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Abstract Précis queries represent a novel way of accessing
data, which combines ideas and techniques from the fields
of databases and information retrieval. They are free-form,
keyword-based, queries on top of relational databases that
generate entire multi-relation databases, which are logical
subsets of the original ones. A logical subset contains not
only items directly related to the given query keywords but
also items implicitly related to them in various ways, with
the purpose of providing to the user much greater insight
into the original data. In this paper, we lay the foundations
for the concept of logical database subsets that are generated
from précis queries under a generalized perspective that re-
moves several restrictions of previous work. In particular, we
extend the semantics of précis queries considering that they
may contain multiple terms combined through the AND, OR,
and NOT operators. Based on these extended semantics, we
define the concept of a logical database subset, we identify
the one that is most relevant to a given query, and we pro-
vide algorithms for its generation. Finally, we present an ex-
tensive set of experimental results that demonstrate the effi-
ciency and benefits of our approach.

Keywords Keyword Search, Free-from Queries, Query
Processing.

1 Introduction

Emergence of the World Wide Web has opened up the oppor-
tunity for electronic information access to a growing number
of people. This, however, has not come without problems. A
large fraction of content available through the web resides in
(semi-)structured databases. On the other hand, web users do
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not, and should not, have any knowledge about data models,
schemas, query languages, or even the schema of a particular
web collection to form their own queries. In addition, they
often have very vague information needs or know a few buz-
zwords. But, at the same time, they “want to achieve their
goals with a minimum of cognitive load and a maximum of
enjoyment. ... humans seek the path of least cognitive re-
sistance and prefer recognition tasks to recall tasks” [42].
Hence, the need to bridge the gap between the average user’s
free-form perception of the world and the underlying sys-
tems’ (semi-)structured representation of the world becomes
increasingly more important.

In this direction, current commercial and research efforts
have focused on free-form queries [25,40,59] as an alterna-
tive way for allowing users to formulate their information
needs over structured data. Recently, précis was introduced
as an approach tackling both query and answer formulation
over structured data [38]. The term “précis ” is defined as
follows:

“précis /�preIsi��: [(of)] a shortened form of a piece
of writing or of what someone has said, giving only
the main points.” (Longman Dictionary)

A précis is often what one expects in order to satisfy
an information need expressed as a question or as a starting
point towards that direction. For example, if one asks about
“Woody Allen”, a possible response might be in the form of
the following précis :

“Woody Allen was born on December 1, 1935 in
Brooklyn, New York, USA. As a director, Woody
Allen’s work includes Match Point (2005), Melinda
and Melinda (2004), Anything Else (2003). As an ac-
tor, Woody Allen’s work includes Hollywood Ending
(2002), The Curse of the Jade Scorpion (2001).”

Likewise, returning a précis of information in response
to a user query is extremely valuable in the context of web
accessible databases.

Based on the above, a précis query is an unstructured,
keyword-based, query that generates a structured answer. In
particular, it generates an entire multi-relation database, in-
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stead of the typical individual relation that is output by cur-
rent approaches for (un)structured queries over structured
data. This database is a logical subset of the original one,
i.e., it contains not only items directly related to the given
query terms but also items implicitly related to them in vari-
ous ways. It provides to the user greater insight into the orig-
inal data and may be used for several purposes, beyond in-
telligent query answering, ranging from data extraction to
information discovery. For example, enterprises often need
subsets of their regular, large, databases that, nevertheless,
conform to the original schemas and satisfy all constraints,
so that they may perform realistic tests of new applications
before deploying them to production. A logical database sub-
set would be also useful as an answer to a structured query.
However, combining unstructured queries with structured an-
swers, the advantages of two worlds are combined: ease of
query formulation based on keywords [58] and richness of
information conveyed by structured answers.

Receiving a database as a query answer has many advan-
tages. Assuming that the original schema was normalized,
the database-answer remains normalized as well, thus avoid-
ing any redundancy and capturing the original semantic and
structural relationships that exist between objects/tuples. Fur-
thermore, having a database as an answer permits multiple
queries to be asked on it for further refinement, reviewing, or
restructuring of the data; doing so on a single, unnormalized
table would be either impossible or at least unnatural. In fact,
this is just one example of a more general benefit related to
the reuse of the data answer. This database can be shared by
multiple users or can be integrated with other databases in a
federation. The rationale of returning a subset of the initial
schema as an answer can be found in other areas of com-
puter science as well. In several languages that have been de-
veloped for semantically richer data models (object-oriented
models, XML, etc.), the answer to a query may be an elab-
orate construct that includes different kinds of objects ap-
propriately interlinked. This paper transfers and adapts this
philosophy to the relational world.

Earlier work has been restricted to précis queries with
a single keyword, which was searched for in all attributes
of all database relations. In this work, we present a gen-
eralized framework for précis queries that contain multiple
terms combined with the logical operators AND, OR, and
NOT . Supporting such generalized précis queries using a re-
lational database system is not straightforward and requires
a sequence of operations to be performed. First, the possi-
ble interpretations of a précis query need to be found by
taking into account (a) the database schema graph, (b) the
query semantics, and (c) the database relations that contain
the query terms. For example, given the query “Clint East-
wood” AND “thriller”, its possible interpretations include
those that refer to thrillers where Clint Eastwood is an actor,
thrillers directed by Clint Eastwood, and so forth. This is
achieved by finding initial subgraphs of the schema graph,
each one corresponding to a different query interpretation.
Second, these interpretations need to be enriched in order to
identify other information that is also implicitly related to

the query, e.g., actors acting in thrillers directed by Clint
Eastwood. This corresponds to expanding the initial sub-
graphs up to a point where prespecified constraints are satis-
fied, so that the schema of the logical database subset desired
is formed. Third, the logical subset needs to be populated.
At this stage, a set of queries is dynamically constructed and
these generate a whole new database, with its own schema,
constraints, and contents, derived from their counterparts in
the original database.

Contributions. In accordance to the above stages of an-
swer formulation for précis queries, the contributions of this
paper are the following:

– We extend précis queries allowing them to (a) contain
multiple terms and (b) have those terms be combined
using the logical operators AND, OR, and NOT . For in-
stance, a précis query on a movie database may be formed
as:

(“Clint Eastwood” AND “thriller”) OR
(“Gregory Peck” AND NOT “drama”)

– We formally define the answer to a generalized précis query
as a logical database subset. The constraints that deter-
mine the logical database subset may be purely syntactic,
e.g., a bound on the number of relations in it, or may be
more semantic, capturing its relevance to the query, e.g.,
a bound on the strength of connection between the re-
lations containing the query terms and other relations.
Such strength is captured by weights on the database
schema graph, offering great adjustability and flexibility
of the overall framework.

– We provide novel and efficient algorithms for the cre-
ation of the logical database subset schema and its popu-
lation. We tackle the problem of finding appropriate ini-
tial subgraphs for a given précis query under a set of con-
straints. We introduce an algorithm that expands initial
subgraphs in order to construct the schema of the logical
database subset. We prove the completeness and correct-
ness of our methods.

– We present an extensive set of experimental results that:
(a) demonstrate how the logical database subset charac-
teristics are affected by variations in the query charac-
teristics, the constraints and the weights used; (b) evalu-
ate the algorithms proposed and exhibit their efficiency
both in absolute terms and in comparison to earlier work;
(c) provide insight into the effectiveness of our approach
from the users’ point of view.

Outline. The paper is structured as follows. Section 2
discusses related work. Section 3 presents the general frame-
work of our approach, including a database graph model,
and the formal definition of a logical database subset. Sec-
tion 4 provides the system architecture of our approach. Sec-
tions 5 and 6 present algorithms for the construction of a log-
ical subset schema and its population, respectively. Section
7 presents experimental results. Section 8 provides a discus-
sion on the overall evaluation of our approach. Finally, Sec-
tion 9 concludes our work with a prospect to the future.
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2 Related Work

In this section, we present the state of the art concerning
keyword search in the context of databases and in contrast
to Information Retrieval approaches.

2.1 Keyword Search in Databases

The need for free-form queries has been early recognized in
the context of databases. Motro described the idea of using
tokens, i.e., values of data or metadata, instead of structured
queries, for accessing information, and proposed an inter-
face that understands such utterances by interpreting them in
a unique way, i.e., completing them to proper queries [47]. In
the same context, BAROQUE [46] uses a network represen-
tation of a database and defines several types of relationships
in order to support functions that scan this network.

With the advent of the World Wide Web, the idea has
been revisited. Search engines allow users to perform key-
word searches. However, a great amount of information is
stored in databases and cannot be indexed by search engines
[18,39]. Therefore, the need for supporting keyword search-
ing over databases as well is growing. Recent approaches
extended the idea of tokens to values that may be part of
attribute values [59]. Several systems have been proposed,
including BANKS [5,29,32], DISCOVER [25,27], DBX-
plorer [2], ObjectRank [4], and RSQL/Java [43]. A different
line of research focuses on search effectiveness rather than
efficiency [40]. The notion of proximity in searches is also
discussed in some approaches [2,20,25,27]. For instance,
a query language for performing proximity searches in a
database has been proposed, which supports two kinds of
queries: “Find” that is used to specify the set of objects that
are potentially of interest, and “Near” that is used to rank the
objects found in the Find set [20].

Keyword search over XML databases has also attracted
interest [17,21,23,26,28]. Recent work includes extending
XML query languages to enable keyword search at the gran-
ularity of XML elements [17], ranking functions for XML
result trees [23], construction and presentation of XML min-
imal trees [28], keyword proximity queries on labeled trees
[26], and concept-aware and link-aware querying that con-
siders the implicit structure and context of Web pages [21].

Several commercial efforts also exist. For instance, the
major RDBMS vendors present solutions that create full text
indexes on text attributes of relations in order to make them
searchable: IBM DB2 Text Information Extender [31,41],
Microsoft SQL Server 2000 [24,45], MySQL [48], and Ora-
cle 9i Text [15,49]. However, they do not support truly free-
form queries but SQL queries that specify the attribute name,
in which a keyword will be searched for.

Précis queries are defined for relational databases. There-
fore, subsequently, we elaborate more on the most related
approaches for keyword search in relational databases [2,4,
5,25,27,32] and we accent the key differences of our work.

2.1.1 Keyword search in relational databases

Keyword search approaches in relational databases fall into
two broad categories: schema-level and tuple-level approaches.

Schema-level approaches. Schema-level approaches model
the database schema as a graph, in which nodes map to database
relations and edges represent relationships, such as primary
key dependencies [2,25,27]. Based on this graph, the gen-
eration of an answer involves two generic phases. The first
one takes as inputs the relations that contain the query key-
words and the graph and builds the schema of each possible
(or permissible, if constraints are given) answer. If there are
more than one answer for a query, this phase tries to find the
schema for each one of them. The second phase generates
appropriate queries that retrieve the actual tuples from the
database following the schema of each answer.

In DBXplorer [2], the database schema graph is undi-
rected. The first phase of the answer generation process finds
join trees (instead of subgraphs, for simplicity) that inter-
connect database tables containing the query keywords. The
leaves of those trees should be tables containing keywords.
The algorithm used to identify the join trees first prunes
all sink nodes of the schema graph that do not contain any
keywords. The result is a subgraph guaranteed to contain
all candidate join trees. Then, qualifying sub-trees are built
based on a breadth-first enumeration on this subgraph. To
improve the performance, a heuristic is used: The first node
of a candidate qualifying sub-tree is the one that contains a
keyword that occurs in the fewest tables. The population of
the qualifying join trees is straightforward. For each join tree
a respective SQL query is created and executed. Results are
ranked based on the number of joins executed.

DISCOVER [27] also models a relational database as an
undirected schema graph. It uses the concept of a candidate
network to refer to the schema of a possible answer, which
is a tree interconnecting the sets of tuples (i.e., relations)
that contain all the keywords, as in DBXplorer. The candi-
date network generation algorithm is also similar, i.e., it is
based on a breadth-first traversal of the schema graph start-
ing from the relations that contain the keywords. Also, the
algorithm prunes ‘dead-ends’ appearing during its execu-
tion. The candidate networks are constructed in order of in-
creasing size; smaller networks, containing fewer joins, are
preferred. For the retrieval of the actual tuples, DISCOVER
creates an appropriate execution plan that uses intermediate
results to avoid re-executing joins that are common among
candidate networks. For this purpose, a greedy algorithm is
used that essentially creates a new query per each candidate
network taking into consideration the possible avoidance of
some joins that are used more than once in the whole sce-
nario. Results are ranked based on the number of joins of
the corresponding candidate network.

In continuation of this work, DISCOVER considered tu-
ple retrieval strategies for IR-style answer-relevance rank-
ing [25]. The authors adapted their earlier naı̈ve algorithm
so that it issues a top-k SQL query for each candidate net-
work. They also proposed three more algorithms for retriev-
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ing the top-k results for a keyword query. Their Sparse al-
gorithm is essentially an enhanced version of the naı̈ve one
that does not execute queries for non promising candidate
networks, i.e., those that do not produce top-k results. The
Global Pipelined algorithm progressively evaluates a small
prefix of each candidate network in order to retrieve only
the top-k results, and hence, it is more efficient for queries
with a relatively large number of results. The Sparse algo-
rithm is more efficient for queries with few results because
it can exploit the highly optimized execution plans that the
underlying RDBMS can produce when a single SQL query
is issued for each candidate network. Based on the above, a
Hybrid algorithm has been also described that tries to esti-
mate the expected number of results for a query and chooses
the best algorithm accordingly.

In comparison with our work, we note the following:

– DBXplorer and DISCOVER use undirected graphs, while
we model a database schema as a directed weighted graph.
Directionality is natural in many applications. To cap-
ture that, we consider that the strength of connections
between two relation nodes is not necessarily symmet-
ric. For instance, following a foreign/primary key rela-
tionship in the direction of the primary key may have
different significance than following it in the opposite
direction.

– Following a schema-level approach, our query answer-
ing operates in two phases. In order to find the schema
of the possible answers for a query, our logical subset
creation algorithm (described in Section 5) first extracts
initial subgraphs from the schema graph, each one corre-
sponding to a different query interpretation. Then, these
interpretations are enriched in order to discover other in-
formation that may be implicitly related to the query.
This corresponds to expanding the initial subgraphs based
on a set of constraints. The creation of the initial sub-
graphs resembles candidate network generation. How-
ever, based on the précis semantics (Section 3.4), we are
interested in generating initial subgraphs in decreasing
order of significance as captured by the graph weights.
Therefore, our corresponding algorithm (FIS) is based
on a best-first traversal of the database schema graph,
which is more efficient for generating subgraphs in order
of weight compared to the breadth-first traversal meth-
ods for candidate network generation used in [2,25,27].

– Regarding the generation of results, our naı̈ve algorithm
(NaiveLSP) is an adaptation of the population algorithms
used in [2,27] and the naı̈ve of [25], i.e., it executes one
query per initial subgraph, but then it has to split re-
sults among the relations contained in the logical sub-
set. On the other hand, we do not perform tuple rank-
ing, therefore in order to compare ourselves to the top-k
ranking algorithms used in [25], we can consider that all
tuples have the same weight, i.e., equal to 1, and that
the algorithms return all matching tuples, not just the
top-k ones. In this case, the Sparse algorithm coincides
with the naı̈ve, while the Global Pipelined algorithm is
more time-consuming than the naı̈ve, because it has to

fully evaluate all candidate networks. Instead of exploit-
ing the highly optimized execution plans that the under-
lying RDBMS can produce when a single SQL query is
issued per candidate network, the Global Pipelined uses
nested-loops joins.

– Finally, for ranking, DBXplorer and the earlier version
of DISCOVER use the number of edges in a tree as a
measure of its quality, preferring trees with fewer edges,
while we rank answers based on the weight of the corre-
sponding schema sub-graph. IR-style ranking techniques,
such as those presented in [25], can be incorporated in
our approach for ranking results of précis queries.

