
FACeTOR: Cost-Driven Exploration of Faceted Query Results

ABSTRACT
Faceted navigation is being increasingly employed as an effective

technique for exploring large query results on structured

databases. This technique of mitigating the information overload

problem leverages metadata of the query results to provide users

with facet conditions that can be used to progressively refine the

user’s query and filter the query results. However, the number of

facet conditions can be quite large, thereby increasing the burden

on the user. In this paper, we propose the FACeTOR system that

proposes a cost-based approach to faceted navigation. At each

step of the navigation, the user is presented with a subset of all

possible facet conditions that are selected based on a cost model

of user navigation, such that the overall expected navigation cost

is minimized and every result is guaranteed to be reachable by a

facet condition. We prove that the problem of selecting the

optimal facet conditions at each navigation step is NP-Hard, and

subsequently present two intuitive heuristics employed by

FACeTOR. Our user study at Amazon Mechanical Turk shows

that FACeTOR reduces the user navigation time compared to the

cutting edge commercial and academic faceted search algorithms.

The user study also confirms the validity of our cost model.

Finally, we performed an extensive experimental evaluation using

two real datasets on the performance of the proposed algorithms.

A prototype of FACeTOR is available at http://facetor.com.

1. INTRODUCTION
In recent years, there has been a tremendous increase in the

number and size of databases published online, commonly

referred to as the “deep web” [5], exposing a wide range of

content including product catalogs (e.g. Amazon, eBay),

bibliographies (e.g. DBLP, CiteSeer, PubMed), local businesses

(e.g. Yelp) and many more. These databases are commonly

queried using forms or keyword-based interfaces.

When users are not familiar with the content or the structure of the

underlying database, or they are not experienced with

sophisticated search interfaces, they issue queries that are

exploratory in nature and may return a large number of results. In

other cases, users often issue broad (underspecified) queries in

fear of missing potentially useful results. As a consequence, users

end up spending considerable effort browsing long lists of query

results. This phenomenon, known as information overload, is a

major hurdle in querying large databases.

Information overload has been tackled from two directions –

ranking and categorization. There have been many recent works

on ranking the database results for both keyword [2,16] and

structured queries [7]. Ranking is effective when the assumptions

used by the ranking function are aligned with the user preferences.

Ranking may not perform well for exploratory queries, since it is

hard to judge which result is better than the other when the query

is broad. Moreover, no summary (grouping) of the query result is

provided for the user to refine her query.

In categorization, query results are grouped based on hierarchies,

keywords, tags, or attribute values. For instance, consider the

MEDLINE database of biomedical citations [21], whose articles

are tagged with terms from the MeSH concept hierarchy [19].

Categorization systems propose a method for users to effectively

explore the large results by navigating the MeSH sub-hierarchy

relevant to the particular query result [18]. Wider adoption of such

hierarchical categorization systems is limited though as building

these concept hierarchies requires an intense manual effort, and

automatically assigning terms to tuples afterwards is not always a

successful process [14].

A popular variant of categorization, which is the focus of this

paper, is faceted navigation [10,22]. Here, the tuples in a query

result are classified into multiple independent categories, or

facets, instead of a single concept hierarchy. A facet comprises "a

clearly defined, mutually exclusive, and collectively exhaustive

aspect, property or characteristic of a class or specific subject"

[24]. For an example car dataset, the result for keyword query "�����" shown in Fig. 1a is categorized based on ���	,
��
 and ����� facets, among others. Each facet is associated with a set of
facet conditions, each of which appears in the number of tuples

shown in parenthesis (cardinality). For instance, the ���	 facet in
Figure 1a is associated with the set �2000, 2001, … � of facet
conditions. The user can narrow down or refine this result set by

selecting a facet condition (e.g., ���	 � 2003� and clicking on it.
The system then filters the query result to contain only the tuples

satisfying the selected facet condition and displays the remaining

facets conditions for the next navigation step, as shown in Figure

1b. User studies have showed that faceted navigation improves the

ability of users to explore large query results and identify tuples of

interest when compared to single concept hierarchies [27].

Faceted navigation has been studied extensively by the

Information Retrieval community, where the challenge is to

dynamically determine the keyword facets for a given set of

documents, assign classifications to fragments, and then organize

the documents using these classifications [11]. The drawback of

these systems is the unpredictability and counter-intuitiveness of

the resulting facets [14,15]. In contrast, faceted navigation is

much more intuitive and predictable for structured databases,

where each attribute is a facet describing a particular

characteristic of the tuples in the dataset.

