
Seminar Report : Automatic Categorization of
SQL-Query-Results

Abhijith Kashyap
rk39@cse.buffalo.edu

March 24, 2008

Abstract

Search queries on database-systems typ-
ically return too many results - many
of them irrelevant to the user. This
phenomenon is commonly referred to as
information-overload, as the user expends
a huge amount of effort sifting through
the result-set looking for interesting results.
This article reviews two approaches to tack-
ling this problem. Both approaches are
based on categorization; the query results
are grouped into categories. These cate-
gories are then organized into a hierarchy
forming a navigation-tree. The user tra-
verses this tree, top-down, and chooses to
view the results upon reaching the desired
category.

1 INTRODUCTION

In recent years, there has been a tremen-
dous increase in the amount of information
stored by database-applications. Also,
search-engine style exploratory queries are
becoming a common phenomenon on these
systems. These queries typically return a

huge result-set. Only a small portion of
the result is of interest to the user, who
expends considerable effort searching for
the relevant results.
In the internet text-search scenario, there
has been two ways to tackle this problem
- ranking and categorization. There have
been attempts to adapt these solutions
in the database-scenario. Ranking of
database query results has been proposed
in [3,4,5]. Work on SQL-Query-Result
Categorization is rather recent and is the
focus of this article.
A common approach for categoriza-
tion, (followed by search engines, web-
directories) involves around creating a fixed
category structure. All data items are
assigned category labels as well. At search
time, items in the search-results are simply
grouped by their category labels. Since
the category structures are independent
of the query, the distribution of query
results on the category hierarchy tends to
get skewed. For the same reason, fixed
category structures tend to have longer
navigation paths.
In this article, I survey the approaches

1



proposed to tackle the aforementioned
problems in categorization. The first
solution was proposed by [1]. A purported
improvement to the approach in [1] is
proposed in [2].
The rest of the article is organized as
follows: In section 2, presents an overview
of the two approaches. Section 3 compares
the proposed solutions and examines their
strengths and weaknesses, and conclude in
section 4.

2 DISCUSSION

2.1 Approach:

Both [1] and [2], propose to create a naviga-
tion tree for a query q, dynamically at query
time, based on query-result. The naviga-
tion tree recursive partitions the query re-
sults at each level, starting from the root.
At each level, the partitioning is done based
on a single attribute in the result relation.
An attribute can be used for partition the
result-set at most once. The partitions are
assigned descriptive labels and form a cat-
egorization of the result-set based on that
attribute.
The criteria for categorization is inferred, in
both approaches, by analyzing the user be-
havior on the system - using the database
query-log.
The motivation, for both approaches, is to
reduce the effort on the part by the user in
navigating query results. To capture this
effort, they model the navigational cost, on
average, faced by the user traversing the
presented navigation tree. Both assume
that users traverse the navigation tree, top-
down, starting form the root. The cost con-

sists of two components - the cost of exam-
ining category labels and the cost of exam-
ining query results.
Although the basic framework is the same,
the two works differ in the following aspects
- user navigation model, the cost model
and cost estimation and the space for cate-
gorization; resulting in different navigation
trees for same queries. This is discussed
next.

2.2 Navigation Model:

In [1], the authors consider two distinct
navigation scenarios - (1) ONE, the user is
searching for a specific item and stops once
she finds it and (2) ALL, the user browses
through all the results by navigating to each
node in the navigation tree. All other sce-
narios, user interested in “some” results is
assumed to fall between these two scenarios.
A given user, after examining the node’s la-
bel, has three choices at any node:

1. SHOWRESULT: The user can choose
to see all the tuples falling under the
given node.

2. EXPLORE: User can drill down fur-
ther into the hierarchy. This option is
available only for non-leaf nodes.

3. IGNORE: User can ignore the node.

In [2], the authors assume that the user
is interested in only a small sub-set of query
result present the navigation tree as a set of
hierarchical cluster over the result set.

2



2.3 Cost Model and Estima-
tion:

The two different navigation models for the
user in [1] have different cost models. To
estimate the cost, the authors associate
probabilities to each of the actions speci-
fied in the subsection 2.2 above and then
build the navigation tree that minimizes the
cost of reaching the first (ONE scenario) or
all(ALL scenario) results. These probabil-
ities are estimated by analyzing the query
log. Details can be found in section 4.2 of
[1].
In [2], the authors reduce the problem of
building the optimal navigation tree to that
of building an optimal decision tree [6]. In-
tuitively, the decision tree fits the descrip-
tion of the navigation tree provided in sec-
tion 2.1. The Information Gain is modeled
as the reduction in navigation cost caused
by splitting the results by a given attribute.

3 CRITICAL REVIEW

In this section, the perceived advantages
and disadvantages of the system are de-
scribed:

3.1 Advantages

1. Both approaches are inherently bet-
ter than the naive way of categoriza-
tion - that of having a fixed category
structure. The cost based approach
reduces the information-overload faced
by a user.

2. They provide a strong framework for
future work in this area.

3.2 Disadvantages

1. Considerable time and effort is needed
to generate and maintain the category
structure especially in [2].

2. The navigation tree generated may
confuse the user, especially in “com-
plex“ domains for. e.g. Bioinformat-
ics.

3. The heuristics applied in [1] are un-
intuitive and may skew the navigation
tree to generate trees with higher cost.

4. The heuristics in [1] do not consider the
ONE scenario.

5. The over-simplified heuristics are also
applied in [2], in assumption of perfect
trees.

4 CONCLUSION

Both approaches can be considered much
better than the original approach; that of a
navigation hierarchy based on a fixed cat-
egory structure. However, a considerable
amount of effort is expended in creating and
maintaining these category structures espe-
cially in case of [2]. The navigation trees
generated may, at times, seem un-intuitive
to the user.
Also, how well these systems to various do-
mains remains to be seen.

REFERENCES:

[1] K. Chakrabarti, S. Chaudhuri, and S.
won Hwang. Automatic categorization of
query results. In SIGMOD, pages 755766,

3



2004.
[2] Z. Chen and T. Li. Addressing Diverse
User Preferences in SQL-Query-Result Cat-
egorization. In SIGMOD, pages 641652,
2004.
[3] K. Chakrabarti, V. Ganti, J. Han, and
D. Xin. Ranking objects based on rela-
tionships. In SIGMOD Conference, pages
371382, 2006.
[4] S. Chaudhuri, G. Das, V. Hristidis,
and G. Weikum.Probabilistic ranking of
database query results. In VLDB,pages
888899, 2004.
[5] G. Das, V. Hristidis, N. Kapoor, and
S. Sudarshan. Ordering the attributes of
query results. In SIGMOD,2006.
[6] J. R. Quinlan. Induction of decision
trees. Machine Learning,1(1):81106, 1986.

4