Tuple-level approaches. Tuple-level approaches model
the database as a data graph, in which nodes map to tuples
and edges represent relationships between tuples, such as
primary key dependencies [4,5,32]. These approaches in-
volve one phase for the answer generation, where the an-
swer schema extraction and the tuple retrieval tasks are in-
terleaved: the system walks on the data graph trying to build
trees of joining tuples that meet the query specification, e.g.,
they involve all keywords for queries with AND semantics.

BANKS [5] views the data graph as a directed weighted
graph and performs a Backward Expanding search strategy.
It constructs paths starting from each relation containing a
query keyword and executing a Dijkstra’s single source short-
est path algorithm for each one of them. The idea is to find
a common vertex from which a forward path exists to at
least one tuple corresponding to a different keyword in the
query. Such paths will define a rooted directed tree with the
common vertex as the root containing the keyword nodes as
leaves, which will be one possible answer for a given query.

Due to the fact that they have to traverse the data graph,
which is orders of magnitude larger than the database schema
graph, and that they execute a great number of joins in or-
der to connect tuples containing the keywords, tuple-level
techniques may present scalability issues. For example, the
Backward Expanding search performs poorly in case a query
keyword matches a very large number of tuple nodes. For
these reasons, the Bi-directional Expansion strategy explores
the data graph in a way that nodes that join to many other
nodes or point to nodes that serve as hubs are avoided or
visited later [32]. Hence, it reduces the size of the search
space at the potential cost of changing slightly the answer.

ObjectRank [4] uses a different answer model, making it
incomparable to all afore-mentioned approaches, including
ours. ObjectRank views the database as a labeled directed
graph, where every node has a label showing the type of
node and a set of keywords that comprise the content of the
node. Every node has a weight that represents the node’s
authority, i.e., its query specific ObjectRank value, deter-
mined using a biased version of the Pagerank random walk
[6]. Edges carry weights that denote the portion of authority
that can flow between two nodes. Also, their evaluation al-
gorithm requires expensive computations making the whole
query execution expensive.

Although the tuple-level approaches are not directly com-
parable to the schema-level ones, at a higher level, all ap-
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proaches to keyword search on relational databases deal with
the same kind of problem: Given some kind of a graph and a
set of nodes on it, they try to build one or more trees connect-
ing these nodes and containing a combination of keywords.
Hence, they all deal with some variant of the Steiner tree
problem [30]. Based on this abstraction, we could compare
tuple-level and schema-level algorithms. However, this ab-
straction cannot be applied to Bi-directional Expansion [32],
because, this algorithm, in effect, chooses a join order dy-
namically and incrementally on a per-tuple basis. Therefore,
it works only on a data graph. Thus, in what follows, we
compare our algorithm for the creation of initial subgraphs
(FIS) only to the Backward Expanding strategy [5].

– Given a graph and a set of nodes, each method seeks a
different solution, due to the different query semantics
defined in each approach. We seek solutions that are di-
rected subgraphs, in which the root and the sink nodes
belong to the given set of nodes. BANKS builds directed
trees, in which the leaves are given but the root could be
any relation [5,32].

– Apart from the graph and the set of nodes, FIS takes also
as input a set of constraints that describe which solutions
are desired, in terms of relevance or structure.

– The FIS algorithm and the Backward Expanding strat-
egy perform a best-first traversal of the graph starting
from every node in this set. However, due to the fact
that they assume a different answer model as explained
above, they proceed in a different way. FIS considers
each of the given nodes as a root of a possible solution
and traverses the graph to find other nodes that contain
keywords, while the Backward Expanding strategy con-
siders each given node as a leaf and traverses the graph
edges in reverse direction in order to find a node that con-
nects all given nodes, and this node is the root of the so-
lution tree. Hence, the former progressively builds sub-
graphs in decreasing order of weight, whereas the latter
builds solutions that are not ordered.

Furthermore, a high level comparison of our approach
to both tuple-level and schema-level approaches to keyword
search in relational databases reveals the following differ-
ences:

– Query language. A keyword query is a set of keywords
with AND [2,4,5,32,27] or AND/OR semantics [25].
In contrast, our framework provides a richer query lan-
guage allowing the formulation of a précis query as a
combination of keyword terms with the use of the logi-
cal operators AND (

�
), OR (

�
), and NOT (¬).

– Answer model. Existing approaches to keyword search-
ing focus on finding and possibly interconnecting, de-
pending on the query semantics, tuples in relations that
contain the query terms. On the other hand, précis queries
additionally consider information found in other parts of
the database that may be related to the query. For ex-
ample, consider the database depicted in Figure 1, which
stores information about {A}ctors, {M}ovies, {C}ast and
movie {G}enres, and a query about “Julia Roberts.” The

A C M

A GC M database

A Answer of a keyword query

Answer of a précis query

Fig. 1 Comparison of précis answers to typical keyword answers

answer provided by existing approaches would essen-
tially contain a tuple from the {A}ctors relation for the
actress Julia Roberts, whereas the answer returned based
on the précis framework may also return movies star-
ring this actress. This difference in the two possible an-
swers is depicted in Figure 1: the upper case illustrates
the schema of the first answer whereas the lower case de-
picts the schema of the précis answer. In particular, in the
précis framework, we use a generalized answer model,
which considers that a possible answer to a précis query
can be viewed as a graph of joining tuples, where leaves
do not necessarily contain query keywords, in contrast to
all other approaches that consider joining trees of tuples,
where leaves must contain query keywords.

– Answer format. A précis query generates an entire multi-
relation database, instead of the typical individual re-
lation containing flattened out results returned by other
keyword search approaches.

– Customization of answers. Given a précis query, a set
of constraints can be used to shape and customize the
final answer in terms of its schema and tuples. These
constraints may be purely syntactic, e.g., a bound on the
number of relations in it, or more semantic, capturing its
relevance to the query, e.g., a bound on the strength of
connections between the relations containing the query
terms and the remaining ones captured by weights on the
database schema graph. Thus, the précis framework of-
fers great adjustability and flexibility, because it allows
tailoring answers based on their relevance or structure.
Only DISCOVER considers the maximum size of an an-
swer in terms of joins, which is a structural constraint.

Earlier work on précis queries [38] assumes that they
contain only one term possibly found in many different re-
lations. If the query contains more than one term, these are
treated as one (phrase). In this paper, we extend query se-
mantics in two directions by considering (a) multi-term queries
and (b) that terms in a query may be words or phrases that
may be combined using the logical operators AND, OR, and
NOT . A brief presentation of these ideas exists in a poster
paper [55], where we discuss the issue of the generaliza-
tion of precis queries using multiple keywords. In this paper,
we formally present the problem to its full extent, define the
answer to a précis query (under the extended semantics) as
a logical database subset, and describe new algorithms for
creation of a logical database subset schema and for its pop-
ulation. An extensive evaluation of the algorithms with re-
spect to several parameters, such as the query characteristics
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and the given constraints, and in comparison to earlier work
shows their overall effectiveness and efficiency.

2.1.2 Ranking of query answers

One advantage of tuple-based techniques for keyword search
over schema-level ones is the possibility of fine-grained tu-
ple ranking. In the directed graph model of BANKS [5,32],
an answer to a keyword query is a minimal rooted directed
tree, embedded in the data graph, and containing at least one
node from each initial relation. Its overall score is defined by
(a) a specification of the overall edge score of the tree based
on individual edge weights, (b) a specification of the over-
all node score of the tree, obtained by combining individual
node scores, and finally, (c) a specification for combining
the tree edge score with the tree node score. In our case, an-
swers are ranked according to their relevance, which is de-
termined based on the weights at the schema level, but it can
be extended to support finer-grained ranking. For instance,
it could support the IR-style answer-relevance ranking de-
scribed in [25]. There is a large number of work in rank-
ing answers to database queries, apart from the work that
has been done for keyword queries, that could potentially be
adapted to our framework.

For instance, a ranking method based on query workload
analysis has been presented [3]. It proposes query processing
techniques for supporting ranking and discusses issues such
as how the relational engine and indexes/materialized views
can be leveraged for query performance. In the same context,
two efforts have been proposed: the ranked join index that
efficiently ranks the results of joining multiple tables [57]
and a technique for the processing of ranked queries based
on multidimensional access methods and branch-and-bound
search [56]. In general, a number of research approaches in-
vestigate the problem of ranking answers to a database query
from several points of view: relational link-based ranking
[19], context-sensitive ranking [1], probabilistic ranking [9];
recently, the ordering of attributes in query results has been
also proposed [14]. Although, in general, this is a problem
with high computational complexity, recent approaches over-
come the exponential runtime required for the computation
of top-k answers and prove that the answer of keyword prox-
imity search can be enumerated in ranked order with poly-
nomial delay [33–35].

2.2 Information Retrieval and Databases

Information retrieval systems rank documents in a collection
so that the ones that are more relevant to a query appear first.
Models that have been used in IR for this purpose include the
Boolean, Vector processing, and Probabilistic models, draw-
ing upon disciplines such as logical inference, statistics, and
set theory. The Boolean model is well understood. However,
even though it is very appropriate for searching in the pre-
cise world of databases, it has inherent limitations that lessen
its attractiveness for text searching [11]. The essential idea

of the vector processing model is that terms in documents
are regarded as the coordinates of a multi-dimensional in-
formation space. Documents and queries are represented by
vectors in which the ith element denotes the value of the
ith term, with the precise value of each such element be-
ing determined by the particular term weighting scheme that
is being employed. The complete set of values in a vector
hence describes the position of the document or query in this
space, and the similarity between a document and a query is
then calculated by comparing their vectors using a similarity
measure such as the cosine [51].

Probabilistic IR formally ranks documents for a query in
decreasing order of the probability that a document is use-
ful to the user who submitted the request, where the prob-
abilities are estimated as accurately as possible, on the ba-
sis of whatever data has been made available to the sys-
tem for this purpose [7,12,22,50]. For instance, based on
a set of assumptions regarding the relevance of a document
and the usefulness of a relevant document, the application
of this principle optimizes performance parameters that are
very closely related to traditional measures of retrieval effec-
tiveness, such as recall and precision [50]. Adapting tech-
niques of exploratory data analysis to the problem of doc-
ument ranking based on observed statistical regularities of
retrieval situations has been also proposed [22].

Keyword search approaches in databases, including ours,
assume the Boolean model, which is a well understood model
for structured queries in databases. Hence, assuming the same
model for unstructured queries as well is natural. On the
other hand, keyword search in databases is a relatively new
research area. Exploring other models inspired from IR, is
an open research issue. As our work matures, we are look-
ing into such models for précis queries.

3 Précis Framework

In this section, we introduce our framework for the study
of précis queries. We present the data model we adopt, we
provide a language for précis query formulation and we pre-
scribe the answer to such a query as a logical database sub-
set.

3.1 Data Model

We focus on databases that follow the relational model, which
is enriched with some additional features that are important
to the problem of concern. The main concepts of the data
model assumed are defined below.

A relation schema is denoted as Ri(Ai
1,A

i
2, . . . ,A

i
ki) and

consists of a relation name Ri and a set of attributes Ai =
{Ai

j : 1 ≤ j ≤ ki}. A database schema D is a set of relation
schemas {Ri : 1 ≤ i ≤ m}. When populated with data, rela-
tion and database schemas generate relations and databases,
respectively. We use Ri to denote a relation following rela-



Précis Queries 7

Fig. 2 Representation of graph elements

tion schema Ri and D to denote a database following database
schema D. The members of a relation are tuples.

Given a relational database D, a logical database subset
L of D has the following properties:

– The set of relation names in the schema L of the logical
database subset is a subset of that in the original database
schema D.

– For each relation Ri in L, its set of attributes Ai� = {Ai
j
� :

1 ≤ j ≤ li} in L is a subset of its set of attributes Ai =
{Ai

j : 1≤ j≤ ki} in D (li ≤ ki). In other words, L involves
some of the attributes of each relation schema present.

– For each relation Ri in L, its set of tuples is a subset, R�i,
of the set of tuples in the original relation Ri (projected
on the set of attributes Ai� that are present in the result).

A Database Schema Graph G(V,E) is a directed graph
corresponding to a database schema D. There are two types
of nodes in V: (a) relation nodes, R - one for each relation
in the schema; and (b) attribute nodes, A - one for each at-
tribute of each relation in the schema. Likewise, edges in E
are: (a) projection edges, ΠΠΠ - one for each attribute node,
emanating from its container relation node and ending at the
attribute node, representing the possible projection of the at-
tribute in a query answer; and (b) join edges, J - emanating
from a relation node and ending at another relation node,
representing a potential join between these relations. There-
fore, a database schema graph is a directed graph G(V,E),
where V = R∪A and E = ΠΠΠ ∪ J. Its pictorial representa-
tion uses the notation in Figure 2. Since projection edges
are always from relation nodes to attribute nodes, they are
typically indicated without their direction, as this is easily
inferred by the types of the nodes on their two ends.

Given two nodes vs,ve ∈V, an edge from vs to ve is de-
noted by e(vs,ve) or e j(vs,ve), if a set of edges is discussed,
enumerated by some integer index j. Nodes vs,ve may be
omitted if they are easily understood or are not critical. A
path from a relation node vs to an arbitrary node ve, denoted
by p(vs,ve) or simply p, consists of a sequence of edges,
the first one of which emanates from vs and the last one
of which, possibly a projection edge, ends at ve. Notation-
ally, this implies that p(vs,ve) = e(vs,x1)∪ e(x1,x2)∪ · · ·∪
e(xk,ve), where vs,ve,x j(1 ≤ j ≤ k) ∈V. In that case, ve is
said to be reachable from vs. Likewise, if vs and ve are both
relation nodes, then for tuples ts∈vs and te∈ve, if there are
tuples in relation nodes x j(1≤ j ≤ k) such that ts joins with
x1, x j joins with x j+1,(1≤ j < k), and xk joins with te, then

te is said to be reachable from ts. Each node (and each tuple)
is reachable from itself.

As edges represent explicit relationships between nodes
in the graph, directed paths on the graph represent “implicit”
relationships. In particular, a path between two relation nodes,
comprising adjacent join edges, represents the “implicit” join
between these relations. Similarly, a path from a relation
node to an attribute node, comprising a set of adjacent join
edges and ending with a projection edge, represents the “im-
plicit” projection of the attribute on this relation.

3.2 Schema Weight Annotation

Each edge e of a graph G is assigned a weight we ∈ [0,1].
Naturally, the weights of two edges between the same nodes
but in opposite directions could very well be different. For
instance, following a foreign/primary key relationship in the
direction of the primary key may have different significance
than following it in the opposite direction. The weight wp of
a path p = e0∪e1∪ · · ·∪ek is a function of the weights of its
constituent edges and should satisfy the following condition:

wp ≤ min
0≤ j≤k

we j (1)

This condition captures the intuition that the weight should
decrease as the length of the path increases [10]. In our im-
plementation, we have chosen multiplication as such func-
tion.

Syntactically, weights represent the significance of the
association between the nodes connected and determine ac-
cordingly whether or not the corresponding schema con-
struct will be inserted into the query to modify its final an-
swer. For instance, we=1 expresses strong relationship: if the
source node appears in the query, then the end node should
appear as well. If we=0, occurrence of the source node does
not imply occurrence of the end node. Semantically, weights
express notions of relevance, importance, similarity, or pref-
erence. Hence, they may be captured in one of several ways.
They may be automatically computed taking into account
graph features, such as connectivity (e.g., in the spirit of
[36]). They may be also specified by a designer or mined
from query logs to capture query patterns that are relevant to
different (groups of) users [54].

For example, for ad hoc queries, weights may be set
by the user (e.g., a designer or an administrator) at query
time using an appropriate user interface. This option en-
ables interactive exploration of the contents of a database
and the weights do not necessarily have any particular mean-
ing as only their relative ordering is important: by emphasiz-
ing or de-emphasizing the strength of connections between
database relations at will, the user essentially poses differ-
ent sets of queries, thereby exploring different regions of the
database and generating different results.