The following are some key concerns that need to be addressed to

achieve effective faceted navigation when the number of facets

and facet conditions are large:

1. Which facets and facet conditions should be suggested

(displayed) to the user? For example, the query result of

Figure 1a consists of 789 tuples that can be categorized using

41 facets and 234 facet conditions. Suggesting “familiar”

facets and facet conditions would help the user make a

refinement decision without requesting additional facet

conditions (by clicking the “More” hyperlinks in Figure 1a).

For example, most users are more familiar with the ���	 facet
than the ������� facet in Figure 1a. Most current solutions,
including the ones employed by Amazon and eBay, try to

address the facet conditions selection problem in an ad hoc

manner by ranking the facet conditions using results

cardinality or other hard-coded factors.

2. Which facet conditions will lead to the tuples of interest in

fewer navigation steps? For example, the ���� � �����
facet condition has the highest cardinality for the query result

in Figure 1a, but should not necessarily be suggested since it

does not significantly prune the query results, that is, it does

not help reduce the faceted navigation steps.

3. The overlap of the query results among the set of suggested

faceted conditions is another critical concern, since a low

overlap can reduce the facet conditions inspected and shorten

the navigation. In Figure 1a, if most of the
��
 � ������
cars were made in ���	 � 2001, it is not wise to suggest both
facet conditions, because if the user chooses one of them in

one navigation step, she would have to inspect the other in the

next step anyway.

We present the FACeTOR system that takes a cost-based

approach to selecting the best set of facet conditions to suggest to

the user at each navigation step. These facet conditions are

selected using an intuitive cost model that captures the expected

cost of navigating a query result. At each navigation step,

FACeTOR first computes the facet conditions applicable to the

query result. However, instead of showing all of them or ranking

them by an ad hoc function, FACeTOR suggests a subset of these

facet conditions based on an intuitive user navigation cost model,

which considers factors including the user’s familiarity with the

suggested conditions, their overlap, and the expected number of

navigation steps. The suggested facet conditions are chosen such

that they minimize the expected navigation cost until the tuples of

interest are reached, although these are not known a priori.

Recent work on faceted navigation of database query results

[6,22] has the following limitations, which we address in this

paper. In both works, the navigation algorithm selects one facet

(or possibly multiple ones [22]) and displays all its facet

conditions to the user. Instead, we suggest a mix of facet

conditions from several facets, that is, our algorithm operates at

the facet condition level and not the facet level. Further, our cost

model more closely estimates the actual user navigation cost.

These improvements introduce novel algorithmic challenges, due

to the explosion of the search space and the interactive time

requirement of exploration systems. This paper makes the

following contributions:

1. A complete framework for faceted navigation of structured

query results (Section 2).

2. Intuitive navigation and cost models that closely resemble the

actions taken by the user during faceted navigation of query

results (Section 3).

3. The cost models introduced in Section 3 are necessarily

probabilistic, given the uncertainty of user actions. We

introduce these probability measures in the cost model

(Section 3) and present methods of estimating these

probabilities in Section 5.

4. A theoretical modeling and analysis of the problem of

selecting the best facet conditions to suggest at each

navigation step; we prove that this problem is NP-Hard given

our navigation model (Section 4).

5. Two efficient and intuitive heuristics for the above problem

(Section 6).

6. An extensive experimental evaluation with two real datasets

showing that FACeTOR outperforms state of the art systems

(Section 7).

7. A large-scale user study showing that FACeTOR decreases

the user navigation time, which is proportional to the

estimated navigation cost computed by our cost model

(Section 8).

We discuss related work in Section 9 and conclude in Section 10.

(a) Initial Query Results and Suggested Facet Conditions (b) REFINE Action Effect (c) EXPAND Action Effect

Figure 1. The FACeTOR Interface

2. FACETOR FRAMEWORK
The starting point of the FACeTOR framework is a result set that

the user explores.

Definition 1 (Result Set) A result set is a relation with schema �! � �"#, … , "$�. Each attribute "% & �! has an associated active
domain "��'("% , � of un-interpreted constants, including the
null value. �

The active domain "��'("% , � of an attribute "% under is
defined as the set of all constants returned by the query over
projecting only "% [1]. The initial result set could be the whole
database or more realistically, the result of a keyword query. In

this work, we assume that the user first submits a keyword query

(e.g., "�����" in Figure 1a). The result of this query forms the
initial result set , which the user explores. At each step of a
faceted navigation, FACeTOR classifies the tuples of a result set according to their facets. Each attribute "% & �! of
contributes a facet to the classification and, in turn, each facet

contributes a set of conditions.

Definition 2 (Facet Condition): Given a result set , a facet
condition is an equality predicate): "% � �%, where "% & �! and �% & "��'("% , �. �

The set of all possible facet conditions for a result set is denoted
as
(�.
Our running example considers a cars result set whose tuples
are classified by their ���	,
��
, +,��	��	
���	 and 37 more
facets. As shown in Figure 1a, FACeTOR displays the name of

each facet along with a list of facet conditions as hyperlinks,

followed in parenthesis by the number of tuples in satisfying the
condition (cardinality).

