Intrusion Detection	

assume: join on source Q: names of CMU authors $A = \{$ John, Scott $\}$

fact: Scott studies @MIT fact: S_1 has faulty data!

attempt #1:

 \rightarrow S_1 and S_2 are relevant (each requires one update)

misleading: user wants to know that data in her answer came from S_1 so she can request a source update

3 Experiments

Introduction

What sources impact query Q, no matter how many updates?

K-Relevance: A Spectrum of Relevance for Data Sources Impacting a Query

-Introduction

What sources impact query Q, no matter how many updates?

Proposal: K-Relevant Sources

• Intuition: source s is k-relevant if potential updates to k relations, with at least one update from s, cause the results of Q to change

K-Relevance: A Spectrum of Relevance for Data Sources Impacting a Query

-Introduction

What sources impact query Q, no matter how many updates?

Proposal: K-Relevant Sources

- Intuition: source s is k-relevant if potential updates to k relations, with at least one update from s, cause the results of Q to change
- Two kinds of relevance
 - 0-Relevance or Lineage Relevance
 - ${\ensuremath{\, \bullet }}$ a tuple from s participates in the derivation of a result tuple
 - Update Relevance
 - $\bullet\,$ updates to s could cause it to contribute to the derivation of a result tuple

K-Relevance: A Spectrum of Relevance for Data Sources Impacting a Query

-Introduction

What sources impact query Q, no matter how many updates?

Proposal: K-Relevant Sources

- Intuition: source s is k-relevant if potential updates to k relations, with at least one update from s, cause the results of Q to change
- Two kinds of relevance
 - 0-Relevance or Lineage Relevance
 - ${\ensuremath{\, \circ }}$ a tuple from s participates in the derivation of a result tuple
 - Update Relevance
 - $\bullet\,$ updates to s could cause it to contribute to the derivation of a result tuple

The set of k-relevant sources for Q is a function of Q and the database instance $I. \end{tabular}$

K-Relevance: A Spectrum of Relevance for Data Sources Impacting a Query

-Example 2

•Fast Ir	<u>sigcomm.html</u> atrusion Detectio	n		sigmetrics.html			
•Ubiqui John, (CMU, <u>scott@yah</u> tous Signal Cove CMU, j <u>ohn@goo</u>	prage, gle.com	N E B	•A New Network Metric, Tom, CMU, tom@cmu.edu			schema: {Authors, Papers} sources: $\{S_1, S_2\}$
Last upo	lated: Nov 19, 200	6		Last	updated: Nov 20, 20	06	$S_1 = $ sigcomm (synced) $S_2 = $ sigmetrics (not synced)
Last Cra	wled: Nov 20, 200	⁶ v sys	ΤE	M VLast	Crawled: Nov 19, 20	06	$D_2 = \text{significance}(\text{Hot synced})$
	In	tegration ar	nd	Extraction			<i>Q</i> : papers by MIT authors
		\ \					SELECT
	source	authorNam	ie	authorOrg	authorEmail		P.paperTitle
Authors	sigcomm.html	John		CMU	John@google.com	<u>m</u>	Authors A, Papers P
	sigcomm.html	Scott		CMU	Scott@yahoo.cor	<u>n</u>	A.authorOrg='MIT' AND
	source	paperAutho	or	paperTitle			A.source = P.source AND A.authorName = P.paperAuthor
Papers	sigcomm.html	John	Ubiquitous		Signal Coverage		
	Scott		Fast Intrusi	on Detection			

K-Relevance: A Spectrum of Relevance for Data Sources Impacting a Query

-Example 2

sigcomm.html •Fast Intrusion Detection, Scott, CMU, scott@yahoo.com •Ubiquitous Signal Coverage, John, CMU, john@google.com Last updated: Nov 19, 2006				•Boost Ubiquitous Access, Todd, MIT, todd@msn.com •A New Network Metric, Tom, CMU, tom@cmu.edu Last updated: Nov 20, 2006		Q: papers by MIT authors $A = \emptyset$ 0 - relevance	
Last Crawled: Nov 20, 2006 SYS				Extraction	Crawled: Nov 19, 200	06	Authors from S_1 : \rightarrow no contribution
	source	authorNa	₩ me	authorOrg	authorEmail	٦	Papers from S_1 : \rightarrow no contribution
Authors	sigcomm.html	John		CMU	John@google.com	<u>n</u>	Authors from S_2 :
	source	paperAuth	nor	paperTitle	Scoll@yanoo.com	<u> </u>	\rightarrow no contribution Papers from S_2 :
Papers	sigcomm.html	John		Ubiquitous Signal Coverage			\rightarrow no contribution
	sigcomm.html	Scott		Fast Intrusion Detection			