Query logs contain query sessions from different users,
hence they can be used as a valuable resource for relevance
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feedback data [8,13]. To illustrate how query logs could be
used for computing weights, we consider the following sim-
ple example. Given a database and a set of queries issued
over it, the weight of a projection edge between a relation
and an attribute could be computed as the number of times
this attribute is projected in these queries versus the total
number of projected attributes in all queries. Likewise, the
weight of a join edge from a relation Ri to a relation R j
could be given as the number of co-occurrences of both re-
lations in a single query divided by the total number of Ri’s
occurrences in the log. In this case, the weight would be a
reflection of the importance of an edge for the users pos-
ing these queries, which could then be taken into account
for précis queries. Clearly, more sophisticated weight com-
putation schemes exist: for instance, since certain queries
are elaborations of previous ones, we could take such de-
pendencies into account when computing join-edge weights
and capture more accurately the importance of each join as
users reformulate their queries to express their information
needs.

The algorithms presented in this paper work on arbitrary
directed weighted graphs and are not affected by how the
weights are defined or on the exact technique used for com-
puting them. Hence, any further discussion on weight com-
putation is beyond the scope of this paper.

Example. Consider a movie database described by the fol-
lowing schema; primary keys are underlined.

T HEAT RE(tid,name, phone,region)
PLAY (tid,mid,date)
MOVIE(mid, title,year,boxo f f ,did)
GENRE(mid,genre)
DIRECTOR(did,dname,blocation,bdate,nominat)
CAST (mid,aid,role)
ACTOR(aid,aname,blocation,bdate,nominat)

In the following sections, we will interchangeably use the
full names of relations and their initial letter to refer to them,
e.g., in case of figures for increasing their readability.

A database schema graph corresponding to this database
is shown in Figure 3. Weights on the graph edges capture the
significance of the association between the nodes connected.
For instance, for T HEAT RE, attribute NAME is more sig-
nificant than REGION or PHONE, whereas for MOV IE,
the most significant attributes are T IT LE and Y EAR. Also,
for movies, information about the movie genre is more im-
portant than information about the movie director. Thus, the
weight of the edge from MOV IE to GENRE is greater than
the weight of the edge from MOV IE to DIRECTOR. In gen-
eral, two relations may be connected with two join edges
on the same set of joining attributes in the two possible di-
rections carrying different weights. For instance, the weight
of the edge from GENRE to MOV IE is set to 0.7, and the
weight of the edge from MOV IE to GENRE equals to 1.
This implies that movies of a particular genre are not so im-
portant for the genre itself, while the genre of a particular
movie is very important for the movie.

NAME

PHONE

REGION

DATE

TITLE

YEAR

0.7

1

1

0.7
0.9

1

(TID)

(TID)

0.6

0.9(MID)

1

0.6(MID)
(MID)0.9

TID
0

THEATRE

TID
0

MID 0

DID 0

MID
0

PLAY

0.9

DNAME

BLOCATION

BDATE

1

1

1
0.7(DID)

(DID)

DID 0
DIRECTOR

MOVIE

BLOCATION

ANAME

BDATE

ROLE

1

0.6

0.7

0.3

AID0
ACTOR

MID0

AID0

CAST

(AID) 
0.8 1 (AID)

GENRE
1

1(MID)

MID 0

GENRE
0.7(MID)

0.7 (MID)

NOMINAT1 NOMINAT

BOXOFF 0.8

0.8

Fig. 3 An example database schema graph

Using multiplication for composition of edge weights
along the path from MOV IE to ACTOR, the weight of the
path is 0.7∗1.0 = 0.7. Thus, for a movie, information about
participating actors is less significant than information about
the movie’s genre, whose (explicit) weight is 1.0. Similarly,
the weight of the projection of a movie’s actors’ birth dates,
represented by the path from MOV IE to BDAT E, equals
0.7∗1∗0.6 = 0.42.

3.3 Précis Query Language

A précis query is formulated as a combination of keyword
terms with the use of the logical operators AND (

�
), OR

(
�

), and NOT (¬). A term may be a single word, e.g., “Ti-
tanic”, or a phrase, e.g., “Julia Roberts”, enclosed in quo-
tation marks. Given a database D and a précis query Q, an
initial tuple is one that has at least one attribute containing
a query term, whether appearing in a positive or a negative
form. An initial relation is one that contains at least one ini-
tial tuple.

Given a précis query in the above syntax, its semantics,
i.e., its answer, is determined by the query itself as well as
by a set of constraints C that the answer is called to satisfy.
Hence, before formalizing the query semantics, the form that
these constraints may take is discussed next.

Constraints. The set C of constraints is used to shape the
logical database subset returned to a précis query in terms of
its schema and tuples. Constraints may be specified by the
user at query time for interactive exploration of the contents
of a database or they may be stored in the system as part
of user or application/service profiles. For example, a search
service offered for small devices would make use of appro-
priate constraints for constructing small answers tailored to
the display capabilities of devices targeted. The form of con-
straints may depend on application and user characteristics.

In our framework, we consider two generic meta-classes
of constraints: relevance and structural constraints. Rele-
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Fig. 4 A taxonomy of constraints

vance constraints are defined based on weights on the database
graph, whereas structural constraints are defined on the ele-
ments of the graph. To facilitate their usage, we provide a set
of classes as a specialization (i.e., subclasses) of the generic
meta-classes of constraints. Aggregate functions (e.g., min,
max, avg, and sum), the usual comparison operators (e.g.,
>, <, and =), and combinations of the above can be used
in order to construct a constraint instance. Figure 4 presents
a taxonomy for constraints containing a non-exhaustive list
of structural and relevance constraint classes and presents
possible constraint instances. One can pick one of these ex-
amples or create any instance of a constraint class to express
a particular information need.

For example, given a large database, a developer who
needs to test software on a small subset of the database that,
nevertheless, conforms to the original schema, may provide
structural constraints on the database schema graph itself,
such as # of relations, # of attributes per relation, and # of
joins (length of paths in the database schema graph). On the
other hand, a web user searching for information, would pro-
vide relevance constraints on the weights on the database
schema graph, such as minimum weight of path and mini-
mum weight of subgraph (described later). Additional struc-
tural constraints on the number of tuples may be specified in
order to restrict the size of the subset.

Describing logical database subsets based on relevance
constraints is intuitive for people. Furthermore, different sets
of weights over the database schema graph and/or differ-
ent constraints on them result in different answers for the
same précis query, offering great adjustability and flexibil-
ity. For example, two user groups having access to the movie
database could be: movie reviewers and cinema fans. The
former may be typically interested in in-depth, detailed an-
swers; using an appropriate set of weights would enable these
users to explore larger parts of the database around a single
précis query. On the other hand, cinema fans usually prefer
shorter answers. In this case, a different set of weights would
allow producing answers containing only highly related ob-
jects. Likewise, different constraints on pre-specified sets of
weights may also be used to facilitate different search con-
texts. For example, answers viewed on a cell phone would
probably contain few attributes. More attributes may be pro-
jected in answers browsed using a computer. Multiple sets
of weights corresponding to different user profiles may be
stored in the system with the purpose of generating person-

alized answers [37]. For example, a user may be interested
in the region where a theater is located, while another may
be interested in a theater’s phone.

Given a set of weights, changing constraints affects the
part of database explored and essentially results in a differ-
ent set of queries executed in order to obtain related tuples
from this part of the database. The user may explore differ-
ent regions of the database starting, for example, from those
containing objects closely related to the topic of a query and
progressively expanding to parts of the database containing
objects more loosely related to it.

Query Semantics. Given a query Q, consider its equivalent
disjunctive normal form:

Q =
�

i
Xi (2)

where Xi =
�

qi j and qi j is a keyword term or a negated key-
word term (1 ≤ j ≤ ki with ki the number of such terms in
the i-th disjunct).

The result of applying Q on database D with schema
graph G given a set of constraints C is a logical database
subset L of D that satisfies the following: a tuple t in D ap-
pears in L, if there exists a disjunct Xi in Q for which the
following hold, subject to the constraints in C:

– there exists a set of initial tuples in D that collectively
contain all terms combined with AND in Xi, such that t
is reachable in G from all these tuples;

– tuple t is not reachable from any initial tuple containing
a negated term in Xi.

Special cases of the above definition are the following:

– In the case of Q being a disjunction of terms without any
negations (OR-semantics), L contains initial tuples for Q
and any other tuple in D that is transitively reachable by
some initial tuple, subject to the constraints in C.

– In the case of Q being a conjunction of terms without any
negations (AND-semantics), L contains any tuple in D
(including initial tuples) that is transitively reachable by
initial tuples collectively representing all query keyword
terms, subject to the constraints in C.

Example. Consider the following queries issued over the
movie database, without any constraints.

q1: “Al f red Hitchcock” OR “David Lynch”
q2: “Clint Eastwood” AND “thriller”
q3: “Gregory Peck” AND NOT “drama”
q4: (“Clint Eastwood” AND “thriller”) OR

(“Gregory Peck” AND NOT “drama”)

The answer of q1 would contain initial tuples that con-
tain Alfred Hitchcock and initial tuples involving David Lynch
as well as tuples joining to any initial tuple. The answer for
q2 would contain joining tuples in which all terms are found
plus all tuples that are connected to these in various ways.
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Fig. 5 Initial subgraphs for query q1

Thus, the answer would provide information about thrillers
directed by Clint Eastwood, thrillers acting Clint Eastwood,
actors playing in such thrillers, and so forth. The answer of
q3 would be any tuples referring to Gregory Peck and any
joining tuples except for initial tuples for drama and any
joining to these; e.g., dramas with Gregory Peck and any in-
formation related to these will not be included in the result.
q4 is a more complex query being the disjunction of q2 and
q3. Therefore, its answer would contain any tuples satisfy-
ing each disjunct, i.e., tuples in the results of q2 plus tuples
returned for q3.

3.4 Query Interpretation

Consider a database D and a query Q in disjunctive nor-
mal form, i.e., Q =

�
i Xi. Then, for each Xi, the part of the

database that may contain information related to Xi needs
to be identified. For this purpose, we first have to interpret
Xi based on the database schema graph G. As we have al-
ready seen through the query examples of the previous sub-
section, more than one interpretation may be possible. For
instance, one interpretation for query q2 could be that it is
about thrillers directed by Clint Eastwood and another could
be that it concerns thrillers with Clint Eastwood as one of the
actors. We observe that each interpretation refers to a differ-
ent part of the database schema graph. In what follows, we
formalize this by introducing the notion of initial subgraph.

Definition (Initial Subgraph). We assume that the graph
G(V,E) corresponding to the schema of a database D is al-
ways connected, which holds for all but artificial databases.
Given a query Q over D, an initial subgraph (IS) correspond-
ing to a disjunct Xi in Q is a rooted DAG SG(VG,EG) on G
such that:

– VG contains at least one initial relation per query term in
Xi, along with other relations that interconnect those,

– EG is a subset of E interconnecting the nodes in VG,
– the root and all sinks of SG are initial relations.

For each disjunct Xi in Q, there may exist more than one
initial subgraph, each one corresponding to a different inter-
pretation of Xi over the database schema graph based on the
initial relations found. Consequently, for a query Q, there
may be more than one initial subgraph. If multiple initial
subgraphs map to the same interpretation, then the most sig-
nificant one is selected for consideration, as we will see later.

Example. We consider the queries of the previous example.
Figures 5, 6, 7 depict the initial subgraphs for each query

Clint Eastwood AND thriller

SG1
A GC M0.8 0.9 1

SG2
GD M

0.9 1

A GC M
1 0.7 1

D

0.9

SG3

Fig. 6 Initial subgraphs for query q2

Gregory Peck AND NOT drama

SG1

A GC M
0.8 0.9 1

Fig. 7 Initial subgraphs for query q3

based on initial relations that may be found in a specific
instance of the movie database. Each initial subgraph is de-
noted with SG. Initial relations are depicted in grey. For sim-
plicity, attributes of component relations are omitted and re-
lation names are indicated by their initial letter only.

For query q1, initial relations for Alfred Hitchcock are
DIRECTOR and ACTOR and for David Lynch is DIRECTOR.
Figure 5 depicts all the initial subgraphs for q1, referring to
the following interpretations: the director Alfred Hitchcock
or the actor Alfred Hitchcock or the director David Lynch.
Clearly, being a disjunction of single terms, each initial sub-
graph has an initial relation as its sole node. For q2, initial
relations for Clint Eastwood are DIRECTOR and ACTOR,
while thriller is found in GENRE. The initial subgraphs of
the database schema graph are shown in Figure 6 and may
be interpreted as referring to the following: (a) SG1: the ac-
tor Clint Eastwood acting in thrillers; (b) SG2: thrillers di-
rected by the director Clint Eastwood; or (c) SG3: the di-
rector Clint Eastwood has directed thrillers in which he has
also played as an actor. For query q3, ACTOR and GENRE
are the initial relations for Gregory Peck and drama, respec-
tively. Figure 7 shows the initial subgraph corresponding to
q3, which is interpreted as referring to movies that are not
dramas and have Gregory Peck as an actor. Finally, the set
of initial subgraphs for q4 is the union of the sets of initial
subgraphs of q2 and q3.

The weight wSG of a subgraph SG(VG,EG) is a real num-
ber in [0,1] and is a function fg on the weights of the join
edges in EG:

wSG = fg(WSG) (3)

where WSG = {we j | we j weight o f e j, ∀e j∈EG}. This func-
tion should satisfy the following condition:
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fg(WSG ∪{wei})≥ fg(WSG ∪{we j})⇔ wei ≥ we j (4)

This condition captures the intuition that, when building
a subgraph, the most significant edges should be favored,
i.e., edges leading to the most relevant information.

The weight of a subgraph represents the significance of
the associations between its nodes. For instance, if wSG =
1, then all nodes in the graph are very strongly connected,
i.e., presence of one node in the results makes all its neigh-
bor nodes in the graph appear as well. As the weight of a
subgraph goes to 0, the elements of the subgraph are more
loosely connected.

In order for fg to be incrementally computable as edges
are added to its input set, it should either be distributive
(computable from its value before the new edge has been in-
serted, e.g., count, min, max) or algebraic (computable from
a finite number of values maintained with its input set before
the new edge has been inserted, e.g., average). The so called
holistic functions (e.g., median) require full recomputation
and are excluded. In our implementation, we have chosen
the following (algebraic) function for the computation of the
initial subgraph weight:

fg(WSG) = ∑
p∈SG

(wp)
�

N (5)

where p is any path in SG connecting the root relation to
a sink relation. This function expresses the average signifi-
cance of the join of an initial relation to the initial subgraph,
and in particular, to its root, and it captures the intuition that,
as an initial subgraph grows bigger and associations between
initial relation nodes become weaker, its weight is decreas-
ing. By default, an initial subgraph containing only one re-
lation has a weight of 1.

Example. Naturally, not all of the possible initial subgraphs
of a query are equally significant. For example, using the
function above, we obtain the following weights for the ini-
tial subgraphs of query q2 shown in Figure 6 (from top to
bottom): 0.72, 0.9, 0.765. Based on them, the interpretation
of the query as “thrillers directed by the director Clint East-
wood” is the most significant.

Initial subgraphs for a query Q are considered in decreas-
ing order of weight. If two subgraphs have the same weight,
the one that contains more initial relations precedes. This
order is taken into account during logical subset population
(see Figure 9) so that results are presented in order of rele-
vance to the query.

Example. Consider the following initial subgraphs over the
movie database schema graph that could correspond to the
query “John Malkovich” AND “Drama”; initial relations
are underlined:

SG1 : ACTOR→CAST →MOV IE
SG2 : ACTOR→CAST →MOV IE

David Lynch

GD M
0.9 1

Fig. 8 Example expanded subgraph for query q1

Both of them have the same weight. However, SG2 pre-
cedes SG1 in order of significance, because it captures a
stronger connection between query terms, e.g., actor “John
Malkovich” has played himself in the movie “Being John
Malkovich”.