When the user clicks on a hyperlink corresponding to a facet

condition)%, FACeTOR filters the result set to the tuples that
satisfy)%, thus yielding a new result set - . , and the faceted
navigation proceeds to the next step where - is now being
classified. FACeTOR captures the progression of the faceted

navigation using a query /, which is initially the identity query on
the result set . When the user clicks on a facet condition)%, then
the equality predicate is added conjunctively to /, thus forming a
refined query / 0)%.
For example, if on Figure 1a the user clicks on hyperlink 2003,
FACeTOR executes the query / 0 ���	 � 2003 and filters the
result set to the 200 tuples satisfying this facet condition.

Subsequently, all facet conditions in
(-0123456778� are
displayed, as shown in Figure 1b. At each navigation step,

FACeTOR suggests only a subset
9 of all possible facet
conditions in
(-�.
Definition 3 (Suggested Conditions): For a result set -, a set of
facet conditions
9(-� .
(-�, are suggested if ; (-0<�<&=>(!?� � -, that is, every tuple in - satisfies at least
one suggested condition. �

In this work, we are interested in minimizing the overall expected

navigation cost incurred by the user, by choosing the best set of

suggested conditions for a given -, without making any
assumptions about the user’s preference over the tuples in -. The
navigation cost is based on an intuitive model of user navigation

described next.

Table 1. Symbol Reference

Symbol Meaning �! The schema of the initial result set with attributes "#, … , "$ The initial result set. / The query formulated during a faceted navigation. - - . , the result of a query / over .) A facet condition of the form "% � �@ .
(-� All possible facet conditions for -.
("%� All possible facet conditions for attribute "%.
9(-�
9(-� .
(-�, the suggested conditions given -. A9!(-� The probability the user performs a SHOWRESULT

action. A()� The probability the user performs a REFINE action by a

facet condition). AB("%� The probability the user prefers attribute "% over all other
attributes.

3. NAVIGATION AND COST MODELS
The faceted navigation model of FACeTOR is formally presented

in Section 3.1 and forms the basis for the navigation cost model

defined in Section 3.2. In Section 3.3, we give the intuition behind

the navigation cost model and discuss how it affects the choice of

facet conditions FACeTOR suggests to the user.

3.1 Faceted Navigation Model
At each faceted navigation step, FACeTOR displays to the user

the set of suggested conditions
9(-� for the current result set -. The user then explores - by examining all conditions in
9(-� and proceeds to the next navigation step by performing
one of the following actions:

1. SHOWRESULT(CD�: The user examines all tuples in the
result set -. If in Figure 1a the user chooses to stop
navigation and read all the results, she would have to read a

total of 789 result tuples and 21 labels.

2. REFINE(D, E�: The user chooses a suggested condition) &
9(-� and refines query /, that is, / becomes / 0).
The result of +FGH+(/,):
��	 � 2003� is shown in
Figure 1b. As a consequence of this action, the result set has

now been narrowed down to 200 tuples and the new set of

suggested conditions is available for this refined result set.

3. EXPAND(IJ, CD� : The user is dissatisfied with (rejects) all
suggested conditions in
9(-�. Instead, she EXPANDs an
attribute "% by clicking on its “More” hyperlink, which
reveals the remaining facet conditions for "% in -, and
selects one of them to REFINE the query /. EXPAND occurs
when the user is not familiar with any of the suggested

conditions. The effect of EXPAND on ����� attribute is
shown in Figure 1c, where the remaining facet conditions for ����� are revealed. She then selects one of the facet
conditions in
("%�\
9(-� and REFINEs the result set -.

The formal model of user navigation is presented in Figure 2. It is

a recursive procedure and is initially called on the entire result set and the identity query /, and terminates when the user finds all
the tuples of interest, that is, when the user executes SHOWRESULT(-�. FACeTOR computes the result set - and
the suggested conditions
9(-� at the beginning of each
NAVIGATE step.

NAVIGATE(/�
1 Choose one of the following: 2 SHOWRESULT(-� 3 Examine all suggested conditions
9(-� 4 Choose one of the following: 5 REFINE(/,)� 6 / � / 0) 7 EXPANDs"% , -t 8 Examine all remaining conditions in
("%�\
9(-� 9 Choose a condition)x & s
("%�\
9(-�t 10 / y / 0)x 11 NAVIGATE(/�

Figure 2. Faceted Navigation Model

3.2 Cost Model
The cost model measures the navigation cost incurred by the user

when exploring a query result set -, using the navigation model
described in Section 3.1. The navigation cost is the sum of costs

of the actions performed by the user, that is, examining suggested

conditions, SHOWRESULT, REFINE and EXPAND actions.