K-Relevance: A Spectrum of Relevance for Data Sources Impacting a Query

-Example 2

sigcomm.html •Fast Intrusion Detection, Scott, CMU, scott@yahoo.com •Ubiquitous Signal Coverage, John, CMU, john@google.com Last updated: Nov 19, 2006			•Boost Ub Todd, MI •A New Ne Tom, CMI Last	gmetrics.html iquitous Access, r, todd@msn.com etwork Metric, J, tom@cmu.edu updated: Nov 20, 20	06	Q: papers by MIT authors $A = \emptyset$ 1 - relevance
Last Crawled: Nov 20, 2006 SY			EM Last	Crawled: Nov 19, 20	06	Authors from S_1 : \rightarrow change 'CMU' to 'MIT'
source	authorNa	y ame	authorOrg	authorEmail	٦	Papers from S_1 : \rightarrow broken selection
Authors sigcomn	n.html John n.html Scott		CMU CMU	John@google.com Scott@yahoo.com	m n	Authors from S_2 : \rightarrow no Papers to join
source	paperAu	thor	paperTitle			Papers from S_2 :
Papers sigcomn	n.html John	John		Ubiquitous Signal Coverage		\rightarrow no Authors to join
sigcomn	n.html Scott		Fast Intrusi	Fast Intrusion Detection		

▲ロ → ▲圖 → ▲ 国 → ▲ 国 → のへ(で)

K-Relevance: A Spectrum of Relevance for Data Sources Impacting a Query

-Example 2

•Fast In Scott, 0 •Ubiquit John, 0 Last upd	sigcomm.html •Fast Intrusion Detection, Scott, CMU, scott@yahoo.com •Ubiquitous Signal Coverage, John, CMU, john@google.com Last updated: Nov 19, 2006			•Boost Ubi Todd, Mil •A New Ne Tom, CMi Last	gmetrics.html iquitous Access, r, todd@msn.com etwork Metric, J, tom@cmu.edu updated: Nov 20, 20	06	Q: papers by MIT authors $A = \emptyset$ 2 - relevance
Last Cra	Last Crawled: Nov 20, 2006 SY			Extraction	Crawled: Nov 19, 20	106	for any source: \rightarrow add tuple τ_1 to Authors \rightarrow add tuple τ_2 to Papers
	source	authorNa	₩ me	authorOrg	authorEmail		\rightarrow $ au_1$ and $ au_2$ satisfy in Q
Authors	sigcomm.html	John		CMU	John@google.co	m	
	sigcomm.html	Scott		CMU	Scott@yahoo.cor	<u>m</u>	
	source	paperAut	nor	paperTitle			
Papers	sigcomm.html	John Scott		Ubiquitous Signal Coverage			
	sigcomm.html			Fast Intrusion Detection			

K-Relevance: A Spectrum of Relevance for Data Sources Impacting a Query

- K-Relevance
 - Preliminaries
 - Scenario
 - Central database schema, $\{R_1,\ldots,R_N\}$
 - Corresponding database instance, I
 - Multiple data sources contributing data to I
 - ${\, \bullet \, }$ Conjunctive SPJ query Q
 - Some relations can be updated by sources
 - such relations are denoted updated
 - $R_i.c_s^i$ identifies the source tuple $au \in R_i$ originates from
 - $au \in R_i$ can only be updated by the source in $R_i.c_s^i$
 - Some relations cannot be updated by sources
 - such relations are denoted static
 - special static table H contains known sources (column $H.c_s$)

K-Relevance: A Spectrum of Relevance for Data Sources Impacting a Query

– Preliminaries

- Every Q references $R_1, \ldots, R_m, \ldots, R_n$, where
 - R_i can be updated, for $1 \leq i \leq m$
 - R_i is static, for $m < i \le n$
 - ${\ensuremath{\, \circ }}$ aliases in Q are considered distinct relations
- Tuples in the current database instance are denoted real
- Tuples that could be inserted in the current database instance are denoted potential