Definition (Expanded Subgraph). Given a query Q, a data-
base D, constraints C, and an initial subgraph SG, an ex-
panded subgraph is a connected subgraph on the database
schema graph G that includes SG and satisfies C.

Example. Consider the query q1 and the initial subgraph
corresponding to the query term David Lynch, which is shown
in Figure 5. Then, a candidate expanded subgraph is shown
in Figure 8.

Definition (Query Interpretation). Given a query Q, a data-
base D, and constraints C, the set of all possible expanded
subgraphs of Q comprises the schema of the logical database
subset G� that contains the most relevant information for Q
based on C.

4 System Architecture

In this section, we describe the system architecture for gen-
erating logical subsets of databases. This is depicted pictori-
ally in Figure 9.

Each time a précis query Q is submitted on top of a
database D with schema graph G, the following steps are
performed in order to generate an answer.

Query Parsing. Given a query Q over a database D with
schema graph G, this phase performs two tasks. First, it
transforms Q into a disjunctive normal form. As there are
well-known algorithms for DNF transformations [44], we
will not discuss this transformation any further. Then, it con-
sults an inverted index over the contents of the database and,
for each disjunct Xi of Q, a set of initial relations IRi is re-
trieved (but not the corresponding initial tuples). If no initial
relations are found, subsequent steps are not executed.

Logical Subset Schema Creation. This phase creates the
schema of the logical database subset comprising initial re-
lations together with relations on paths that connect them
in G, as well as a subset of their attributes that should be
present in the query answer, according to the constraints.

Logical Subset Population. This phase populates schema
G� to create the logical database subset L. This contains ini-
tial tuples as well as tuples on the remaining relations of G�,
based on the query semantics and the constraints provided,
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Fig. 9 System architecture

all projected onto their attributes that appear as projection
edges on G�.

In the following sections, we elaborate on the main mod-
ules of the system architecture: the Logical Subset Schema
Creation and the Logical Subset Population.

5 Logical Subset Schema Creation

Given a query Q over a database D with schema graph G,
this phase is responsible for finding which part of the database
may contain relevant information with respect to a set of
constraints C on the schema of the desired logical subset.
In other words, this phase identifies the schema G� of the
logical subset for the given query and constraints.

Example. A user is interested in query q2 and, particularly,
in exploring answers in which the query terms are quite
strongly interconnected and any additional information in-
cluded is fairly important to all terms. The following rel-
evance constraints have been specified for describing the
desired answers. In order to capture the first requirement,
only graphs with weight over 0.7 are considered significant.
The second requirement is expressed as a constraint on the
expansion of subgraphs: a new relation is significant for a
subgraph iff the weight of the path that connects this relation
to every initial relation of the subgraph is equal to or greater
than 0.8. We assume that the weight of a path is calculated
by multiplying the weights of its constituent edges.

5.1 Problem Formulation

The logical subset schema creation process is decomposed
into two subproblems: initial subgraph creation and expan-
sion. The first one is formulated as the problem of finding the
most significant initial subgraphs, i.e., the most significant
interpretations of Q, over the database schema graph based
on the initial relations found for Q and the constraints. The
second one refers to the expansion of the initial subgraphs
on the database schema graph to include relation nodes con-
taining most relevant information for the given query based

on the constraints provided. These expanded subgraphs con-
stitute the logical subset schema G�. More formally, these
subproblems are formulated as follows.

Initial subgraph creation. Consider a database D with schema
graph G(V,E) and a query Q =

�
i Xi with constraints C.

For each disjunct Xi, a set of initial relations IRi is found in
D. Then, the set of most significant initial subgraphs corre-
sponding to Q is the set SG such that:

SG= {SG | SG(VG,EG), VG ⊆ V, EG ⊆ E, with
SG most signi f icant IS w.r.t. C f or ξ ,
∀ξ ⊆ IRi containing all terms in Xi
and ∀Xi in Q with IRi �= ∅}

In words, for each disjunct Xi in Q that has a non-empty
set of initial relations, IRi, and for each combination of ini-
tial relations ξ containing all terms in Xi, the most significant
initial subgraph SG on G is selected w.r.t. the constraints C.

Example. The set of initial relations for q2 is {ACTOR,
DIRECTOR, GENRE}. All valid combinations of them are:
ξ1={ACTOR, GENRE}, ξ2={DIRECTOR, GENRE}, ξ3=
{ACTOR, DIRECTOR, GENRE}. ({ACTOR, DIRECTOR}
is not a valid combination because it does not contain all
terms of q2.) For each one of them, the most significant ini-
tial subgraph is found, if it exists w.r.t. the constraints given.
For instance, two initial subgraphs are candidate for ξ1 (see
also Figure 3):

ACTOR→CAST →MOV IE → GENRE
ACTOR←CAST ←MOV IE ← GENRE
Using Formula (5), the weight for the first one is equal

to 0.72 and for the second one is equal to 0.49. Both of them
map to the same interpretation, thus, only the first one is con-
sidered, and since it satisfies the constraint, i.e., its weight is
greater than 0.7, it is kept.

Expansion. Consider the set SG of initial subgraphs found
over the database schema graph G(V,E) for query Q based
on constraints C. Each initial subgraph SG is expanded as
follows: a new edge is added provided that the target rela-
tion is significant for all initial relations in SG w.r.t. the con-
straints. Then, for each initial subgraph SG in SG, the set of
all possible subgraphs of G that contain SG ordered in de-
creasing weight is:

{Gi | Gi(Vi,Ei), Vi⊇V1, Ei⊇E1, wi−1≥wi, i ∈ [2,n]},
and G1 = SG.
Thus, the expanded subgraph produced from SG w.r.t.

constraints C is Gk such that:
k = max{ t | t ∈ [1,n] : Gt satis f ies constraints}.
Hence, the schema graph G� of the resulting logical sub-

set L is determined by the set of all expanded subgraphs pro-
duced from SG.

The creation of the logical database subset schema G� is
realized by the algorithm Logical Subset Schema Creation,
LSSC, which is presented in Figure 10 and is described in
the following subsection.
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Algorithm Logical Subset Schema Creation (LSSC)
Input: a database schema graph G(E,V),

query Q =
�

i Xi, constraints C,
{IRi | IRi a set o f initial relations f or Xi, ∀Xi in Q}

Output: a logical subset schema graph G�(E�,V�)
Begin

0. QP := {}, G� := {}, SG := {}
1. Foreach disjunct Xi in Q with IRi �= ∅ {

1.1 If Xi is a conjunction of literals {
1.1.1 SG ← FIS(G,Xi,IRi,C,SG) }
else if Xi contains only one term {
1.1.2 Foreach initial relation R j in IRi {

mark R j with different s-id
add R j to SG }

}}
2. {SG,G,QP,G�}←CIS(G,C,SG,QP)
3. {G�}← EIS(G,C,SG,QP,G�)
4. return G�

End

Fig. 10 Algorithm LSSC

5.2 Algorithm LSSC

The algorithm LSSC has the following inputs: (a) the database
schema graph G corresponding to a database D, (b) a query
Q =

�
i Xi, (c) for each disjunct Xi, the set IRi of initial rela-

tions, found during query parsing, and (d) the constraints C
for shaping the logical subset. Its operation is summarized
as follows:

First, for each disjunct Xi in Q, the algorithm finds the
initial subgraphs that can be defined on the database schema
graph based on the set IRi of initial relations for Xi. If Xi
is just a single (not negated) term, then each initial relation
containing this term comprises an initial subgraph. For ex-
ample, consider the initial subgraphs for query q1 depicted
in Figure 5. If Xi contains more than one term, the creation
of initial subgraphs is more complicated. For this purpose,
algorithm FIS is used. Then, the set SG of initial subgraphs
produced for the whole query is enriched with the appropri-
ate attributes and projection edges (algorithm CIS). Finally,
each initial subgraph SG in SG is expanded to include ad-
ditional relations that contain relevant information. This is
performed by algorithm EIS, described later in this section.

All the aforementioned operations are driven by the con-
straints C and the database schema graph. The final output is
the schema graph G� of the resulting logical subset L, which
is determined by the set of expanded subgraphs produced
over G. Each expanded subgraph is assigned an id s-id. In
this way, G� is represented as a subgraph of G, whose edges
and nodes are marked with the id’s of the constituent ex-
panded subgraphs.

Algorithm FIS. The algorithm FIS (Figure 11) has the fol-
lowing inputs: (a) the database schema graph G correspond-
ing to database D, (b) a conjunction of literals X , (c) a set
IR of initial relations for X , (d) constraints C and (e) a set
of initial subgraphs SG. Based on these inputs, its objective
is to find how X can be translated into one or more initial
subgraphs on G. These subgraphs are then added into SG.

Algorithm Find Initial Subgraphs (FIS)

Input: a database schema graph G(E,V), a conjunction of literals X ,
a set of initial relations IR, constraints C,
a set of initial subgraphs SG

Output: SG
Begin

0. QP := {}, GC := G
1. Foreach Ri∈IR {

1.1 mark each relation Ri in GC with different s-id
1.2 Foreach e(Ri,x)∈E, x∈V {

1.2.1 If e satisfies constraints in C {
wsid := fG(we)
mark respective e in GC with s-id
add(QP, <e,s-id>)

}}}
2. While QP not empty and constraints in C hold {

2.1 get head <e(Ri,R j),s-id> from QP
2.2 If destination relation R j is not marked in GC

and subgraph s-id is retained acyclic {
2.2.1 mark respective R j in GC with s-id
2.2.2 Foreach e�(R j,x)∈E, x∈V {

If e� satisfies constraints in C {
wsid∪e� := fG(WG∪we�)
mark respective e� in GC with s-id
add(QP, <e,s-id>)

}}}
2.3 If subgraph with s-id contains new combination ξ from X

and constraints in C hold {
2.3.1 drop from subgraph all sink nodes n, s.t. n/∈ξ
2.3.2 add subgraph in SG
2.3.3 add any constituent initial subgraph in SG with new s-id

if it contains new combination ξ from X
}}

3. return SG
End

Fig. 11 Algorithm FIS

The latter may be initially empty or contain initial subgraphs
from other invocations of FIS.

For this purpose, for each combination ξ of initial rela-
tions from IR containing all query terms in X , FIS has to
find the most important initial subgraph that interconnects
these initial relations, subject to the constraints C, if such
subgraph exists. In doing so, there is a number of challenges
to cope with. First, for a given combination ξ of initial re-
lations, there may be more than one initial subgraphs sat-
isfying the constraints. Ideally, we would like to build the
most significant one and avoid building the others that will
be ultimately rejected. Second, if the number of relations in
IR is equal to the number of terms in X , then there is only
one combination ξ , for which the most significant subgraph
is desired. However, when there are more initial relations in
IR than terms in X , then the number of possible combina-
tions grows exponentially. For instance, if a query contains
2 terms, the first one found in relations R1, R2 and the second
one found in relations R3, R4, then valid combinations would
be: {R1,R3}, {R1,R4}, {R2,R3}, {R2,R4}, {R1,R2,R3}, and
so forth. Finding the most significant subgraph for each one
of them independently is time consuming.

Recall that an initial subgraph is a rooted DAG with root
an initial relation. In order to tackle the first challenge, FIS
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step (<QP(e,s-id)>, Ws−id) vis A C M D P T G SG ← Sid WSid

1 (<D-M,2>, 0.9), (<A-C,1>, 0.8), (<G-M,3>, 0.7) - 1 2 3
2 (<M-G,2>, 0.9), (<M-P,2>, 0.81), (<A-C,1>, 0.8), M,2 1 2 2 3

(<G-M,3>, 0.7), (<M-C,2>, 0.63)
3 (<M-P,2>, 0.855), (<A-C,1>, 0.8), (<M-C,2>, 0.765), G,2 1 2 2 3,2 D→M →G 0.9

(<G-M,3>, 0.7)
4 (<P-T,2>, 0.855), (<M-C,2>, 0.84), (<A-C,1>, 0.8), P,2 1 2 2 2 3,2

(<G-M,3>, 0.7)
5 (<M-C,2>, 0.84), (<A-C,1>, 0.8), (<G-M,3>, 0.7) T,2 1 2 2 2 2 3,2
6 (<C-A,2>, 0.84), (<A-C,1>, 0.8), (<G-M,3>, 0.7) C,2 1 2 2 2 2 2 3,2
7 (<A-C,1>, 0.8), (<G-M,3>, 0.7) A,2 1,2 2 2 2 2 2 3,2 D→M→{G,{C→A}} 0.765
8 (<C-M,1>, 0.72), (<G-M,3>, 0.7) C,1 1,2 2,1 2 2 2 2 3,2
9 (<M-G,1>, 0.72), (<G-M,3>, 0.7), (<M-P,1>, 0.648), M,1 1,2 2,1 2,1 2 2 2 3,2

(<M-D,1>, 0.648)
10 (<G-M,3>, 0.7), (<M-P,1>, 0.684), (<M-D,1>, 0.684) G,1 1,2 2,1 2,1 2 2 2 3,2,1 A→C →M →G 0.72

Fig. 12 An example of the execution of FIS for query q2

performs a best-first traversal of the database graph starting
not from a single relation but from all initial relations that
belong to IR. As we will show later in this subsection (The-
orem 1), this ensures that subgraphs are generated in order of
decreasing weight and that the most significant one is gener-
ated for each valid combination of initial relations. Further-
more, FIS essentially transforms the problem of “finding the
most significant subgraph for each combination ξ (if it ex-
ists)”, which is exponential of the number of initial relations,
into the problem of “finding the most significant subgraphs
considering each initial relation in IR as a possible root”,
which is linear of the number of initial relations.

The algorithm progressively builds multiple subgraphs.
Each time an initial subgraph is identified that interconnects
a different combination of initial relations, ξ∈IR, containing
all query terms, it is assigned an id, s-id, and it is placed in
SG. We note that since G is considered connected, an initial
subgraph corresponding to a combination of terms involving
the NOT operator, should include initial relations that con-
tain the negated terms. Hence, in this phase, initial relations
containing negated terms are confronted in the same way as
those containing simple terms.

More concretely, the algorithm considers a copy graph
GC of G in order to store the status of subgraphs progres-
sively generated (Ln: 0). It starts from each Ri∈IR and con-
structs as many subgraphs as the number of relations in IR
(Ln: 1). A list QP of possible next moves is kept in order
of decreasing weight of subgraphs; a move, stored as <e, s-
id>, identifies an edge e that adds a new relation to the sub-
graph with id s-id, and it is determined by the weight of this
subgraph if extended to edge e (Ln: 1.2.1, QP’s initializa-
tion; and Ln: 2.2.2, QP’s incremental update). In each round,
the algorithm follows the next best move on the graph (Ln:
2.1). As a result, the respective subgraph is enriched with a
new join edge and relation. A relation may possibly belong
to more than one subgraph; however, a subgraph should not
contain cycles (Ln: 2.2).

Each time a subgraph is identified that interconnects a
combination ξ of initial relations containing all query terms
in X and ξ has not been encountered in initial subgraphs
constructed earlier, then all sink nodes that are not initial re-

lations are removed from this subgraph (Ln: 2.3). The result-
ing initial subgraph is placed in SG. An initial subgraph may
also contain other initial subgraphs, all having the same root.
Any of these subgraphs interconnecting a different combina-
tion, ξ , of initial relations containing all query terms in X is
also placed in SG (Ln: 2.3.3). FIS stops when constraints C
do not hold or QP is empty, i.e., no possible moves on G
exist.