The cost of examining all tuples in a result set -, that is, the cost
of SHOWRESULT(-�, is | -|, and the cost of examining all
suggested conditions is }
9(-�}.We assume that the REFINE and
the EXPAND actions have a cost ~ associated with them, that is, ~ is the cost of “clicking” on a suggested condition or executing
an EXPAND action on the attribute "% & �!.
If the exact sequence of actions followed by the user in navigating - were known a priori, we could accurately determine the cost
of navigation. Since this sequence is not known in advance, we

estimate the navigation cost, taking into account the inherent

uncertainty in the user navigation. To estimate the navigation cost,

we introduce three probabilities that capture the uncertainty in

user actions and are estimated in Section 5:

• SHOWRESULT Probability ��C(CD�: This is the
probability that the user examines all tuples in the result set - and thus terminates the navigation. If no facet conditions
are suggested, then A9!(-� � 1.

• REFINE Probability �(E�: This is the probability that the
user refines the query / by a suggested condition) &
9(-�.

• EXPAND Probability ��(CD�: The probability that the user
does not choose a suggested condition and instead performs

an EXPAND action is A�(-� � ∏ (1 � A()��<&=>(!?� .

Since the navigation model is recursive, the expected navigation

cost can be estimated by the following recursive cost formula:

)���(/� � A9!s -t · } -} � �1�A9!s -t� ·
� ~ � }
9s -t} � (1 � A�(-�� · 	����� �/,
9s -t� �A�s -t · � AB("%� · �}
("%�\
9s -t} � 	����� �/,
("%�\
9s -t��B�&9�

� (1�
where

	�����(/,
� � �sA��4$()� ·)���(/ 0)�t<&= (2�
The first line of Equation 1 captures the fact that the user has two

options, when presented with a set of suggested conditions. One is

to execute a SHOWRESULT action with probability A9!(-� and
cost | -|. The other is to execute a REFINE or EXPAND action
with probability 1 � A9!(-�. The cost entailed by this last option
consists of the following parts shown in the square brackets of the

cost formula:

1. A fixed cost of ~ of a REFINE action, that is, clicking on a
facet condition.

2. The user reads the suggested conditions with cost |
9(-�|.
3. With probability 1 � A�s -t the user decides to REFINE.

The cost of REFINE, shown in Equation 2, is the sum of all

possible REFINE choices weighted by their probabilities.

These probabilities are normalized to sum to 1, as follows:

A��4$()� � A()�Σ<&=A()�
4. With probability A�(-�, the user does not choose any of the

suggested conditions and performs an EXPAND action

instead (third line of Equation 1). With probability AB("%�, the
user prefers attribute "% over all other attributes and
EXPANDs it. She examines all the non-suggested conditions

for "%, }
("%�\
9(-�} in total, chooses one of them and
refines query /. The estimated cost for the last step is also
given by the refine formula in Equation 2 above, where
 �
("%�\
9(-�.

3.3 Implications of the Cost Model
In this section, we discuss the implications of the cost model and

give an intuition about the characteristics of facet conditions that

are selected as the set of suggested conditions. Consider a sample

result set - shown in Figure 3. Also shown, are three alternative
sets of suggested conditions (Figure 3a, 3b and 3c) selected from

the set of all facet conditions
(-�.

CS(RQ)

RQ C(RQ)
Make Year State Color

t1 Honda 2001 NY Red

t2 Honda 2005 NY Green

t3 Honda 2001 NY Gold

t4 Honda 2005 NY Green

t5 Toyota 2005 NY White

t6 Toyota 2005 NY Black

Facet Condition P(c)

Make=Honda 0.8

Make=Toyota 0.7

Color=Red 0.1

Color=Gold 0.1

Color=Green 0.4

Color=White 0.1

Color=Black 0.1

State=NY 0.2

Year=2001 0.5

Year=2005 0.7

Make

•Honda (4)

Year

• 2005 (4)

Color

• Red (1)

•White (1)

•Green (2)

•Gold (1)

• Black (1)

Make

• Toyota (2)

Year

• 2001 (2)

Color

•Green (2)

(a) (b) (c)

Figure 3. Result Set CD, All Facet Conditions �(CD�, and
Three Alternative Sets of Suggested Conditions ��(CD�

A naïve algorithm to find the optimal suggested conditions would

compute the estimated cost of every possible set of suggestions

and output the one with minimum cost. Which one of the

alternative set of suggestions shown in Figures 3a, 3b and 3c has

the lowest cost, and therefore is more likely to be selected by the

navigation cost model?