K-Relevance: A Spectrum of Relevance for Data Sources Impacting a Query

Definition

Definition

K-Relevant Source. A source s is k-relevant for Q via R_i , denoted $s \in S_{R_i}^k$, if there exists at most k updated relations including R_i , such that there is:

- a potential tuple from s in R_i if k > 0,
- a potential tuple from any source for the other k-1 relations if $k>1, \mbox{ and }$
- a real tuple for each remaining relation such that they join to satisfy $Q. \label{eq:Q}$

A source s is k-relevant for Q, denoted $s \in S_{all}^k$, if there exists a relation R_i such that s is k-relevant for Q via R_i . Notice that $S_{all}^k = \bigcup S_{R_i}^k$.

 \diamond

K-Relevance: A Spectrum of Relevance for Data Sources Impacting a Query

- Definition

Intuition

- $s \in S^0_R \Rightarrow \exists$ real tuple in R from s
- $s \in S^1_R \Rightarrow \exists$ potential tuple in R from s
- $s \in S_R^k \Rightarrow \exists$ potential tuples in R from s, and other k-1 relations from any source
- $s \in S_R^m \Rightarrow \exists$ potential tuples in R from s, and other m-1 relations from any source

• Notation:
$$S_R^m \equiv S_R^\infty$$

– Updates

An update may change both the result of a query and its set of relevant sources- e.g., an update from S_2 to Authors (example 2)!

Updates

An update may change both the result of a query and its set of relevant sources- e.g., an update from S_2 to Authors (example 2)!

Question

How can we use source relevance information to know which source updates may impact a query?

K-Relevance: A Spectrum of Relevance for Data Sources Impacting a Query

- $\text{If }s\in S^\infty_{all}$
 - ${\ensuremath{\, \bullet }}$ Tuples from s might contribute to the result of Q
 - $\bullet~$ Updates from s~ might change the result of Q
 - Hence, s might be relevant to Q
- $\text{If } s \not\in S^\infty_{all}$
 - $\bullet\,$ No tuples from s can contribute to the result of Q
 - No updates from \boldsymbol{s} can change the result of \boldsymbol{Q}
 - Hence, s is irrelevant to Q

K-Relevance: A Spectrum of Relevance for Data Sources Impacting a Query

└─K-Relevance └─Updates

- $\text{ If }s\in S^\infty_R$
 - $\bullet\,$ Tuples in R from s might contribute to the result of Q
 - $\bullet\,$ Updates from s to R might change the result of Q
 - Hence, s might be relevant to Q via R
- $\text{If } s \not\in S^\infty_R$
 - $\bullet\,$ No tuples in R from s can contribute to the result of Q
 - $\bullet\,$ No updates from s to R can change the result of Q
 - Hence, s is irrelevant to Q via R

K-Relevance: A Spectrum of Relevance for Data Sources Impacting a Query

- $\text{ If }s\in S_R^k$
 - $\bullet\,$ Tuples in R from s might contribute to the result of Q
 - Updates from s to R might change the result of Q
 - Hence, s might be k-relevant to Q via R
- $\text{If } s \not \in S_R^k$
 - $\bullet\,$ No tuples in R from s can contribute to the result of Q
 - No updates from s to R can change the result of $Q\ldots$
 - ${\scriptstyle \bullet }$ unless more than k relation updates occur
 - in which case the result of Q might change if $s\in S^{k+1}_R$
 - Hence, s might be k-relevant to Q via R

K-Relevance: A Spectrum of Relevance for Data Sources Impacting a Query

Updates

Lemma 3.2 (monotonicity)

 $S_R^{k-1} \subseteq S_R^k$, for $k \ge 1$.

Intuition

- $s \in S^{k-1}_R \Rightarrow \exists$ at most k-1 updated relations including R from s
- $\bullet~$ By definition, $s\in S^k_R$
- If $s' \in S_R^k$ with exactly k updated relations including R from s', then $s' \not \in S_R^{k-1}$

K-Relevance: A Spectrum of Relevance for Data Sources Impacting a Query

└─ Updates

Corollary 3.3

 $s \in S_R^k - S_R^{k-1}, k \ge 1 \Rightarrow$ updates from s to R do not change results of Q until **at least** k-1 other relations are updated.