Example. The functionality of the algorithm FIS for the
query q2 is presented in Figure 12. Recall that the relevance
constraint specifies that only graphs with weight greater than
0.7 are significant for query q2. For each step of the algo-
rithm, the figure depicts: (a) the content of the list QP, i.e.,
the candidate edges for a subgraph s-id in decreasing or-
der of subgraph weight, along with the weight ws−id that the
subgraph will have if a respective edge is picked (the weight
is calculated using Formula (5)); (b) the relation visited by a
subgraph s-id in this step (column vis in the figure); (c) the
id’s of the subgraphs that have visited each relation of the
database graph so far; and finally, (d) the initial subgraphs
found (if any) along with their weights.

FIS starts from the initial relations, ACTOR, DIRECTOR,
GENRE, and progressively constructs three candidate ini-
tial subgraphs (step 1 of the figure and line 1 of the algo-
rithm). The remaining steps depicted in the figure represent
the generic functionality of line 2 of FIS. All candidate next
moves are stored in QP in decreasing order of subgraph
weight. Each time, the algorithm follows the next best move,
thus, in the second step the subgraph with s-id = 2 visits the
relation MOV IE. Observe that each time a new relation is
added in a subgraph, then the weights associated with all
the candidate edges in QP for this specific subgraph are up-
dated: e.g., in step 3, if the edge M-P is picked, the weight
of subgraph with s-id = 2 would be 0.855 instead of 0.81
that was in step 2, before the relation MOV IE was visited.
Also, in step 3, after visiting the relation GENRE, the sub-
graph with s-id = 2 contains both relations DIRECTOR and
GENRE, which is one of the valid combinations ξ of the ini-
tial relations. Thus, this subgraph is qualified as an initial
subgraph and it is added in SG. The procedure goes on un-
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til QP is emptied or the top edge in QP can not produce a
subgraph with a weight over 0.7.

Finally, we notice that in step 7, the subgraph produced
is the D→M→{G,{P→T},{C→A}}. However, it is not qual-
ified as an initial subgraph because it contains a sink node
that it does not belong to any ξ , so the pruning described in
line 2.3.3 of FIS should take place and the resulting initial
subgraph is then added in SG.

Theorem 1. (Completeness) In the absense of constraints
(C = /0), FIS finds the set S∗G of all possible initial subgraphs
for a query Q. (Correctness) In the presence of constraints
(C �= /0), FIS finds the set SG of the most significant initial
subgraphs for Q (SG ⊆ S∗G) that satisfy the given constraints.

Sketch of Proof. The main idea of the proof is divided
into the following parts:

(a) All possible solutions, i.e., all possible initial sub-
graphs corresponding to ξ , are DAGs with root an initial re-
lation from ξ . Since the algorithm starts searching from all
initial relations in ξ and the schema graph is connected, as-
suming no constraints, all initial subgraphs are constructed.
Consequently, FIS is complete.

(b) If <eo, SGo> is QP’s head, then the following holds:
wSGo∪eo≥wSGi∪ei , ∀<ei,SGi>∈QP

Thus, SGo is the most significant subgraph from all sub-
graphs currently in QP.

Furthermore, for any subgraph SGi in QP (including SGo),
upcoming moves are derived from edges that are already in
QP. Consider such an edge <e, SGi> as well as another edge
e� /∈QP that is also a potential upcoming move. Due to con-
dition (1), we≥we� holds. By combining this with condition
(4), we conclude that wSGi∪e ≥ wSGi∪e� . Thus, SGi is the most
significant subgraph from all upcoming subgraphs not cur-
rently in QP that will contain SGi . Consequently, FIS builds
subgraphs in decreasing order of weight.

If a subgraph is found that does not satisfy the constraints,
then the algorithm stops. By combining (a) and (b), we con-
clude that, no other larger subgraph would have satisfied the
constraints either. Hence, when it stops, FIS has found the
most significant initial subgraph (if any, with respect to the
constraints) for ξ . Consequently, FIS is correct. ��

We have described how the most important initial sub-
graphs are built. Next, we prepare the initial subgraphs for
the expansion through a procedure described by the algo-
rithm CIS, and then, we expand them using the algorithm
EIS.

Algorithm CIS. The algorithm CIS (Figure 13) has the fol-
lowing inputs: (a) the database schema graph G correspond-
ing to database D, (b) constraints C, (c) a set of initial sub-
graphs SG, and (d) a list QP that is initially empty. It per-
forms three tasks. First, it enriches all SG∈SG with attributes
and corresponding projection edges. In particular, for each
relation Ri∈VG, only attributes that satisfy the given criteria
are kept plus any attributes required for joins, in which this
relation participates in the initial subgraph SG (Ln: 1.1.2).
Then, it checks every out-going join edge of SG and if it
meets the constraints then it is added along with their respec-

Algorithm Create Initial Subgraphs (CIS)
Input: a database schema graph G(E,V), constraints C,

a set of initial subgraphs SG(EG,VG), a list QP
Output: SG, G, QP, a a logical subset schema graph G�(E�,V�)
Begin

0. G� := {}
1. Foreach initial subgraph SG∈SG satisfying constraints in C {

1.1. Foreach relation Ri in SG {
1.1.1 mark corresponding node in G
1.1.2 create attribute nodes and projection edges

in SG for attributes of Ri satisfying constraints in C
1.1.3 Foreach join edge e(Ri,x)∈(E−EG),

x∈(V−VG), that retains SG acyclic and
satisfies constraints in C {

add(QP, <e,s-id>)
}}
1.2. update G� with edges and nodes of SG
}

2. return SG, G, QP, G�

End

Fig. 13 Algorithm CIS

tive s-id to the list QP that is ordered in decreasing weight
of edges (Ln: 1.1.3). So, QP contains candidate edges for
expansion of the initial subgraphs, which is implemented by
algorithm EIS. Finally, it updates the schema G� of the log-
ical subset with the edges and nodes of SG. To deal with
the fact that subgraphs may share relations and edges on G�,
each relation and edge is annotated with the set of ids of the
subgraphs using it. In this way, G� is represented as a sub-
graph of G, whose edges and (relation) nodes are marked
with the id’s of the constituent expanded subgraphs.

The tasks above are performed only for initial subgraphs
that meet the constraints provided. In this way, algorithm
EIS will expand only these.

Algorithm EIS. The algorithm EIS (Figure 14) has the fol-
lowing inputs: (a) the database schema graph G correspond-
ing to database D, (b) constraints C, (c) a set SG of initial
subgraphs, (d) a list QP that contains candidate edges for
expansion of the initial subgraphs, i.e., departing edges from
each SG in decreasing weight and (e) a logical subset schema
graph G� as defined by the initial subgraphs found. QP has
been initialized by CIS. The objective of EIS is to extend ini-
tial subgraphs towards relations that may contain informa-
tion that is also significant for the query. This is performed
by gradually adding edges in a subgraph SG∈SG in order of
weight, as long as the target relation is significant for all ini-
tial relations in SG w.r.t. C. The set of expanded subgraphs
built from the initial subgraphs in SG comprises the logical
subset schema graph G�.

The algorithm proceeds as follows. While QP is not empty
and the constraints hold, it picks from QP the candidate edge
e with the highest weight belonging to a subgraph SG with id
s-id, and it checks whether its target relation R j is significant
for all initial relations in SG w.r.t. C. For this purpose, it is
sufficient to check whether it is important for the most “dis-
tant” initial relation in the subgraph; i.e., the one whose path
to R j has the minimum weight among all paths from other
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Algorithm Extend Initial Subgraphs (EIS)

Input: a database schema graph G(E,V), constraints C,
a set of initial subgraphs SG(EG,VG), a list QP,
a logical subset schema graph G�(E�,V�)

Output: G�(E�,V�)
Begin

1. While QP not empty and constraints in C hold {
1.1. get head <e(Ri,R j),s-id> from QP
1.2. SG ∈ SG is the subgraph identified by s-id
1.3. If destination R j is not marked on G (i.e. R j /∈V �),

is significant for SG, and satisfies constraints in C {
1.3.1 mark corresponding node on G
1.3.2 create a new node in V� for R j
1.3.3 create attribute nodes and projection edges

in G� for attributes of R j satisfying constraints in C
}

1.4. If R j∈V�, e(Ri,R j)/∈E� and e satisfies constraints in C
{ 1.4.1 insert e in E� }

1.5. annotate e∈E� with s-id
1.6. update SG
1.7. Foreach join edge e�(R j,x)∈E, x∈V, that retains

SG acyclic and satisfies constraints in C {
1.7.1 add(QP, <e�,s-id>)

}}
2. return G�

End

Fig. 14 Algorithm EIS

initial relations to R j. Towards this aim and for optimization
reasons, each relation in SG keeps the weight of the path to
the most distant initial relation from it. For each R j accepted,
the algorithm updates G� with this relation and the edge e.
For each relation and join edge in G�, it keeps track of the set
of subgraphs to which they belong. This information is used
during the logical subset population in order to keep track of
the subgraphs that need to be enumerated in order to popu-
late each relation. Also, EIS inserts into QP the edges that
depart from R j for possibly expanding the subgraph further
away from this relation. These steps are explained below.

If R j is accepted, then the following happen. If the node
in G mapping to R j is not marked (Ln: 1.2), then a new node
in G� is created along with projection edges and attribute
nodes in the way described before for relations of the ini-
tial subgraphs. The join edge e is inserted into G� provided
that it is not already there, it satisfies the constraints, and
its destination relation R j exists in G� already. (Note that in-
sertion of a relation may have failed due to the constraints.)
Afterwards, the edge in G� is annotated with the correspond-
ing subgraph id (Ln: 1.4). Moreover, we add the node R j
and the respective edge e into this subgraph. Finally, all join
edges starting from the node R j are added in QP provided
that they retain the subgraph with id s-id acyclic and they
satisfy the constraints (Ln: 1.6). The algorithm stops when
no other relations satisfying the constraints can be added in
graph G�. Hence, the logical subset schema graph G� pro-
duced consists of a set of expanded subgraphs. Nodes in G�

correspond to relations included in these subgraphs. Edges
in G� correspond to the constituent edges of the subgraphs.

Each relation and edge is annotated with the set of ids of the
subgraphs using it.

Example. Consider the initial subgraphs found for query
q2 (see also Figure 12). Recall that the constraint for their
expansion specifies that a new relation is significant for a
subgraph iff the weight of the path that connects this rela-
tion to every initial relation of the subgraph is equal to or
greater than 0.8. Observe that only the relation MOV IE may
connect with a new relation, i.e., PLAY , with respect to the
database graph depicted in Figure 3. (Expansion towards
other directions is not possible with respect to the specific
constraint considered; e.g., wM−D = wM−C = 0.7, or it has
already been done; e.g., towards GENRE.) As we have men-
tioned, it is sufficient to check if the weight of the path be-
tween the relation PLAY and the most distant initial relation
of each subgraph satisfies the constraint. The relation PLAY
is connected to MOV IE for all three subgraphs. Therefore,
the most distant initial relations from MOV IE, hence from
PLAY too, per subgraph are as follows:

initial most distant distance of
subgraph I.R. from M I.R. from M
D-M-G D 0.9
D-M-{G,{C,A}} A 0.7
A-C-M-G A 0.72

As the weight of the edge M-P equals to 0.9 (and fur-
ther, the same holds for the subsequent relation T HEAT ER
where wP−T =1.0), only the expansion of the first initial sub-
graph satisfies the constraint. Thus, the first subgraph is ex-
panded as follows: D-M-{G,{P,T}}, while the other two ini-
tial subgraphs remain intact.

Theorem 2. (Correctness) Given a query Q and constraints
C, EIS builds the set of expanded subgraphs for Q that satisfy
C.

Sketch of Proof. All possible solutions, i.e., all possible
expanded subgraphs contains an initial subgraph. Similarly
to FIS, the algorithm expands subgraphs by selecting in each
round the most significant move. So, following the same phi-
losophy as in the proof for Theorem 1, i.e., essentially com-
bining conditions (1) and (4), one can prove that the algo-
rithm constructs candidate expanded subgraphs in decreas-
ing order of weight as long as all constraints are satisfied. In
addition, to expand a subgraph by including a relation R j,
the algorithm checks whether or not R j is important (i.e.,
satisfies the constraints in C) for the most “distant” initial
relation in the subgraph C, i.e., the one whose path to R j has
the minimum weight among the paths from all other initial
relations. If this is the case, based on simple arithmetic, one
concludes that R j is significant for all initial relations in this
subgraph with respect to C. Consequently, for each initial
subgraph of Q, EIS builds the corresponding expanded sub-
graph subject to the constraints C. ��
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6 Logical Subset Population

Given a database D and the schema graph G� of the logi-
cal database subset L for a query Q and constraints C, this
phase is responsible for the population of L with tuples from
D following the query semantics. For this purpose, we first
describe a straightforward approach to logical subset popu-
lation (NaiveLSP). Then, we will elaborate on the particular
requirements and characteristics of the problem, and we will
present two algorithms: PLSP and LSP.

6.1 Naı̈ve approach

Consider a query Q =
�

i Xi. A logical subset schema graph
G� consists of a set of expanded subgraphs, each one of them
corresponding to some Xi. A straightforward approach to
logical subset population is to build for each subgraph an
appropriate query that retrieves tuples taking into account
the initial relations contained in this subgraph and the query
semantics. In particular, for each expanded subgraph corre-
sponding to some Xi in Q, a query is built that retrieves a sub-
set of tuples from D such that: ∀t j∈Rk,∀Rk belonging to this
subgraph, the following hold (based on the subgraph’s join
edges): if Xi contains only one term, then t j is an initial tuple
or transitively joins to an initial tuple; otherwise, t j transi-
tively joins to initial tuples containing all query terms not
contained in itself and it neither contains any negated terms
nor transitively joins to any tuple containing such terms.

This approach, called NaiveLSP, proceeds in the follow-
ing way. First, for each expanded subgraph on G�, an appro-
priate query is built. The inverted index is used for retrieval
of the id’s of initial tuples. When these queries are executed,
the results generated are used to populate each relation in
the logical database subset L. At this point, special care is
required so that duplicate tuples and tuples not satisfying
constraints are not inserted in the relations of the result.

While being straightforward and simple to implement,
this approach has several intricacies. First, we recall that for
a query Q =

�
i Xi, there may be more than one expanded sub-

graph corresponding to each Xi; hence, overall, for a query
there may exist multiple subgraphs. As a result, multiple
queries need to be assembled and executed. Furthermore,
for Xi involving negated terms, the corresponding query is
quite complex and expensive. In addition, relational queries
produce a single relation whose tuples are forced to contain
attributes from several relations. Additional effort is thus
required in order to transform these results into a logical
database subset. A side effect of that is the generation of
duplicate tuples, which need to be removed from the final
output. Duplicate tuples are generated both as result of SQL
semantics and also as a result of different queries.

The approach followed by NaiveLSP resembles those
used for the population of join trees in DBXplorer [2] and
candidate networks in DISCOVER [27]. It is actually an
adaptation of them to our problem properly augmented with
the additional functionality of splitting tuples returned from

each query to smaller tuples for populating the relations of
the logical subset. (For further details see subsection 2.1.1.)

6.2 Algorithm PLSP

In [38], an approach is used for the population of logical
subsets corresponding to single-term queries, which imple-
ments two simple yet effective ideas. The first one is generat-
ing the logical subset by a series of simple selection queries
without joins, each one populating a single relation in the
logical subset. In particular, initial tuples are retrieved first;
then, tuples from any other relation in L are retrieved based
on a list of values for the attribute that joins this relation
to the logical subset. In this way, this method overcomes
the problems of splitting tuples among multiple relations
and removing duplicates, which both arise when executing a
single query involving multiple relations, i.e., following the
NaiveLSP approach. Furthermore, if a relation in the logical
subset collects tuples that transitively join to more than one
initial relation, then the algorithm tries to collect them all,
before joining another relation to this one. This heuristic is
used in order to reduce the number of queries executed.