The suggested conditions shown in Figure 3a are highly selective,

since each one of them appears in a small number of results (low

cardinality). Therefore, a large number of such conditions are

required to cover the result set - causing the navigation cost to
increase as the user now has to read all the labels before

proceeding to the next navigation step.

A set of suggested conditions where each condition has low

selectivity (Figure 3b) also leads to a high overall expected

navigation cost. Such conditions typically have a high overlap and

do not effectively narrow down the result set and therefore, the

user has to execute more REFINE actions to narrow down the

result set. For example, refining by either ���� � ����� or ���	 � 2005, in Figure 3b, reduces the number of results from
the initial six to four, and the resulting result set may need to be

refined further before reaching the desired result(s). Conditions

with low selectivity can potentially lead to redundant navigation

steps. For example, refining by ����� � H� does not narrow
down the result but still adds to the navigation cost.

Based on the above discussion, we observe that the facet

conditions selected by the cost model as suggested ones should

neither have high nor low selectivity. The suggested conditions in

Figure 3c are facet conditions with such desired characteristics.

The conditions ���� � ��
���, ���	 � 2001 and
���	 ��	��� are moderately selective and thus have minimum overlap
and do not require a large number of conditions to cover -.
Another factor that increases the navigation cost is the EXPAND

action, since the user can potentially see a large number of

conditions, thereby increasing the navigation cost. The expected

cost of EXPAND is multiplied by ∏ (1 � A()��<&=>(!?� , which is

minimized when all the conditions in
9(-� have a high A()�.
4. COMPLEXITY RESULTS
In this section, we study the complexity of the Facet Selection

problem.

Problem 1 (Facet Selection): Given a query / and a result set -, find the set
9(-� of suggested facet conditions that
minimizes the expected navigation cost for the NAVIGATE

navigation model described in Section 3.1.

We prove that this problem is NP-Hard, by showing that a

simplified version of the problem is also NP-Hard. The Simplified

Facet Selection (SFS) problem considers a simpler navigation

model, NAVIGATE-SINGLE, defined next.

NAVIGATE-SINGLE: In NAVIGATE-SINGLE, the system

performs a single REFINE action, where the user randomly

selects one of the suggested conditions, and then performs a

SHOWRESULT action. The cost of NAVIGATE-SINGLE

navigation is the cost to examine all suggested conditions

displayed (|
9(-�|) plus the cost } -0<} of performing the
SHOWRESULT action for the randomly-selected suggested

condition).
Suppose that the dominant cost of our cost model is that of

examining a suggested condition. That is, suppose the cost to

examine a suggested condition is 1 and the cost of
SHOWRESULT is 0. Also suppose that all attributes of - are
Boolean (0, 1) and that the suggested conditions in
9(-� are
always positive, that is, "% � 1. Recall that facet conditions only
specify a single attribute.

Theorem 1: The SFS problem is NP-Hard. �

Proof Intuition: In this simplified problem we minimize the cost

by computing the minimum number of facet conditions that

partition the result set - such that every tuple in - satisfies at
least one of these conditions.

Proof: SFS is clearly in NP. To prove the NP-Hardness we reduce

the HITTING-SET problem to the SFS problem. First, we define

the HITTING-SET problem.

An instance of the HITTING-SET problem consists of:

• a hypergraph � � (�, +�, where � is a finite set of vertices
and + � �+#, … , +�� is a set of hyperedges, that is, subsets of �, and

• a positive integer � � |�|.
The problem is to determine whether there is a hitting set � . �
of size � such that �� & �1, … ��: � � +% � �.
We reduce HITTING-SET to SFS as follows. A node �% in �
becomes a facet condition "% � 1. A hyperedge +% & + becomes a
tuple �% in the result set -. +% connects the vertices corresponding
to the attributes that have value 1 for the result �%. The solution of
HITTING-SET translates naturally to a solution to NAVIGATE-

SINGLE and vice versa. �

5. ESTIMATING PROBABILITIES
In order to compute the expected navigation cost using the cost

formula in Equation 1 (Section 3.2), the probabilities A9!(-�, AB("%� and A()� must be estimated.
Estimating ��C(CD�, the probability that the user executes
SHOWRESULT on a given result set -. We use the information
theoretic measure of Entropy to estimate A9!. The rationale
behind this decision is that the user would choose to further refine

the query / and narrow down the result set - if the tuples in -
are widely distributed among all possible facet conditions
(-�.
The entropy of a result set - distributed amongst the facet
conditions in
(-� is given by:

+��	��
 � -,
s -t� � � � s} -0<} H⁄ t lns} -0<} H⁄ t<&=(!?�

where H � ∑ | -0<|<&=(!?� is the sum of the number of tuples

over all facet conditions.