Intuition

- $s \in S_R^k \Rightarrow$ one update from s to R, and **at most k-1** other updates change results of Q
- $s \notin S_R^{k-1} \Rightarrow$ one update from s to R, and **at most k-2** other updates do not change results of Q
- The claim follows

K-Relevance: A Spectrum of Relevance for Data Sources Impacting a Query

└─ Updates

Corollary 3.3

 $s \in S_R^k - S_R^{k-1}, k \ge 1 \Rightarrow$ updates from s to R do not change results of Q until **at least** k-1 other relations are updated.

Consequence

- If updates are made to one relation (say, R_i), only updates to sources in $S_{R_i}^1$ can change the results of Q
- If updates are made to two relations (say, R_i, R_j), only updates to sources in $S_{R_i}^2$ and $S_{R_j}^2$ can change the results of Q, and so on

K-Relevance: A Spectrum of Relevance for Data Sources Impacting a Query

Updates

Corollary 3.4

 S^∞_R never changes as a result of updates.

Intuition (no proof in the text)

• Current instances of updated relations do not play a role in computing S_R^{∞} . Only predicates (joins and selections), and constraints on source columns affect S_R^{∞} .

K-Relevance: A Spectrum of Relevance for Data Sources Impacting a Query

└─ Updates

Corollary 3.5

 S_R^k never changes as a result of updates to R alone, for k > 0.

Intuition (no proof in the text)

• For k = 1, any $s \in S_R^1$ can always contribute potential tuples for Q. For k > 1, since none of the other k - 1 updated relations are modified, they still can contribute k - 1 potential tuples to join with a potantial tuple from R and derive results for Q.

K-Relevance: A Spectrum of Relevance for Data Sources Impacting a Query

└─ Updates

Theorem (3.6)

If an update is made to R_j from $s \notin S_{R_j}^{\infty} \Rightarrow S_{R_i}^k$ is unchanged for $i \neq j$ and all $k \geq 0$.

Proof Sketch

- assume $s \notin S_{R_i}^k(Q, I)$ and after the update to R_j from $s_1 \notin S_{R_j}^\infty(Q, I)$, $s \in S_{R_i}^k(Q, I')$
- w.r.t. I, there are potential tuples for R_i from s, for R_j from s_1 , and for k-1 other relations, and real tuples for each of the remaining relations

• then,
$$s_1 \in S_{R_i}^{k+1} \Longrightarrow s_1 \in S_{R_i}^{\infty}$$
- contradiction!

• the case for $s_1 \in S^k_{R_i}$ also yields a contradiction (omitted)

K-Relevance: A Spectrum of Relevance for Data Sources Impacting a Query

Algorithms

Intuition for 0-Relevance:

- Modify Q to include source columns for all R_i
- Load results into temporary table ${\cal T}$
- Query sources from T
- ${\ensuremath{\, \bullet \,}}$ Filter source columns and output answers to Q
- Piggyback!

K-Relevance: A Spectrum of Relevance for Data Sources Impacting a Query

- Algorithms

INPUT: I, $Q = \pi_F(\sigma_E(Rels))$ OUTPUT: query result A, $S_{R_i}^0$ for $1 \le i \le m$

0-Relevance:

$$\begin{array}{ll} 1: \ T \leftarrow \pi_{F,R_1.c_s^1,\ldots,R_m.c_s^m}(\sigma_E(Rels)) \\ 2: \ S_{R_i}^0 \leftarrow \pi_{R_i.c_s^i}(T) \ \text{for} \ 1 \leq i \leq m \\ 3: \ A \leftarrow \pi_F(T) \\ 4: \ S_{all}^0 \leftarrow \bigcup_{1 \leq i \leq m} S_{R_i}^0 \end{array}$$

K-Relevance: A Spectrum of Relevance for Data Sources Impacting a Query

Intuition for ∞ -Relevance:

- Compute all implicit constrains on source column
- Append integrity and domain constrains as selections (when possible)
- Deal with general dependencies- static lookup tables
 - similar to source columns, hence omitted from presentation
- Notation