This approach works for single-term queries. We extend
the ideas described above for the population of logical sub-
sets corresponding to précis queries of the form described in
this paper. The algorithm PLSP (Figure 15) has the follow-
ing inputs: (a) the schema graph G� of the logical database
subset L, (b) the set SG of initial subgraphs corresponding to
a query and (c) constraints C for shaping the desired logical
subset. The algorithm proceeds in two steps in order to pro-
duce the logical subset L. First, it populates initial subgraphs
(Ln: 1). Then, more tuples are retrieved and inserted into L
by executing join queries starting from relations in the initial
subgraphs and transitively expanding on G� (Ln: 2). Since a
logical subset schema graph G� consists of a set of expanded
subgraphs, these subgraphs may share joins, which may be
executed multiple times. In order to reduce the number of
joins executed and to avoid creating duplicate tuples, a join
from Ri to R j is not executed until all subgraphs to which
this join belongs have populated Ri.

A logical subset schema graph G� consists of a set of
expanded subgraphs, each one of them corresponding to a
disjunct Xi in the query Q. Each relation and edge on G� is
annotated with the set of id’s of the subgraphs using it. First,
initial subgraphs on G� are populated in order of decreasing
weight, so that important subgraphs are populated first (Ln:
1). In case that an initial subgraph comprises a single rela-
tion, it is populated by simply retrieving initial tuples using
their tuple id’s retrieved from the inverted index. If an initial
subgraph corresponds to some Xi that contains a combina-
tion of terms using AND and/or NOT , then an appropriate
query is built and executed as in the NaiveLSP approach.

Each tuple retrieved, in this or subsequent steps, is an-
notated with the set of subgraph id’s that produce it. This
is a subset of the set of subgraph id’s (s-id�s) assigned to
the relation to which a tuple belongs and it is used in order
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Algorithm Progressive Logical Subset Population (PLSP)

Input: a logical subset schema graph G�(E�,V�), constraints,
a set of initial subgraphs SG

Output: a logical subset L
Begin

0. QP := {}
1. Foreach initial subgraph SG∈SG satisfying constraints {

1.1 execute query corresponding to SG
1.2 Foreach relation R j in SG {

1.2.1 populate relation R j with result tuples
1.2.2 annotate tuples in R j with matching id’s from s-id�s
1.2.3 {QP,G�} ← addinQP(R j ,G�,QP,constraints)

}}
2. While ( (QP not empty or ∃ joins in G� not fully executed)

and (constraints hold) ) {
2.1 If QP is not empty {

2.1.1 get head <e(x,R j),s-id�s> from QP, x∈V�

2.1.2 populate R j with ExeJoin(e,s-id�s,constraints)
2.1.3 annotate tuples in R j with matching id’s from s-id�s
2.1.4 {QP,G�} ← addinQP(R j ,G�,QP,constraints)
Else

2.1.5 populate R j with ExeJoin(most important
pending join e in G� with destination R j ,
s-id�s,constraints)

2.1.6 annotate tuples in R j with matching id’s from s-id�s
2.1.7 {QP,G�} ← addinQP(R j ,G�,QP,constraints)

}}
3. Return L as the G� populated with tuples
End

addinQP(relation R j , graph G�, list QP, constraints) {
Foreach join edge e(R j,x)∈E�, x∈V� {

mark those s-id’s of e that have already populated R j
If e has all s-id’s marked or due to constraints

{ add(QP,<e(R j,x),s-id�s>) }
}}

Fig. 15 Algorithm PLSP

to know in which joins a tuple will participate. Additionally
(Ln: 1.2.3), for each outgoing join edge from a relation R j
of an initial subgraph, the associated id’s of subgraphs that
have already populated R j are marked. The algorithm keeps
a list QP of joins that can be executed next in order of de-
creasing weight, along with the respective set of subgraphs
id’s for each join edge. An edge is inserted into QP provided
that all its id’s are marked. This means that its source rela-
tion contains all possible tuples based on the subgraphs it
belongs to; thus, this join may be executed.

Subsequently, a best-first traversal of the graph is per-
formed. In each round, the algorithm picks from QP the can-
didate join e with the highest weight and executes it (Ln:
2.1). Thus, the target relation R j of e is populated with new
tuples, which are annotated with the appropriate subgraphs
id’s. Also, R j’s outgoing join edges are marked in the way
described above. Edges with all their subgraph id’s marked
are inserted in QP and become candidate for execution.

A join from relation Ri to relation R j is executed as fol-
lows (function ExeJoin, Ln: 2.1.5). From Ri, only tuples an-
notated with id’s of subgraphs containing the respective join
edge are processed. We consider the set of all distinct joining
attribute values in these tuples. Then, tuples from R j contain-

Fig. 16 Example of a deadlock

ing any of these values in the corresponding joining attribute
are retrieved by executing an appropriate selection condition
on R j. Thus, we observe that a selection of tuples from R j is
performed instead of a real join of the two relations.

If QP gets empty and there are still joins in G� that have
not been executed, then a deadlock has been identified: two
(or more) joins cannot be executed because they wait for
each other to be executed. In order to resolve this situation,
the algorithm selects the join edge with the highest weight
and performs a partial join (Ln: 2.1.5). A partial join from
Ri to R j is performed considering tuples currently contained
in Ri. In this way, some new edges may be added to QP and
the algorithm continues its normal execution. More tuples
may be added to Ri as a result of executing subgraphs that
traverse this relation and have not been marked on the edge
yet. At any point, if a relation contains tuples for all sub-
graphs involving it, it is output, allowing for a progressive
construction of the logical database subset. The algorithm
stops if the constraints are violated or there are no join edges
to be executed.

Example. Figure 16 displays a deadlock. Assume that re-
lations R1, R2, R3 are initials. Edge R1→R2 is used by sub-
graphs R1→R2→R3 and R3→R1→R2. Subgraph R1→R2→R3
cannot use edge R1→R2 since R3→R1 is not executed yet.
The latter cannot be executed since subgraph R2→R3→R1
waits for R1→R2 to be executed. In this case, the algorithm
solves the deadlock by performing the partial join having
the highest weight, let’s say R1→R2. Then, the join R2→R3
is executed normally, since all subgraphs using it have pro-
duced tuples in R2. Join R3→R1 is executed next. Finally, the
partial join R1→R2 is executed for the tuples belonging to
subgraph R3→R1→R2.

Overall, algorithm PLSP involves two steps. Its advan-
tages lie in the second step, where it proceeds by populat-
ing one relation at a time and by exploiting commonalities
among subgraphs. The first characteristic allows the progres-
sive output of relations in the logical subset. This is useful
in scenarios where the logical subset is intended for use as a
separate new database. The second one aims at reducing the
number of queries executed. However, its first phase bears
the problems mentioned for NaiveLSP, since, essentially, it
populates initial subgraphs in the same way. Therefore, the
more an expanded subgraph and its constituent initial sub-
graph overlap, the more PLSP behaves like NaiveLSP and
the smaller benefit can be gained by its execution.
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Fig. 17 Example of PLSP execution
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Fig. 18 An example instance of the movie database shown in Figure 3

Example. In Section 5, we showed with a running ex-
ample how the schema of the logical subset concerning the
motivating question q2: “Clint Eastwood” AND “thriller”
is found w.r.t. the database graph depicted in Figure 3. That
logical subset contained three expanded subgraphs: SG1: A-
C-M-G, SG2: D-M-{G,{P,T}}, and SG3: D-M-{G,{C,A}}.
The subgraph SG2 has been expanded towards PLAY and
T HEAT RE, while the other two are essentially the initial
subgraphs because expansion has not taken place for them.
We build upon that example to demonstrate the functionality
of the population algorithms. Consider the instance of the
movie database depicted in Figure 18. Each relation con-
tains a number of tuples; e.g., MOV IE contains 10 tuples.
Also, the two keywords contained in q2: “Clint Eastwood”
and “thriller”, can be found in two relations: the first in one
tuple in relation DIRECTOR and the second in four tuples
in relation GENRE, respectively.

For the population of the three subgraphs, first, the al-
gorithm PLSP populates the initial subgraphs. Assume that
for the subgraph SG2 the population is realized as depicted
in Figure 17(a). Each outgoing edge from a relation belong-
ing to an initial subgraph is stored in the list QP; in our
example, the only such edge is the M-P for the subgraph SG2
(step 1 in the figure, line 1 of PLSP). Then, the population
of the expanded subgraph SG2 follows a best-first approach
by picking the edge with the highest weight; i.e., the edge
M-P. The relation PLAY is populated and the edge P-T is
added in the list QP (Figure 17(b), step 2). Finally, the re-
lation T HEAT RE is populated too (Figure 17(b), step 3). If
another subgraph contained the relation PLAY , then in the
step 3, the relation T HEAT RE would not have been pop-
ulated until PLAY was populated by all the subgraphs that
contain it. As we have discussed and we will demonstrate
in Section 7, this heuristic improves significantly the perfor-
mance of PLSP.

6.3 Algorithm LSP

The algorithm LSP is driven by two requirements. First, the
need to essentially overcome the relational query effect of
generating results of joining tuples that need to be decom-
posed in order to populate relations in the logical subset.
Second, the need to handle précis queries, and in particular
those containing the NOT operator, more efficiently.

The algorithm (Figure 20) takes as input the schema graph
G� of a subset L and processes expanded subgraphs in de-
creasing order of weight. Thus, most important information
will be generated first. The basic idea for populating an ex-
panded subgraph on G� is the following. The algorithm con-
siders initial relations in order of their estimated number of
tuples in the result. It retrieves the initial tuples of the small-
est initial relation, and it further populates other relations
with tuples that transitively join to these tuples. At the end
of this step, the logical subset contains a superset of its fi-
nal tuples. If the expanded subgraph corresponds to a single
query term, then these tuples are the ones contained in the
final logical subset. Otherwise, LSP examines the remaining
relations in order of their estimated size in the final logical
subset. For each initial relation, it marks all tuples in the
logical subset that are initial tuples of this relation or join
to them. At the end, the final logical subset consists only of
tuples that have been marked by all initial relations.

In order to estimate the number of tuples for a relation
in the result, standard statistics kept in the database are not
appropriate, since they take into account attribute values and
not words, which these values are composed of. For this pur-
pose, we keep information regarding the frequencies of the
words found in the database relations. The estimation of the
number of tuples for a relation in the result is performed by
taking into account (a) the fact that a query term may be
found in more than one attribute in a relation, (b) the fact
that more than one query term may be found in a relation,
and (c) the frequencies of word occurrences in a relation.

LSP proceeds as follows. Consider an expanded subgraph
S of G�. A list QP stores initial relations in S that contain
terms that are not negated in increasing order of the esti-
mated number of their tuples in the logical subset. In order
to populate an expanded subgraph S, the algorithm first pop-
ulates G� with the initial tuples of the smallest initial relation
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Fig. 19 Example of LSP execution

in QP (Ln: 1.3) along with all tuples that transitively join
to these initial tuples (Ln: 1.4). All these tuples are marked
with the id of the initial relation considered (Ln: 1.6). Then,
LSP proceeds with the rest of the initial relations in QP: For
each one of them, it marks its initial tuples found in G� (Ln:
1.8.2) as well as all other tuples joining to them (Ln: 1.8.3).
Consequently, each tuple stored in L is marked with a set of
initial relations for the subgraph S examined. The final tuples
are only those that have been marked by all initial relations
of the subgraph they belong to, apart from those containing
negated terms. Also, in this way, duplicates are not created.

Negated terms in a query, i.e., terms preceded with NOT ,
are treated as follows: when a tuple is found that contains
such a term, its set of initial relations is emptied and the
same happens to any tuple joining to it (Ln: 2). As a re-
sult, these tuples will not be finally output. In this way, LSP
avoids executing expensive queries in order to make sure
that tuples in L do not join to any tuples containing these
terms. One can anticipate that it is sufficient to not consider
the respective initial relations for the negated terms, in the
first place. However, due to the fact that the database graph
is connected, there is a necessity to include these relations
in the search to ensure that no tuple transitively related to a
tuple containing a negated term will be included in the log-
ical subset. Finally, when all initial relations of S have been
visited, LSP examines the next expanded subgraph.

Example. Consider again the example presented for the al-
gorithm PLSP. The instance of the movie database is de-
picted in Figure 18. The population of SG2 using the al-
gorithm LSP is realized as follows (Figure 19). First, all
the initial relations are added in QP in increasing order of
their estimated number of tuples in the logical subset. Using
the inverted index, we know that “Clint Eastwood” appears
only once in the relation DIRECTOR in the tuple tD

3 and
“thriller” appears four times in the relation GENRE in the
tuples tG

1 , tG
2 , tG

3 , and tG
8 . Therefore, an entry in QP is created

for each one of these two relations: < D,1 > and < G,4 >,
respectively. According to LSP, starting from the relation
DIRECTOR, we find all tuples from all relations that join
with the tuple tD

3 (step 1 in Figure 19(a)). Afterwards, we
continue with the next initial relation GENRE which is now
the head of the list QP. The tuples of GENRE that join with

Algorithm Logical Subset Population (LSP)

Input: a logical subset schema graph G�(E�,V�), constraints
Output: a logical subset L
Begin

0. QP := {}
1. Foreach expanded subgraph S of G� satisfying constraints{

1.1 add in QP all Ri∈IRS in increasing order of
their estimated number of tuples in L

1.2 pick head of QP, i.e., the smallest Ri
1.3 populate G� with the initial tuples of Ri
1.4 populate G� with tuples that join to the initial tuples in Ri
1.5 mark Ri in G�

1.6 mark all tuples in G� with Ri-id
1.7 re-estimate numbers of tuples in L and sort QP
1.8 While QP not empty {

1.8.1 pick head Ri of QP
1.8.2 mark with Ri-id the initial tuples of Ri already in G�

1.8.3 mark joining tuples in G� with Ri-id
1.8.4 re-estimate numbers of tuples in L and sort QP

}}
2. unmark all tuples in G� with a negated term or joining to such tuples
3. Remove from G� the tuples that are not marked with the id’s of all

Ri∈IRS of a specific expanded subgraph S
4. Return L as the G� populated with tuples
End

Fig. 20 Algorithm LSP

those already in the logical subset are marked, i.e., are kept,
while the rest tuples are filtered out (step 2 in Figure 19(b)).
Then, the list QP empties and the algorithm terminates.

6.4 Cardinality of Logical Database Subsets

Our framework provides a mechanism for data exploration
and information discovery for all types of users either they
expect a logical subset with all relevant information or a cer-
tain portion of it. Our algorithms are in fact independent of
the weights and constraints used. If constraints are general
enough or even if they do not exist at all, then the logical
subset contains all relevant information to the initial query.
For example, in this case, the answer to the question: “Clint
Eastwood” AND “thriller”, would contain the intersection
of all information associated with these two query terms.
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On the other hand, if the constraints are more restrictive to
the expansion of the logical subset, then the logical subset
contains only a fraction of relevant information. In the latter
case, a challenge arises: how many and which tuples from
each relation to include in the logical database subset.

Although we left this issue for future work, a few sugges-
tions can be made. The first suggests random population of
the logical subset. Consider the following policy: populate
relations in decreasing order of weight; i.e., the relation with
higher weight is populated first, then the next one, and so
on, until the constraints are satisfied. However, this may re-
sult in a database schema with some empty relations. Instead
of overspending all resources to relations with high weight,
a more conservative approach could be: populate relations
with high weights with some tuples, continue with next rela-
tions, then populate the former relations again, and so forth.
This procedure may be realized in a random fashion, but it
should be biased in favor of relations with higher weight and
relations that are expected to have greater cardinality due to
their participation in 1:N or N:M relationships, i.e., these
should contain more tuples than the others. We note that the
problem of assigning an appropriate weight formula to the
relations of a database has already been studied in literature
(see Section 2).

