
Denis Mindolin
April 26, 2008
CSE718 – Seminar on Database Interfaces

iTrails: Pay-as-you-go Information Integration in
Dataspaces

Overview
In their work, the authors consider a novel model of heterogeneous data organization called

dataspaces. It is aimed to improve the two most popular approaches used in data integration: the

schema first approach (SFA) and the no schema approach (NSA). The SFA approach requires

semantically integrated view over integrated data sources. Query languages generally have

formal semantics, however maintaining the mediated schema here is generally costly. The NSA

approach requires no semantically integrated view and considers sources as XML-like

documents. Since no mediated schema is present, no semantic mappings between schemas are

required. At the same time, query languages here a limited to XPath-like languages and keyword

search. The model considered by the authors is in between there two approaches which gives it

advantages (and some disadvantages) of both. It starts with NSA and gradually approaches SFA

in a pay-as-you-go manner by providing semantic hints (or, trails) to query engine.

A trail is represented by a pair of queries QL→QR. The essence of the query evaluation process

with trails can be expressed by the sentence: whenever you query for QL, also query for QR. In

order to apply this principle, the authors propose a query rewriting algorithm consisting of the

following three steps: matching, transformation, and merging. Given a user query and a trail, the

query engine performs the following. In the matching phase, it finds maximal parts QM of the

query that contain QL. In the transformation phase, for every instance of QM, it constructs an

instance QR’ of QR (this step can be non trivial if QM involves a component projection). In the

merging phase, it rewrites the query by replacing all instances of QM in the original query with

QM ∪ QR’.

Being a straightforward in the presence of a single trail, the query rewriting process becomes

problematic when there are more than one trail is defined. Namely, the transformed parts QR of

the modified query after one step of the algorithm can match other trails and we have to reapply

the algorithm once again. Thus, if trails induce cycles (e.g. Q1 → Q2 → … → Q1), the rewriting

process can be infinite. To tackle this problem, the authors propose an algorithm which forbids

reapplication of a trail to all query parts which are results of application of the same trail before.

 1

Thus, the algorithm eventually terminates. However, the possible number of trail applications is

exponential in the number of trails in general. This is obviously a problem if the number of trails

is large.

In order to improve the runtime of the algorithm, the authors propose a number of techniques to

prune the number of trail applications. Namely, instead of taking in each step of the algorithm all

possible trails which match the query; one can pick only some of them. To constructs such a

subset, all trails have scores associated with them, and the subset will contain only the top k trails

based on their score value. Another optimization approach is to limit the number of query

rewriting steps by a parameter passed to the algorithm from outside.

Detailed comments
The major strength of the paper is the incremental nature of the proposed integration method.

Assume that a company deploys a query engine which uses a large number of various data

sources. Then, instead of defining all hints in advance, the integrators can collect user query

statistics, find the most common queries and define trails for the most popular queries first.

Moreover, if the set of the most popular queries changes over time, the trails for less popular

queries can be disabled to reduce the system workload. Another advantage of this approach is

that trails can be defined independently by domain expects for each data domain. Overlaps and

inconsistencies in trails are possible since the query returns the union of the results satisfying all

trails. However, such universality comes with disadvantages. First, trails are global and thus

every rewritten query is evaluated over every data source. However, the same trail can have

different meaning for different data sources. Second, it seems that to obtain the reasonable

quality of query results, the trails have to be defined manually which must be a problem for large

systems. Thus, a good system of trail mining and weighting would be helpful here.

The paper provides a large number of technical details of the proposed approach. This makes it

easy to understand even for readers with little expertise in the area since most concepts used in

the paper are intuitive. Moreover, the definitions and algorithms introduced in the paper are

illustrated with a good number of examples.

The paper is technically sound. The definitions provided in the paper are clear and complete. All

the new results provided in the paper are accompanied with proofs. The experimental results do

not contradict to the strengths and weaknesses of the proposed approach.

 2

	
	Overview
	Detailed comments