 P_s^i , J_s^i , P_o^i , $P_s^{i^\prime}$, and $J_s^{i^\prime}$

Observation

 $S^{\infty}_{R_i}(Q,I) = \pi_{c_s}(\sigma_{P^{i'}_s}(H))$

K-Relevance: A Spectrum of Relevance for Data Sources Impacting a Query

- Algorithms

INPUT: I,
$$Q = \pi_F(\sigma_{E \wedge P_s^1 \wedge \dots \wedge P_s^m}(Rels))$$

OUTPUT: $S_{R_i}^{\infty}$ for $1 \le i \le m$

∞ -Relevance:

$$\begin{array}{ll} \text{1: for all } 1 \leq i \leq m \text{ do} \\ \text{2: } & \text{Replace } R_i.c_s^i \text{ with } H.c_s \text{ in } P_s^i \text{ to get } P_s^{i'} \\ \text{3: } & S_{R_i}^\infty \leftarrow \pi_{c_s}(\sigma_{P_s^{i'}}(H)) \\ \text{4: end for} \end{array}$$

5:
$$S_{all}^{\infty} \leftarrow \bigcup_{1 \leq i \leq m} S_{R_i}^{\infty}$$

K-Relevance: A Spectrum of Relevance for Data Sources Impacting a Query

- Algorithms

Intuition for K-Relevance:

• Compute all implicit joins on source column, e.g.,

•
$$R.c_s = S.c_1 \land S.c_1 = T.c_1 \Rightarrow R.c_s = T.c_1$$

- if $R.c_s = T.c_1$ is not inferred, S_R^k might be affected
- Assume
 - potential tuples for R_i , and $R_{j_1}, \ldots, R_{j_{k-1}}$
 - real tuples for $R_{j_k}, \ldots, R_{j_{m-1}}$
- For some combination of updated relations, if

$$s \in \pi_{c_s}(\sigma_{P_s^{i'} \wedge J_s^{i'} \wedge P_o^i}(H \times \prod_{k \le l \le (m-1)} R_{j_l}))$$

then $s \in S_{R_i}^k$

- Combinatorially expensive (!) as $k \to m/2$
 - optimizations necessary!

K-Relevance: A Spectrum of Relevance for Data Sources Impacting a Query

- Algorithms

INPUT: I,
$$Q = \pi_F(\sigma_{P_s^1 \wedge J_s^1 \wedge P_o^1 \wedge \dots \wedge P_s^m \wedge J_s^m \wedge P_o^m}(Rels))$$

OUTPUT: $S_{R_i}^k$ for $1 \le i \le m$

K-Relevance:

1: for all
$$1 \le i \le m$$
 do
2: Replace $R_i.c_s^i$ with $H.c_s$ in P_s^i to get $P_s^{i'}$
3: for all choice of updated relations $R_{j_k}, \ldots, R_{j_{m-1}}$ (except R_i) do
4: Replace $R_i.c_s^i$ with $H.c_s$ in J_s^i to get $J_s^{i'}$
5: Evaluate $\pi_{c_s}(\sigma_{P_s^{i'} \land P_o^i}(H \times \prod_{k \le l \le (m-1)} R_{j_l}))$

- 6: Union the result to $S_{R_i}^k$ and continue
- 7: end for
- 8: end for
- 9: $S^k_{all} \leftarrow \bigcup_{1 \leq i \leq m} S^k_{R_i}$

K-Relevance: A Spectrum of Relevance for Data Sources Impacting a Query

Optimizations for K-Relevance:

- Alternate computation for large \boldsymbol{h} and small \boldsymbol{k}
 - $\bullet\,$ monotonicity: $S^k_R=S^h_R\Rightarrow S^k_R=S^j_R$ for all $k\leq j\leq h$
- (Theorem 4.1) For some combination $R_{j_1}, \ldots, R_{j_{k-1}}$

• if no
$$R_{j_k}$$
 joins with R_i , and
• $\sigma_{P_o^i}(\prod_{k \le l \le (m-1)} R_{j_l}) \ne \emptyset$, then
 $s \in \pi_{c_s}(\sigma_{P_s^{i'} \land P_o^i}(H \times \prod_{k \le l \le (m-1)} R_{j_l}))$
 $\Rightarrow s \in \pi_{c_s}(\sigma_{P_s^{i'}}(H \times \sigma_{P_o^i}(\prod_{k \le l \le (m-1)} R_{j_l})))$
 $\Rightarrow s \in \pi_{c_s}(\sigma_{P_s^{i'}}(H))$
 $\Rightarrow s \in S_{R_i}^{\infty}$