Another approach could be to include the most relevant
information from each relation in the logical subset. One
may consider that each relation has a dominant attribute that
characterizes its importance and allows the ranking of the
tuples contained in the relation. For instance, in Figure 3, re-
lation MOV IE may have BOXOFF as such an attribute, in
the sense that movies that sold more tickets are more impor-
tant than the others; while ACTORS and DIRECTORS may
have the NOMINAT attribute that keeps track of the nomi-
nations of an artist. Related literature has already presented
results in this field: the Split-Pane approach could be used to
return the top attributes for each relation [14]. Another dis-
crimination criterion among relations is their weight. Thus,
a combination of these two: (a) ordering of tuples in a rela-
tion, and (b) the weight of the relation, gives a global ranking
criterion for tuples.

Whichever policy is selected, from either the aforemen-
tioned suggestions or the related work (see section 2), it may
be incorporated to our approach.

7 Experiments

7.1 Implementation

We have developed a prototype system in C++ on top of
Oracle 9i release 2. Experiments were performed on a Pen-
tium IV 3GHz machine with 512MB of main memory. Our
database is stored on a local (7200RPM) disk, and the ma-
chine has been otherwise unloaded during each experiment.

The mechanism of inverted index is implemented in Or-
acle PLSQL. There are some details on its implementation
we would like to emphasize. We consider attribute values in

the database that can be decomposed into separate words. A
single word is an alphanumeric expression, which may rep-
resent age, name, date and so forth. A word may be found
in more than one tuple or attribute of a single relation and in
more than one relation. For this reason, the system uses an
inverted index that stores for each word k in D, a list of all
its occurrences. A single word occurrence is a tuple < R j,
A j

l , Tid j
l >, where Tid j

l is the id of a tuple in relation R j that
contains word k as part of the value of attribute A j

l .
Instead of storing all these tuples in a single structure,

we use two structures for storing such information in a com-
pact form. In particular, for each word found in an attribute
value in the database, we store a bit vector, in which the
jth element corresponds to the jth relation of the database.
An element in a bit vector may be set to 0, showing that
the corresponding relation does not contain any occurrence
of this word, or to 1, showing that it contains at least one
occurrence. This structure is used during the Query Parsing
phase for efficiently retrieving the set of initial relations for
a query. For each pair < k,R j > in this structure, properly
identified based on a hashing scheme, a separate structure
keeps information about the initial tuples of R j that involve
k, in the form of a list (A j

l , Tid j
l ’s), where Tid j

l ’s are the id’s
of the tuples in which attribute A j

l contains the word k. This
structure is used during the logical subset population phase
for retrieving initial tuples.

Example. Consider the query q2 provided in the motivating
example of Section 3.3: “Clint Eastwood” AND “thriller”.
For this query, the first structure of the inverted index re-
turns the following information indicating the initial rela-
tions. (For simplicity, relations in the database are repre-
sented by their initial letters.)

A C D G M P T
“clint” = 1 1 1 0 0 0 0
“eastwood” = 1 0 1 0 0 0 0
“thriller” = 0 0 0 1 0 0 0

Observe that the term “Clint Eastwood” is a phrase and
it can be split into two words that may be found in dif-
ferent relations. In order to determine the appropriate ini-
tial relations for this query term, the query parsing phase
first combines the two index values into their logical sum-
mary (1010000). This summary shows which initial rela-
tions contain both words. Then, the second index structure
is consulted in order to determine if the relations indicated
from the first structure (ACTOR and DIRECTOR) contain
at least one tuple that involves both words in the same at-
tribute value; i.e., the whole phrase “Clint Eastwood”. (In-
dex values are case-insensitive.) The second structure shows
for each word in an initial relation in which attribute and
row id is located. (Multiple index values exist for multiple
occurrences of the same word.)

Word Relation Attribute RowID
↓ ↓ ↓ ↓

<thriller, Genre> = <Genre, AAAFd1...BSAA>
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Query characteristics and constraints
width(Q) number of disjuncts in Q
span(Q) maximum number of conjuncts in a disjunct of Q
C minimum path weight in the logical subset
Logical subset characteristics
#S number of subgraphs
#RS number of relations per subgraph
#IRS number of initial relations per subgraph
#TLS number of tuples in logical subset
Database characteristics
#DB database size

Table 1 Notation for the experiments

7.2 Experimental Framework

For the experiments, we have used synthetic data and real-
world data: movie data from IMDB (www.imdb.com) and
restaurant data (www.gastronomia.gr). The movie database
consists of a small number of relations with a large num-
ber of tuples per relation, and the restaurant database stores
a large number of relations, each one of them having rel-
atively few tuples. We conducted experiments to evaluate
the efficiency of our algorithms for the creation of logical
database subsets under several modifications of the parame-
ters involved. These parameters are described below.

A logical subset is determined based on a précis query
Q and constraints C. We consider that a query Q =

�
i Xi is

characterized by two parameters:

– width(Q) that is the number of disjuncts in Q, and
– span(Q) that is the maximum number of conjuncts in a

disjunct of Q.

Namely, if: Q = X1
�

. . .
�

Xm and Xi = qi,1
�

. . .
�

qi,ki ,
then width(Q) = m and span(Q) = max{k1, . . .km}.

In order to illustrate the effect of constraints, we con-
sider a relevance constraint C that represents the minimum
path weight allowed in the logical subset. Furthermore, we
consider the following parameters that denote the character-
istics of the logical subset:

– the number of subgraphs (#S ) that comprise a logical
database subset

– the number of relations per subgraph (#RS )
– the number of initial relations per subgraph (#IRS )
– the number of tuples in the logical subset (#TLS ).

The notation used for these parameters is shown in Table
1. In the following subsections, we describe the experimen-
tal results of our evaluation. First, we study the effect of the
query characteristics, weights, and constraints on the logical
database subset (Section 7.3.) This study enables us to un-
derstand better how the algorithms for the generation of log-
ical database subsets are affected by these parameters (Sec-
tion 7.4.) In particular, we can address questions, such as:
Why algorithms display some particular behavior? Which
changes in the logical subset characteristics affect most each
algorithm? How well algorithms behave and adapt to such
changes?

7.3 Logical Subset Characteristics

Effect of query characteristics. Figure 21 illustrates the
effect of width(Q) and span(Q) on the logical subset pro-
duced. Each result shown represents the average of 100 dif-
ferent experiment runs (100 queries with constraints) with
the same configuration. For these experiments, we generated
a random set of weights for the edges of the database schema
graph. Based on these weights, we chose the constraint C to
be equal to 0.3, so that a large part of the database schema
graph could be explored and logical subsets with different
characteristics could be generated. Figure 21 shows the im-
pact of width(Q) and span(Q) on #IRS , #S , and #TLS .
For the selected constraints, the number #RS of relations
per subgraph is not determined by the query characteristics,
therefore, we do not plot the corresponding results, as these
are not interesting.

Figure 21(a) presents the number #IRS of initial rela-
tions per subgraph as a function of span(Q), if width(Q)=1.
#IRS increases with the number of query terms but, inter-
estingly, it is not equal to it. It is possible that a query term
is found in more than one initial relation. In this case, the
algorithms may build subgraphs that contain more than one
initial relation per query term. For example, for a query that
is a conjunction of three terms, i.e., span(Q) = 3, there may
be subgraphs that contain 4 initial relations. On the other
hand, #IRS does not depend on width(Q), and that is also
confirmed by the results in Figure 21(b).

Figure 21(c), which shows the effect of varying span(Q)
on #S for width(Q)=1, can be analyzed based on the ob-
servations we made above. Since more than one initial re-
lation may be found for the same query term, this gives the
opportunity to search for an increasingly larger number of
subgraphs on the database schema graph based on the possi-
ble combinations of initial relations that contain all query
keywords at least once. Consequently, the number #S of
subgraphs that are actually found increases with span(Q).
Furthermore, Figure 21(d) shows that #S is a multiple of
width(Q), which is expected.

Figure 21(e) shows that the number of tuples in the log-
ical subset decreases for varying span(Q) and width(Q)=1,
as expected due to query semantics. On the other hand, Fig-
ure 21(f) shows that #TLS increases for varying width(Q)
and span(Q)=1. One might expect that for width(Q) > 1,
#TLS would be a multiple of #TLS for width(Q) = 1. How-
ever, this does not hold because, as the number of subgraphs
increases with width(Q), more duplicate tuples may be found
in different subgraphs; these are inserted only once in the
logical subset.

Effect of constraints and weights. Figure 22 illustrates how
constraints and different sets of weights on the database graph
shape the logical database subset. In order to evaluate the
effect of the latter, we considered two scenarios: one where
the database relations are strongly connected, and one where
they are relatively loosely connected. For simulating the first
scenario, we generated a random set of weights (Set 1) with
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Fig. 21 Impact of query characteristics on the logical database subset

the constraint that the minimum edge weight should be 0.85,
while for the second scenario, we generated a set of weights
(Set 2) with the requirement that the minimum edge weight
should be 0.6. Note that we could have used other constraints,
such as the maximum or the average edge weight, for gener-
ating sets of weights with the properties desired, i.e., one that
would make database relations more strongly connected and
one that would more loosely connect relations. However, our
observations would not be significantly different.

Figure 22 shows the impact of the constraint C on #S ,
#RS , and #IRS for C ranging from 0.1 to 1.0 and for the two
sets of weights. Each result shown represents the average of
100 queries with width(Q) = 1 and span(Q) = 4.

A general observation based on this figure is that differ-
ent constraints enable the construction of different logical
subsets for the same queries. In order to understand better
the figure, we have to read the values of x-axis from the
higher to the lower ones, that is, start with the stricter con-
straints and move down to the looser ones. We observe that
all curves are similar and can be divided into three parts.

A very strict constraint, w.r.t. the weights considered,
generates no logical subset and it is considered cold. As we
make the constraint less strict, we find an increasing number
of subgraphs (Figure 22(a)), of increasing size, i.e., they in-
clude more relations (Figure 22(b)), and of increasing com-
plexity, i.e., they may contain more than one initial relation
per query keyword (Figure 22(c)). Therefore, the constraint
has become active. The discovery of new subgraphs con-
tinues up to a certain point. Then, all subgraphs have been
found for every valid combination of initial relations based
on the database schema and they have been fully expanded.
Relaxing even more the constraint has no effect on the logi-
cal subset. It is an inactive constraint.

For which interval of values a constraint is cold, how
quickly it gets inactive, and in what degree it affects the log-
ical subset, these are issues determined by the weights on the
database schema graph. For instance, in Figure 22(a), we ob-
serve that, in the case of a database graph with high weights
(e.g., Set 1), relatively strict constraints (in this case, with a
threshold value close to 0.9) can be active. Moreover, since
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Fig. 22 Impact of constraints and weights on the logical subset

all join edges have large weights, relaxing the constraints
quickly leads to generating all possible subgraphs extended
to their full size (17 relations based on the database used
in this series of experiments). Hence, constraints on such
graphs become very soon inactive. On the other hand, strict
constraints on graphs with lower weights, as in the case of
Set 2, may be cold, and small changes in the constraint may
not produce radical changes in the shape of the logical sub-
set. Finally, we observe that using a set of weights, such as
Set 2, allows exploring the database to a smaller extent than
when using a set of high weights, such as Set 1. For instance,
in Figure 22(b), we observe that different subgraphs are built
based on the same constraints but different weights.

Overall, different sets of weights determine at which depth,
in terms of relations examined, and with how much effort in
terms of the constraints that need to be crafted, a user can
look into the contents of a database with a single précis query.

7.4 Evaluation of Algorithms

In this subsection, we discuss experimental results on the
execution times of the algorithms for the creation and pop-
ulation of logical subsets. Our algorithms are comparable to
some extent to DISCOVER [25,27] and DBXplorer [2], as
we have seen in Section 2. Considering the answer genera-
tion problem at a more abstract level, our approach can be
also compared with the Backward Expanding strategy used
in BANKS [5] to a certain extent. In the subsequent dis-
cussion on algorithms’ performance, we only refer to these
comparable approaches. In the experiments, no constraints

are assumed on the number of tuples in the logical subset,
and each result shown represents the average of 100 differ-
ent experiment runs (100 queries with constraints) with the
same configuration. Times are shown in seconds.

LS Schema Creation. The first phase of the logical subset
schema generation algorithm, FIS, is responsible for the ini-
tial subgraph creation, and corresponds to the candidate net-
work generation in DISCOVER and DBXplorer. However,
FIS is based on a best-first traversal of the database schema
graph, which is more efficient and generates subgraphs in
order of weight compared to the breadth-first traversal per-
formed in candidate network generation. The FIS algorithm
and the Backward Expanding strategy used in BANKS as-
sume a different answer model. Overall, FIS fits our answer
model better, and, in addition, it progressively builds sub-
graphs in decreasing order of weight, whereas the Backward
Expanding strategy builds only trees in random order.

Figure 23 shows the impact of query characteristics and
the database size on the performance of the algorithm LSSC.
For these experiments, we used a random set of weights for
the edges of the database schema graph and we set the con-
straint C to be equal to 0.3, as described in the previous sub-
section for the corresponding experiments regarding the ef-
fect of query characteristics on the logical database subset.

Figure 23a shows execution times for varying width(Q)
and span(Q)=2. Figure 23b presents execution times for vary-
ing span(Q) and width(Q)=1. We observe that LSSC is af-
fected by changes in query characteristics but, overall, it ex-
hibits good performance. Its behavior can be explained tak-
ing into account how different query characteristics lead to
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Fig. 23 Impact of query characteristics and database size on the efficiency of logical subset creation

Fig. 24 Impact of constraints and weights on the efficiency of logical subset creation

the generation of different logical subsets, as shown in Sec-
tion 7.3. In particular, Figure 21 shows that larger and more
complex queries, i.e., of increasing span(Q) and width(Q),
mostly affect the number #S of subgraphs in a logical sub-
set. Consequently, the performance of LSSC is mainly deter-
mined by #S.

LSSC’s performance has been also tested when the algo-
rithm is used for constructing larger subgraphs. Experimen-
tal results are shown in Figures 23c and 23d. For these exper-
iments, we generated random synthetic graphs representing
database schema graphs with varying number #DB of nodes
mapping to relations. Figure 23c shows the behavior of al-
gorithm LSSC for #DB ranging from 10 to 100 relations.
As defaults, we have used width(Q)=1 and span(Q)=4. We
observe that LSSC is quite efficient even for large database
graphs. Figure 23d depicts execution times for span(Q) rang-
ing from 1 to 10, width(Q)=1, and for two databases com-
prising 20 and 30 relations, respectively. In both cases, the
algorithm is very efficient.

Finally, Figure 24 illustrates how constraints and differ-
ent sets of weights on the database graph affect the execu-
tion times of LSSC. We use the same sets, Set 1 and Set 2, as
in the previous subsection. Each result shown represents the
average of 100 queries with width(Q) = 1 and span(Q) = 4.
In the case of modifying the constraints for determining the
shape of the logical subset desired, execution times are not
affected only by #S . As Figure 22(b) depicts, changing con-
straints has a great impact on the number #RS of relations
per subgraph. This explains the shapes of the curves in Fig-
ure 24 and also the gap between them, which is due to the
fact that using Set 1 enables expanding subgraphs more and,
in effect, examining more database relations. Consequently,
when changing the weights and constraints that determine
the logical database schema, LSSC is mostly affected by the
change (increase or decrease) in the number of relations
comprising the logical database schema.

LS Population. The population algorithms proposed in DIS-
COVER [27] and DBXplorer [2] as well as the naı̈ve of
[25] follow essentially the same strategy: They execute one
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Fig. 25 Impact of query characteristics on the efficiency of logical subset population

query per candidate network. We have adopted the same
strategy into our naı̈ve algorithm (NaiveLSP) and we com-
pare it to the algorithms PLSP and LSP. The only difference
of NaiveLSP from the naı̈ve algorithms used in the afore-
mentioned systems is that it needs to perform one additional
step for splitting results among the relations contained in the
logical subset. The additional algorithms proposed in [25], if
adapted to our problem, they can only be as good as the naı̈ve
one. The Sparse turns into the naı̈ve algorithm (see Section
2). The Global Pipelined algorithm uses nested-loops joins,
and when used for fully evaluating all candidate networks
(or initial subgraphs in our case) is more expensive than
the naı̈ve approach [25]. Finally, the Hybrid uses one of the
other two depending on the estimated answer size.

