
Anup Athavale
May 5th, 2008
CSE 718 – Advanced Topics in Database Systems

Lazy Query Evaluation for Active XML

Overview:

This paper studies an approach to efficiently query AXML documents. AXML documents
are XML documents whose content is given partly by data elements and partly embedded
calls to web services which can be invoked to generate data. Since these calls to the web
services can be present anywhere in the document, a major challenge is to make only
those calls which get relevant data and ignore the other calls which are irrelevant with
context to the query at hand. The authors have formalized the problem and provided
algorithms which can be used together for faster and efficient query evaluation for active
XML.

The web service calls in the AXML documents can appear anywhere within the scope of
the document and also in the result of previously invoked calls. Moreover, the relevance
of one call may depend upon the result of another and return types should also be taken
into consideration to avoid irrelevant calls. The main contribution of this paper is to gain
a better understanding of the possible relationships among the service calls embedded
within the document and their influence on the relevance of calls to queries. Thus the
approach given in this paper is multi-step and involves the following key techniques:

1. Computing the set of relevant service calls: The algorithm generates a set of
queries that retrieve all service calls relevant because of there position.

2. Service calls sequencing: Relationships among the calls are analyzed, to derive a
sequence of call invocations appropriate to answer a query.

3. Pruning via typing: Return types of services are used to rule out more service
calls.

4. Service calls guide: A specialized access structure is used to speed up the
detection of relevant calls.

5. Pushing queries: Precise knowledge of the interaction between the query and
each service call enables pushing queries to capable Web services, like mediators
do with data sources.

The paper first describes the methods used for finding relevant calls. The authors have
listed two means of achieving this, namely, Linear Path Queries (LPQ’s) and Node
Focused Queries (NFQ’s). The NFQ’s take into account the conditions within the query
for matching and hence can be used to find a more compact subset of possible calls.

After finding possible candidates for service calls, their sequencing is taken into account.
The NFQ algorithm is repeatedly used to find the sequence of these calls as the document
grows. The NFQA algorithm computes a (possibly infinite) relevant rewriting. If it
terminates, the obtained document is complete for the query q. The relationship between
these calls is taken into consideration to avoid making useless rewriting. The NFQ layers
are determined and their influence on each other is studied. If two NFQ’s lie on the same
layer and do not influence each other, the can be processed in parallel.

After sequencing the calls, type checking is done to avoid making calls which return data
of a different type. Also optimizations methods like F-guides are used to increase the
performance. Wherever possible, the queries are pushed to get only relevant information
from the service, which saves time taken during transmission of data as well as its
processing.

Detailed comments:

1. Main strength: The main strength of this paper lies in the approach wherein
mappings between data sources are captured by service calls embedded in the
data, with new relationships discovered at run-time, in the answers of service
calls. This approach is based on ad-hoc dynamic discovery of mappings. Another
key aspect is the use of Node focused queries for finding relevant calls and
sequencing along with the use of F-guides to achieve better and faster results.

Weakness: The weakness of this paper is that it never compares the experimental
results with a hybrid approach described at the start. Although it saves the time
taken for getting data from services, the NFQ filtering is a time consuming
process in itself when applied repeatedly on the re-written document. There is a
possibility of developing a light-weight parser extension which uses on the fly
evaluation techniques and multithreading to achieve query processing and making
service calls simultaneously. The paper rules out the possibility of such an
approach and states that it is not possible to club the logic of finding relevant calls
within the query processor.

2. Is the paper technically sound?
The paper is well balanced in terms of technical depth. The details of the NFQ
algorithm and sequencing relevant calls are described in technical depth. Except
for one instance (Testing satisfiability) the authors have sufficiently covered the
technical intricacies in depth.

3. Is the paper technically sound?
The paper is technically sound. The authors have thoroughly described all the
algorithms used for achieving lazy query evaluation. However, some definitions
are superfluous and there is a considerable redundancy. For example, the
definitions 2, 3 and 4 as stated in the paper, could have been clubbed into a single
comprehensive definition for relevant rewriting and completeness. Overall, the

authors have done justice to the complex nature of the evaluation techniques by
putting them in a lucid yet technical language.

4. How does the paper compare with the related work?
This paper mainly deals with an approach to efficiently evaluate queries on a
given AXML document. The closest in relevance to this paper is an unpublished
work which also deals with evaluation of queries over AXML documents with
lazy service calls. The difference is that the focus of that paper is on minimizing
data materialization at a global level (using a generalization of Query-Sub-query
technique discussed in one of the referred papers) for systems with many
interrelated documents in a peer-to-peer setting. Also set in the context of AXML,
another paper considers the problem of distributing and replicating AXML data
and services in a peer-to-peer setting. In contrast to both, this paper addresses the
specific problem of optimizing the evaluation of queries over one local AXML
document. Thus, this work is clearly complementary to both, and indispensable
for them to obtain good performances.

