
CSE 718 - SEMINAR REPORT

SCALABLE SEMANTIC WEB DATA MANAGEMENT 
USING VERTICAL PARTITIONING

Sneha Godbole
godbole@buffalo.edu

OVERVIEW
The Semantic Web is an extension of the World Wide Web. It represents data in such a 

way that it can be accessible in different forms for a variety of different applications. The 
Semantic Web makes data globally available and it can be thought of as a globally linked 
database. Semantic Web also expresses data as future possibilities that might be implemented 
later. Some of the components of Semantic Web are XML, Resource Description Framework 
(RDF) and Web Ontology Language (OWL).

This paper first explores the poor scalability limitations of current data management 
solutions for RDF data. It then proposes a solution over these limitations – the property tables. 
After discussing the limitations of property tables, the author’s propose an alternative solution –
vertically partitioning the RDF data. The paper concludes by comparing the performance of 
vertically partitioning with other approaches by considering queries generated by a Web-based 
RDF browser over a large-scale catalog of library data.

The Semantic Web data model is called the RDF. It represents data as statements about
resources. A graph can be drawn representing the nodes as resources and labeled arcs between 
them representing properties. However, this graph can be parsed into a set of triples where each 
triple represents a statement. A triple can be of the form <subject, property, object>. This 
method, although flexible, has serious performance issues because having all the triples stored in 
one single RDF table requires several self-joins. Thus, as queries become more complex the 
execution time increases.

Property tables denormalize RDF tables by physically storing them in a wider and 
flattened representation. There are two types of property tables – Clustered Property Table and 
Property-Class table. Properties that tend to be defined together are clubbed into clusters and put 
into a wider property table. The Property-Class table collects a similar set of subjects together in 
the same table. In both cases, left-over triples are stored in another triples table. The difference 
between these two approaches is that, the Clustered Property Tables can have one particular 
property present only in one single table whereas in Property-Class Tables, a property can be 
present in several different tables.

But making the tables wider introduces NULL values for properties that are not defined 
for certain subjects. More wider the table, more the number of NULLs which has space 
overhead. Moreover, multi-valued attributes are difficult to be represented in flattened tables.
Further, if a query does not restrict on property value or if the property value will be bound when 



the query is processed then all flattened tables will have to be queried and the results will have to 
be combined by using complex union clauses or through joins.

The Vertically Partitioned approach is stated in this paper at this stage which can be used 
speed up queries over a triple store. The concept used here is to store triples into n two column 
tables. Here n is the number of unique properties in the data. The first column in each table is the 
subject and the second column is the object. This approach supports multi-valued attributes; does 
not introduce unnecessary NULLs by eliminating subjects that do not define a particular 
property; does not require clustering algorithms and has fewer unions and joins since all data for 
a particular property is located in the same table. The author’s have extended a Column-Oriented 
DBMS to implement this approach.

The paper then describes the RDF benchmark developed to evaluate the performance of 
the three RDF databases. The paper concludes by comparing the results of the schemas on the 
execution of the seven benchmark queries.

DETAILED COMMENTS
The paper discusses the results of all the queries executed on the four different 

architectures discussed earlier in this paper. The performance of each of the architectures is 
plotted as an average of three runs of the queries. The comparison plots show that performances 
of property table and vertically partitioned table are similar. Thus, the author’s strongly argue 
that vertically partitioning a database gives a significant performance improvement over the 
triple-store schema and performs similarly to property tables. Also vertical partitioning is easier 
to implement. Similar arguments are put forward after showing the performance of the 
architectures when the number of triples are scaled from one million to fifty million.

The author’s also state that using the concept of materialized path expressions by adding 
one extra pre-computed path expression column in the property table, increases the performance 
in the column store by two orders of magnitude as compared to the triple store.

The paper also strongly states the results of widening a property table. The results clearly 
argue that though the property tables sometimes have better performance as compared to vertical 
partitioning on a row-oriented store, a poor choice of property table can result in poorer query 
performance.

The paper does not discuss the practical applications of RDF data. The RDF graph and 
RDF triples table has been implemented in the latest social networking application named 
Facebook. Many Semantic Web tools and business solutions have been built by organizations 
like Oracle, IBM, Adobe. The Sun’s white paper collection site uses Semantic Web technologies 
in the background.

The vertical partitioning solution discussed in the paper has been proved to be the best 
solution among the rest, but the paper doesn’t discuss how it can be used to perform reasoning 
inside the database itself. Also, SPARQL is the dominant RDF query language, but it is easier to 
translate to SQL queries over RDF triples table as compared to vertical schema. Thus, future 
work can be related to translating SPARQL to queries over vertical schema.