K-Relevance: A Spectrum of Relevance for Data Sources Impacting a Query

-Algorithms

Intuition for K-Relevance Maintenance:

- Commonly asked query
 - materialize relevant sources for query
 - maintain incrementally
 - use of relevance information improves on existing algorithms
- Apply Corollary 3.5 and Theorem 3.6 to skip updates
- Rely on existing algorithms
 - incremental strategy
 - Counting Algorithm (Gupta et al) as "black box"

K-Relevance: A Spectrum of Relevance for Data Sources Impacting a Query

- Algorithms

INPUT: updates U, materialized result for $S^k_{R_i}$ for $1\leq i,k\leq m$ O UTPUT: new results for $S^k_{R_i}$ for $1\leq i,k\leq m$

K-Relevance Maintenance:

```
1: for all u \in U do
      ignore if u updates R_j but source(u) \notin S_{R_j}^{\infty} // by thm 3.6
 2:
 3: end for
 4: Return if U = \emptyset
 5: for all 1 < i < m do
       for all u \in U do
 6:
 7:
          ignore if u updates R_i // by cor 3.5
       end for
 8.
      Continue if no updates left for S_{B_i}^k
 9:
10:
     for all 1 \le k \le m do
          \Delta \leftarrow \text{COUNTING ALGORITHM}(Q_i^k, U) // \text{ assume black box}
11:
          apply \Delta to materialized result of S_{B_s}^k
12:
```

- 13: end for
- 14: end for

K-Relevance: A Spectrum of Relevance for Data Sources Impacting a Query

- Algorithms

INPUT: updates U, materialized result for Q, Q', $S^k_{R_i}$ for $1\leq i,k\leq m$ OUTPUT: new results for Q, Q', $S^k_{R_i}$ for $1\leq i,k\leq m$

0-Relevance Maintenance:

- 1: $k \leftarrow \#$ relations all updates are made to
- 2: for all $u \in U$ do
- 3: ignore if u updates R_j but $source(u) \notin S_{R_j}^{\infty} //$ by thm 3.6
- 4: buffer if u updates R_j but $source(u) \notin S_{R_j}^k$
- 5: end for
- 6: Return if $U = \emptyset$
- 7: $\Delta \leftarrow \text{COUNTING ALGORITHM}(Q', U)$ // assume black box
- 8: apply Δ to materialized result of Q^\prime
- 9: for all $\tau \in \Delta$ and $1 \leq i \leq m$ do
- 10: $\tau = \text{INS: add } count(\tau)$ to tuples in $S^0_{R_i}$ and S^0_{all} with same source
- 11: $\tau = \text{DEL: sub } count(\tau)$ from tuples in $S^0_{R_i}$ and S^0_{all} with same source
- 12: project original fields from τ and apply to materialized result of Q
- 13: end for

Experiments

2 K-Relevance

K-Relevance: A Spectrum of Relevance for Data Sources Impacting a Query

Three Main Goals

- Compare costs of computing and maintaining k-relevant sources with cost of original query
- Understand the dependence of this overhead on the number of sources and size of data
- Gain insight on effectiveness of proposed algorithms in limiting relevant sources

K-Relevance: A Spectrum of Relevance for Data Sources Impacting a Query

L Experiments

Schema:

- 1: Authors(sourceld, <u>confName, confYear</u>, name, org, position, email)
- 2: Papers(sourceld, confName, confYear, authorName, authorOrg, title)
- 3: Students(sourceld, name, org, advsr, prog, yr)
- 4: ConfSourceFD(confName, confYear, sourceld)
- 5: StudentSourceFD(name, org, sourceld)
- 6: AllSources(id, url)

K-Relevance: A Spectrum of Relevance for Data Sources Impacting a Query

L	– Experiments			
	Scenario			

Schema:

- 1: Authors(sourceld, confName, confYear, name, org, position, email)
- 2: Papers(sourceld, confName, confYear, authorName, authorOrg, title)
- 3: Students(sourceld, name, org, advsr, prog, yr)
- 4: ConfSourceFD(confName, confYear, sourceld)
- 5: StudentSourceFD(name, org, sourceld)
- 6: AllSources(id, url)