Since the value of entropy can be greater than 1, we normalize it

with the maximum value of entropy for a given result set -
distributed over }
(-�} facet conditions. Entropy is maximal
when H tuples are distributed equally amongst }
(-�} facet
conditions, that is, each facet condition is satisfied by H/|
(-�|
tuples. The total entropy of such a system is:

+��	��
¢B£ � -,
s -t� � � � H}
s -t}H<&=s!?t ln H}
s -t}H � ln}
s -t}
Hence,

A9!(-� � � ∑ } -0<}H ln } -0<}H<&=(!?�ln}
s -t}

The above formula for A9! does not distinguish between the sizes
of result sets. Intuitively, a user is very likely to perform a

SHOWRESULT action if | -| is very small, and a REFINE
action if | -| is very large. For these cases, we use upper and
lower thresholds as follows:

A9!(-� �
¤¥¦
¥§1 , �� } -} � 100 , �� } -} ¨ 50

� ∑ } -0<}H ln } -0<}H<&=(!?�ln}
s -t} , ����	©���
ª

Estimating �I(IJ�, the probability that the user chooses attribute "% over all other attributes. AB("%� is a subjective measure of
user’s preference and is estimated in multiple ways, such as

eliciting them from users, as we did for this work, or learning

from navigation patterns. We provide more details in Section 7.1.

Estimating �(E�, the probability that the user REFINEs with a
facet condition). To estimate A()�, we fist use the attribute level
probabilities AB("%� estimated above. Then, the individual values
within an attribute are assigned REFINE probabilities

proportionally to their frequency in the database.

6. ALGORITHMS
An optimal set
9(-� of suggested conditions for a given - can
be naively calculated by considering at each navigation step all

combinations of candidate facet conditions from
(-� and
recursively computing the cost formula in Equation 1. However,

this naïve approach is exponential on the size of
(-� since all
combinations of conditions are considered at each navigation step.

We present two heuristics to efficiently compute the best set of

suggested conditions. The first, ApproximateSetCover (Section

6.1), is inspired by an approximation algorithm for the weighted

set cover problem [8], and attempts to find a relatively small set of

suggestions that have a high probability of being recognized by

users (high A()�). A drawback of this heuristic is that it does not
closely resemble the cost formula in Equation 1, since it cannot

incorporate the cost parameter ~ and the uncertainty in the cost
expression. The second heuristic, UniformSuggestions (Section

6.2), which follows Equation 1 more closely, greedily selects each

facet condition) assuming that all future suggestions have
identical properties as). In Section 7, we present an evaluation of
the two heuristics and show that both of these heuristics generate

better faceted conditions than the state of the art.

6.1 ApproximateSetCover Heuristic
For a given result set - and all its facet conditions
(-�, the
objective is to compute the set of suggested conditions
9(-�
such that the expected navigation cost, based on our cost model

for user navigation, is minimal and the set
9(-� covers -, that
is, ; -0< � -<&=>(!?� , where each facet condition) covers } -0<} results in -.
This problem closely resembles the well-known NP-hard

weighted set cover problem – given a set system («, ��, such that ; �¬&9 � «, and weights ©: � ­ ®¯, find a subfamily ° . � such
that ; �¬&° � « and ∑ ©(��¬&° is minimal. The approximation

algorithm for weighted set cover [8], adds at every step the set �
that maximizes the number of newly covered elements divided by

the weight ©(��.

In order to apply the approximation algorithm for weighted set

cover to our problem, we need to define the weight function ©:
(-� ­ ®¯. By observing the cost formula in Equation 1,
each facet condition in the suggested set
9(-� should have a
high probability A()� of being selected for REFINEment.
Otherwise, the probability that the user does not select a suggested

condition and chooses to execute a EXPAND action would be

high, resulting in a high overall cost. To achieve this objective, we

set the weight function to be: ©:) &
(-� ­ 1/A()�
Note that the overlap among conditions and number of elements

covered by a selected condition do not need to be part of ©, since
they are considered directly in the approximation algorithm.