Figure 25 shows the impact of query characteristics on
the performance of the algorithms NaiveLSP, PLSP and LSP
for the population of logical subsets. For these experiments,
we used a random set of weights for the edges of the database
schema graph and we set the constraint C to be equal to 0.3
(if not stated otherwise). Figures 25a, 25b and 25c show ex-
ecution times for queries that do not contain operator NOT ,
while Figures 25d refers to queries with negated terms.

Figure 25a shows times as a function of width(Q) with
span(Q)=2. In order to explain the algorithms’ behavior, re-
call from the previous subsection that increasing width(Q)
results in increasing #S and #TLS . This has a negative im-
pact on the performance of all algorithms. NaiveLSP’s un-
satisfactory performance is primarily due to the fact that
#S queries are executed: each one of them returns a single
relation, which contains tuples and attributes from multiple
relations. Its tuples need to be decomposed into smaller ones
for populating each relation in the logical subset. Hence,

NaiveLSP also spends a considerable amount of time for
sharing tuples across relations in the logical subset. More-
over, due to the existence of joins and SQL semantics, each
query creates duplicates, which must be removed from the
final relations. Also, as width(Q) increases, the number of
tuples processed by the algorithm NaiveLSP increases; thus,
more duplicates may be created as the result of execution
of different queries. On the other hand, PLSP involves two
steps. In the first step, it uses the same approach as NaiveLSP
in order to populate relations belonging to initial subgraphs.
So, its first step may be time consuming depending on the
size of initial subgraphs. In the second step, the algorithm
executes a set of selection queries, each one directly popu-
lating one relation in the logical subset. Also, by exploiting
commonalities among subgraphs, it manages to reduce the
number of queries executed. The above explain why this al-
gorithm demonstrates a better behavior compared to NaiveLSP.
Moreover, as width(Q) increases, #S inevitably increases,
hence, PLSP processes more subgraphs with an increased
probability that more commonalities between them are found.
This is the reason why, in Figure 25a, we observe that the
gradient of the curve corresponding to PLSP’s times, slightly
decreases as width(Q) increases. Finally, LSP behaves well
with respect to changes in width(Q) because it first popu-
lates the smallest, in terms of tuples that match a query term,
initial relation and then each one of the remaining relations
in the logical subset. Then, it progressively marks the tuples
that should remain in the final logical subset. In this way,
it completely avoids the time-consuming steps of compos-
ing and decomposing complex tuples. It also avoids many
duplicates that may be created from complex queries due to
the SQL semantics.
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Fig. 26 Progressive behavior of LSP

Figure 25b depicts execution times for varying span(Q)
and width(Q)=1. Increasing span(Q) affects #S , #IRS , and
#TLS . Execution times decrease due to the rapid decrease
in #TLS , as shown in Figure 21(e). Initially, PLSP exhibits
a better behavior than NaiveLSP, which is explained by the
fact that it executes a set of selection queries each one di-
rectly populating the respective relation in the logical sub-
set. However, with span(Q) growing, each initial subgraph
tends to grow to the size of the respective expanded one and
#IRS tends to reach #RS . This has a great impact on PLSP’s
performance, because it means that its first step, which is
the time consuming one, dominates, while the second one
shrinks. For this reason, execution times of PLSP and NaiveLSP
converge as shown in the figure. On the other hand, LSP’s
execution times are shaped by the cost of retrieving initial
tuples for the initial relation populated first. Then, it progres-
sively processes tuples that will remain in the final logical
subset. Duplicates and tuples not satisfying query semantics
are efficiently discarded. In particular, for span(Q)=1, i.e.,
for a query that is a disjunction of terms, we observe that
LSP and PLSP coincide, which explains why they exhibit the
same execution times at this point in the figure. Also, with
increasing span(Q), #TLS falls radically making the differ-
ences in execution times of the algorithms less pronounced.

Figure 25c presents results of a slightly different experi-
ment. For this experiment, we used the number #RS of rela-
tions per subgraph as the constraint C, and we measured exe-
cution times as a function of #RS for queries that are charac-
terized by width(Q)=1 and span(Q)=2. Increasing #RS means
that more tuples will be processed. This explains why the
performance of all algorithms deteriorates. NaiveLSP exe-
cutes more complex queries, which tend to generate more

duplicate tuples, due to the SQL semantics, which the algo-
rithm has to remove from the logical subset. Moreover, it
spends more time for sharing tuples when there are more re-
lations in the logical subset. PLSP performs better, because
it executes simple selection queries. LSP’s times increase
smoothly with respect to #RS , because LSP tuple processing
is more lightweight as we have already explained in previous
paragraphs.

Figure 25d shows execution times for précis queries that
contain zero up to 4 negated terms (operator NOT ) and are
characterized by width(Q)=4 and span(Q)=2. Thus, we con-
sider queries that contain four disjuncts, each one of them
containing two terms, with one of them possibly negated.
We observe that NaiveLSP and PLSP are greatly affected by
the number of negated terms in the query. They both execute
a set of queries for logical subset population, each one of
them generating results that satisfy one of the disjuncts. If a
disjunct contains a negated term, then the respective queries
are quite complex and time consuming to execute. Also, ex-
periments have shown that such queries typically produce
large result sets. All the above contribute to the unsatisfac-
tory performance of the two algorithms. On the other hand,
LSP’s times increase smoothly with respect to the number
of negated terms in a query. The reason is that it does not
execute complex queries. Instead, undesirable tuples, such
as tuples that were initially brought in the logical subset but
contain negated terms, are marked along with their joining
tuples, so that they are not presented in the final answer.

Overall, LSP is the most efficient among the three log-
ical subset population algorithms. NaiveLSP presents the
worst performance due to the number of complex queries
that executes in order to retrieve tuples and due to the post-
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Fig. 27 Impact of constraints and weights on the efficiency of LSP
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Fig. 28 Overall performance

processing of the results returned from these queries in or-
der to populate the relations of the logical subset. PLSP can
avoid some fraction of this post-processing and it can also
take advantage of commonalities among different subgraphs
to decrease the number of queries executed. LSP behaves
well mainly because it completely avoids the time-consuming
steps of composing and decomposing complex tuples as well
as many duplicates that may be generated by complex queries
due to the SQL semantics. LSP is characterized by another
nice feature: it can progressively generate results correspond-
ing to different interpretations of a query. Recall that an in-
terpretation maps to a subgraph constructed for the query.
More than one subgraph may be built for the same query,
as Figures 23a and 23d depict. Figure 26 shows the times
for populating the first subgraph (LSPFirst) as a function of
width(Q) with span(Q)=2 (Figure 26a) and as a function of
span(Q) and width(Q)=1 (Figure 26b).

Figure 27 illustrates how constraints and different sets of
weights on the database graph affect the execution times of
LSP. We use again the sets Set 1 and Set 2. Each result shown
represents the average of 100 queries with width(Q) = 1 and
span(Q) = 4. As we have seen in Figures 22(a) and 22(b),
changing the constraints affects the number #S of subgraphs
and the number #RS of relations per subgraph in the logical
subset. This explains the shapes of the curves in Figure 27.
An implicit consequence of the effect on #S and #RS is that
the number #TLS of tuples processed also changes. The im-
pact of processing a different number of tuples is also visible
in the distance between the two curves that correspond to the
different sets of weights. Set 1 enables expanding subgraphs

more and, in effect, examining more database relations, thus
more tuples.

Overall Performance. In this subsection, we present some
representative experiments regarding the overall performance
of our approach. Figure 28a shows times as a function of
width(Q) and span(Q)=2. We observe that the logical sub-
set population phase, i.e., algorithm LSP, shapes total execu-
tion times. Figure 28b presents execution times for varying
span(Q) and width(Q)=1. We observe that total execution
time decreases with span(Q) increasing.

Thus, width(Q) has a negative effect on overall perfor-
mance. However, we recall that no constraints have been
assumed on the number of tuples in the logical subset in
any experiment. This number determines the performance
of algorithm LSP. Consulting Figure 21c, we see that as
width(Q) increases, LSP processes an increasingly larger
number of tuples. Based on that, its performance is satis-
factory. In web applications, constraints on the number of
tuples will be probably used resulting in faster execution of
LSP. Furthermore, another advantage of LSP is that it can
progressively output results for different interpretations of a
précis query as Figure 26 illustrates.

7.5 User Evaluation

The effectiveness of our approach was evaluated from 14
users with a good knowledge of SQL language and databases.
The dataset used was the IMDB database1. Users were pro-

1 www.imdb.com
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vided with a list of 30 topics containing keywords from the
inverted index, with the goal of finding information related
to these topics. They chose 10 out of these topics to use in
their search. Experiments consisted of two phases. In the
first phase, users formulated and executed their own SQL
queries. In the second phase, they repeated their search for
the same topics using précis queries.

As expected, the total time they spent to think, write, and
execute the query in the first phase is substantially greater
than the respective time spent using our approach. However,
it is of great interest to illustrate the difference between the
times in each phase, that users spent to evaluate the results of
the queries until they considered that they learned adequate
information about each topic. Figure 29a depicts this differ-
ence in average times: using our approach (curve T 2) they
gained time in an approximate factor of 2.3. In both phases,
users rated their effort and satisfaction in an increasing scale
of satisfaction between [0,10]. Figure 29b presents the aver-
age results of the users’ evaluation for: SQL before (S1) and
after (S2) they used précis queries, and for précis queries
(S3). Interestingly, not only did they prefer our approach
better, but they lowered their grades for the usual practice.
The dominant reasons for this behavior as reported by the
users are: the easiness of query formulation offered by the
précis framework in combination with the richness and im-
proved insight offered by the answers, as well as serendipity
of results.

8 Discussion

In this section, we briefly discuss two issues that are re-
lated to the overall evaluation of our approach: how cycles in
query subgraphs may affect the creation of a logical subset
and how homonyms and synonyms may affect the semantics
of a précis query.

Cycles. Currently, we consider subgraphs that contain
no cycles. In general, cycles have termination problems and
may arise under different circumstances. For instance:

– The edges between two relations corresponding to the
same join are both integrated into a path, e.g., the two
join edges that connect relations MOV IE and DIRECTOR
in Figure 3.

Fig. 30 Parallel join edges

– Two relations are connected through more than one join,
e.g., the relations EMPLOY EE and DEPT depicted in
the example of Figure 30.

Clearly, generation of logical database subsets is not lim-
ited by the existence of cycles. As far as the creation of the
schema of a logical subset is concerned, a cycle may be con-
sidered only once in the schema with the use of a mechanism
for cycles detection, e.g., an appropriate flag. The challenge
is in the population of the logical subset. In this case, there
is a termination problem that can be resolved either by using
an appropriate threshold according to a respective constraint
or user need, or by taking into consideration the value of
weights, such as the weight of the path that connects a cer-
tain tuple with an initial tuple (or tuples).

For example, Figure 31 represents a population scenario
for the logical subset depicted in Figure 30 that contains a
cycle between relations EMPLOY EE and DEPT . Assume
that the population of the logical subset is performed based
on a constraint that a tuple should be included into the log-
ical subset if the weight of the path that connects this tuple
with an initial one is no less than 0.9. Consider that multipli-
cation is used to estimate the weight of a path between two
tuples, in a sense similar to the weight of a path connect-
ing two nodes presented in section 3.1. If we consider that
tuple tE

1 belonging to the EMPLOY EE relation is an initial
tuple, then it is valid to include tuples from the DEPT rela-
tion too, e.g., tD

1 , because the weight of the path connecting
it with the initial relation EMPLOY EE is 0.9. Next, there
are two options: (i) due to the cycle, to include new tuples
from the EMPLOY EE, e.g., tE

2 , connected with tD
1 (weight

= 0.9∗1) or (ii) to include tuples from relation SALES, e.g.,
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Fig. 31 Example population of LS containing cycles

tS
1 , connected with tD

1 (weight = 0.9 ∗1). Thus, the situation
depicted in Figure 31b is valid. The termination problem
has been resolved because it is not possible to include any
more tuples from relation DEPT for the second time, be-
cause then the respective weight equals to 0.9 ∗ 1 ∗ 0.9<0.9
(Figure 31a).

The constraints used in our approach can be extended to
cover the existence of cycles in the logical subsets, for ex-
ample specifying a constraint on the number of cycles in a
path or on the number of tuples contained in relations com-
prising a cycle, that are included in the logical subset. For
instance, in Figure 30, if the weight of the join edge from
EMPLOY EE to DEPT equals to 1, instead of 0.9, then there
is a need for a constraint to determine the number of tuples
contained in this cycle that should be included in the logical
subset.

Nevertheless, cycles do not limit the applicability of our
approach presented before. It is an orthogonal technical prob-
lem that requires more detailed constraints.

Homonyms and synonyms. In the movie database exam-
ple used throughout the document, “Clint Eastwood” can be
found in two different relations: ACTOR and DIRECTOR. It
is straightforward to assume that the value “Clint Eastwood”
refers to the same physical entity. In general, there exist sev-
eral semantic problems that complicate the whole process.

It is possible that a single value may be used to repre-
sent different objects (homonyms); e.g., “Clint Eastwood”
could correspond to two different persons, or different val-
ues may be used for the same object (synonyms); e.g., “C.
Eastwood” and “Clint Eastwood” corresponding to the same
person. To tackle the former problem, in the absence of any
additional knowledge stored in the system, we may return
multiple answers, one for each homonym, or obtain addi-
tional information through interaction with the user. For the
latter problem, there exist approaches for cleaning and ho-
mogenizing string data, such as addresses, names, acronyms,
and so forth [16,52]. Both these problems, however, are or-
thogonal to answering précis queries and, hence, are out of
the scope of this paper.

9 Conclusions

The need for facilitating access to information stored in data-
bases has not been a new one for the research community,
but it has been amplified by the emergence of the World

Wide Web. Existing approaches have either focused on facil-
itating users to formulate their information needs as queries
or deriving meaningful answers from the underlying data.

In our earlier work, we have proposed précis queries,
a uniform query answering approach to tackle both issues
[38,53]. These are free-form queries that have structured
answers. The answer to a précis query is an entire multi-
relation database, a logical subset of an existing one. In this
paper, building upon our earlier work, we have described
a generalized framework for précis queries with multiple
terms combined with the logical operators AND, OR, and
NOT , and we have formally defined the answer to such queries
as a logical database subset. We presented algorithms that
efficiently and correctly generate logical subsets. Their per-
formance was evaluated and comparison with prior work ex-
hibited their superiority. Finally, we presented experimental
results providing insight so as to the effectiveness of the ap-
proach.

One interesting direction for future work is the selec-
tion of tuples to include in a logical subset under constraints
on its size. Incorporation of notions of tuple ranking in our
approach and appropriate coupling techniques are currently
investigated. Another interesting problem is the incorpora-
tion of the logical subset into the internals of an open source
RDBMS such as POSTGRES, and the possible extension of
SQL language to support it. Finally, an open and challenging
research direction is the application of the notion of logical
subsets in different contexts from relational databases.
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queries for logical database subset creation. In: ICDE (2007)

56. Tao, Y., Hristidis, V., Papadias, D., Papakonstantinou, Y.: Branch-
and-bound processing of ranked queries. Inf. Syst., to appear
(2006)

57. Tsaparas, P., Palpanas, T., Kotidis, Y., Koudas, N., Srivastava, D.:
Ranked join indices. In: ICDE, pp. 277–290 (2003)

58. Wang, Q., Nass, C., Hu, J.: Natural language query vs. keyword
search: Effects of task complexity on search performance, partic-
ipant perceptions, and preferences. In: INTERACT, pp. 106–116
(2005)

59. Wang, S., Zhang, K.: Searching databases with keywords. J. Com-
put. Sci. Technol. 20(1), 55–62 (2005)