Observations

- <u>Underline</u> indicates B-tree indices for fields
- Red indicates static tables
- ConfSourceFD models (confName, confYear) \rightarrow sourceId
- StudentSourceFD models (name, org) \rightarrow sourceld

K-Relevance: A Spectrum of Relevance for Data Sources Impacting a Query

Lexperiments

Data:

- Conferences held for 30 years
- 100 author organizations, 10 students and 5 professors each
- I_1 : 500 conferences/year and 200 papers/conference
- I_2 : 5000 conferences/year and 200 papers/conference
- I_3 : 500 conferences/year and 400 papers/conference
- Missing simulated data for conferences and students

K-Relevance: A Spectrum of Relevance for Data Sources Impacting a Query

Maintenance:

- Updates simulated with delta tables for Authors and Papers
 - one pair for 0-relevant sources
 - \implies worst case maintanence of Q and its k-relevant sources
 - ${\, \bullet \,}$ one pair for non $\infty {\rm -relevant}$ sources
 - $\Longrightarrow\infty\text{-relevant}$ sources need no maintanence

K-Relevance: A Spectrum of Relevance for Data Sources Impacting a Query

- Experiments
 - Scenario

Environment and Procedure Details:

- Intel Pentium 2.4GHz, 512MB RAM
- Tao Linux (RHEL 3.0 based)
- PostgreSQL 8.1.5 with default settings
 - Each query ran 11 times
 - Results are averaged over last 10 runs (warmed up cache)
 - Pre- and post-processing costs ignored (e.g., SQL parsing, result merging, etc)

K-Relevance: A Spectrum of Relevance for Data Sources Impacting a Query

		0		
L	– Experiments			
	└─Scenario			

Query Q:

- 1: SELECT A.name, A.org, P.title, S.prog, S.yr, S.advsr
- 2: FROM Authors AS A, Papers AS P, Student AS S
- 3: WHERE A.confName IN [list of 10 conf types]
- 4: **AND** A.position = 'student'
- 5: **AND** A.name = P.authorName
- 6: **AND** A.org = P.authorOrg
- 7: **AND** A.confName = P.confName
- 8: **AND** A.confYear = P.confYear
- 9: **AND** A.name = S.name
- 10: **AND** A.org = S.org

[K-Relevance via Authors varying conferences/year] For 2-relevant sources, the optimization from Theorem 4.1 was used.

K-Relevance: A Spectrum of Relevance for Data Sources Impacting a Query

- Scenario

[K-Relevance via Students varying papers/conference] Notice that the numbers for 1- and 2- relevant grow at roughly the same rate as the numbers for Q

— Scenario

[K-Relevance maintenance via Students for updates from 0-relevant sources] At worst, as bad as computing k-relevant sources for Q.

K-Relevance: A Spectrum of Relevance for Data Sources Impacting a Query

[Impact of filtering of updates from non ∞ -relevant sources] Reduces the amount of updated data a maintenance query has to access.

K-Relevance: A Spectrum of Relevance for Data Sources Impacting a Query

— Scenario

[Computationally expensive scenario for k-relevant sources] 20-way self-join on Students table. High costs is due to the number of ways to choose 10 out of 19 updated relations when no optimizations are used.

Conclusion

2 K-Relevance

3 Experiments

K-Relevance: A Spectrum of Relevance for Data Sources Impacting a Query

└─ Conclusion └─ Summary

Summary

- Definition of k-relevance
- Lemma, Corollaries, and Theorem establishing relationships between sets of relevant sources
- $\bullet\,$ Efficient algorithms for computing some 0-relevant, and $\infty\text{-relevant}$ sources
- A not so efficient algorithm for computing k-relevant sources, with optimizations to address many of the inefficient cases
- Algorithms for maintainence of materialized 0-relevant and k-relevant sources
- Experimental results

K-Relevance: A Spectrum of Relevance for Data Sources Impacting a Query

Future directions

- Data independent source relevance
- Relevance from the user's perspective
- More efficient algorithms for S_R^k

K-Relevance: A Spectrum of Relevance for Data Sources Impacting a Query

- Conclusion

References

Jiansheng Huang and Jeffrey F. Naughton. K-Relevance: A Spectrum of Relevance for Data Sources Impacting a Query. ACM SIGMOD, Beijing, China, June 2007.