Algorithm: ApproximateSetCover(/, -�
Input: A query /, a result set -
Output: The suggested conditions
9(-� .
(-�
1
9(-� y �
2 ± y � // ± are results covered so far
3 while ± � - // while not all results covered
4) y �	�'�,<&=(!?�sA()� · | -0<\±|t
5
9(-� y
9(-� ³ �)�
6 ± y ± ³ -0<
7 / y / 0)
8 return
9(-�

Figure 4. ApproximateSetCover Heuristic

Figure 4 presents the ApproximateSetCover heuristic, which is an

adaptation of the weighted set cover approximation algorithm [8]

using the above defined weight function, and has a running time

of ´(|
(-�| · | -|� and an approximation ratio of ´(log(|
(-�|��. Note that this approximation ratio assumes that
the quantity we want to minimize is the sum of the weights

(1/A()�) of the selected conditions. However, the real objective
of ApproximateSetCover is to minimize the navigation cost,

which is much harder to bound, given that ApproximateSetCover

does not capture all the details of Equation 1. Also note that this

approximation ratio can be large if the number of conditions in
(-� is large. However, the number of facet conditions is
generally small and this algorithm performs reasonably well in

practice, as demonstrated by the experiments in Section 7.

Example Figure 3b shows the result of the ApproximateSetCover

heuristic on the result set Rµ in Figure 3. The algorithm requires
two iterations of the while loop (lines 3-7) before terminating with

the set of suggested conditions in Figure 3b. In the first iteration,

the algorithm selects Make � Honda, since this facet condition
covers 4 results and has the maximum value of A()� · | -0<| �3.2 amongst all the conditions in
(-� and V is empty. In the
next iteration, two results (t# & t8� remain uncovered and are
covered by facet condition Year � 2005. �

6.2 UniformSuggestions Heuristic
In this heuristic we follow the cost formula in Equation 1 more

closely, which leads to a more robust heuristic as we show in

Section 7. As mentioned earlier, computing the optimal suggested

conditions involves recursively evaluating Equation 1 for each

combination of facet conditions in
(-�. This translates to a very
large (in both height and width) recursion tree.

UniformSuggestions replaces this recursion tree with a set of very

small recursion trees, one for each condition in
(-�. For that,
we evaluate the expected cost of each facet condition

independently, assuming that all future suggested conditions will

have identical properties, and then select the facet conditions with

minimal expected cost, until all results in - are covered.
In particular, the uniform-condition heuristic assumption states

that for a given condition) &
(-�, evaluate the navigation cost
using Equation 1, while assuming that every other condition in
(-� has the same characteristics as). The characteristics of)
are (a) its probability A()�, and (b) the ratio 	()� � | -0<|/| -|
of the uncovered results that) covers. This heuristic assumption
reduces the search space of suggestions to }
(-�} as each
condition is now evaluated independently. It also allows us to

simplify the cost formula in Equation 1.

If each suggested condition in
9(-� covers a ratio 	 of the
results in -, we need a total of � � 1/	 conditions to cover all
the results in -. Also, REFINEment by) narrows down - to an
estimated | -|/� number of results. On the other hand, if the user
does not select a suggested condition and instead EXPANDs an

attribute "%, she views an additional |
("%�\
9(-�| º |
("%�|
facet conditions. Also, in the absence of any prior knowledge

about the selectivity of facet conditions in
("%�, we assume that
each)x &
("%� narrows down - to an estimated } -}/|
("%�|.
Thus, we can simplify the recursion in Equation 1 as follows:

)���s), } -}t � A9!s -t · } -} � �1�A9!s -t� ·

»¼
¼¼
½~ � � � s1 � A�()�t · � �A��4$()� ·)���s), } -}/�t��

%5# �
A�()� · � AB("%� · �|
("%�| � 	�����s
("%�, } -}t�B�&9� ¾¿

¿¿
À (3�

where A�()� � s1 � A()�t�
 and

	�����s
("%�, } -}t � � �A��4$()x� ·)���s)x, } -}/|
("%�|t�<Á&=(B�� (4�
Observe that instead of /, the cost function in Equation 3 above
uses) and } -} as arguments for this heuristic, since a cost is
computed for each), and only the number of results | -| is
important. The parameter / in the original cost formula (Equation
1) captured the query progression with REFINE actions, which is

not required in this heuristic, since only the result pruning at each

step is important and not the query itself.

In Equation 3 above, A��4$()� is the normalized probability of
following one condition of type). Since all � suggested
conditions have the same A()�, then A��4$()� � 1 �⁄ . Therefore

the cost component in Equation 3 for navigating all � suggested
conditions can be rewritten as:

� A��4$()� ·)���s), } -} �⁄ t ��
%5#)���s), } -} �⁄ t

By a similar argument, and since every facet condition)x in
Equation 4 has the same characteristics as) in Equation 3, we can
simplify Equation 4 as follows, where "< is the attribute of facet
condition): 	�����s
("%�, } -}t � |
("<�| �)���s), | -|/|
("<�|t

By the uniform-condition heuristic assumption, all the attributes

of suggestions have the same characteristics. Therefore, we can

reasonably assume that each attribute "% has AB("%� � 1/|�!| �AB("<�. Hence, the following simplification is possible:
� AB("%� · 	�����s
("%�, } -}tB�&9�

� |
("<�| �)���s), | -|/|
("<�|t
Based on the above, the cost formula in Equation 3 can now be re-

written as:)���s), } -}t
�

¤¥¦
¥§} -} , } -} Â �A9!s -t · } -} � �1 � A9!s -t� ·

Ã ~ � � � s1 � A�()�t ·)���s), } -}/�t �A�()� · �|
("=�| �)���s), } -}/|
("<�|t�Ä , } -} Å �ª (5�
The recursion terminates when the size of the result } -} drops
below a threshold �. Since a navigation should be able to narrow
down the result to a single tuple, we set � to 1.
Algorithm: UniformSuggestions(/, -�
Input: A query /, a result set -
Output:
9(-� .
(-�, the suggested conditions.
1 /Á y /;
9s -t y �; � y - // �: uncovered results

2 A9! y A9! � -,
s -t�

3 while � � � do

4 foreach) &
(-�

5 � y |Y| |Y � -Á0<|⁄

6 A9! y A9!s -t 7 � y |�| 8 compute)���(), �� using Equation 5
9 endFor

10 Let)'�� be the suggestion with min ���
���(), |�|�

11
9(-� y
9(-� ³)'��

12 /x y / 0)'��

13 � y �\ -Á0<$%�

14
s -t y
s -t\�)'���

15 endWhile

16 return
9(-�

Figure 5. UniformSuggestions Heuristic

The algorithm, based on the uniform-condition heuristic

assumption is presented in Figure 5. The algorithm computes the

estimated)��� of each facet condition using the simplified cost
formula in Equation 5 (lines 4-9), and selects the condition with

the minimum)��� ()'��) to be added to the set of selected
conditions (lines 10-11). Next, we remove from the set ± of
uncovered results the results covered by)'��. The algorithm
terminates when all the results in - are covered.
The result of applying the UniformSuggestions heuristic

algorithm to the result set - in Figure 3 is shown in Figure 3c.
Recall from the discussion in Section 3.3 that the cost model

selects conditions with moderate selectivity and high A()�. Under
our heuristic assumption, a facet condition) is evaluated under
the assumption that all conditions in
(-� have the same
characteristics as). Therefore, a condition with moderate
selectivity and a high A()� has a lower cost when evaluated using
the simplified cost formula in Equation 5 and these are just the

conditions selected by the algorithm.

7. EXPERIMENTAL EVALUATION
In this section, we present a thorough evaluation of the algorithms

and heuristics described in Section 6. We show that FACeTOR

achieves a significant decrease in navigation cost compared to

current approaches. The experiments are based on a large-scale

simulation of user navigations presented in Section 7.2. The

metric used is the average navigation cost as defined by the cost

formula in Equation 1. In Section 7.1, we describe the

experimental setup, including the choice of datasets. Section 7.3

measures the time requirements of our heuristics and shows that

they can be used for real-time interaction.

7.1 Experimental Setup
The primary goal of these experiments is to evaluate the

effectiveness of the system in decreasing the user navigation cost

for a set of query results. To this end, we compare the two

heuristics presented in Section 6 to each other and to the current

state of the art algorithm, which is the single-facet-based-search

[22], henceforth called INDG.

The experiments reported in this section were conducted on a Dell

Optiplex machine with 3GHz CPU and 3GB of RAM. We use

MySQL as our database and Java for the algorithms.

7.1.1 Datasets
We evaluate FACeTOR on two datasets, UsedCars and IMDB.

We assume that the numeric attributes have been appropriately

discretized. The UsedCars database was downloaded from

Yahoo! Autos site and contains 15,191 car tuples with 41

attributes/facets, of which 7 are categorical, 3 numerical, and the

rest Boolean.

From the IMDB dataset, we extracted a total of 37,324 movies.

For our experiments we only leveraged the movie, actors,

directors, ratings and genre data. Note that actors, directors and

genres are set-valued attributes, that is, each movie can have

multiple actors and/or directors. These set attributes can be

problematic in a faceted search and navigation settings as these

techniques are biased towards results that have a large number of

facet conditions [9]. We use the Binarization technique presented

in [9] in dealing with set-valued attributes.

7.1.2 Data Pre-processing
From the initial dataset relation , we extract all the candidate
facet conditions
(� and store them in a relation with schema Â ���	�Ç���, È����,)���� Å, where)���� stores the number of
tuples in that satisfy the facet condition) with the given ���	�Ç���/È���� combination. This value is used to compute the
estimate of A()� of each facet condition) &
(�.
Computation of �I(IJ� This is the probability that the user
knows or likes attribute "%. We estimated this probability using a
survey of 10 users (students and faculty in our institutions) who

rated each attribute "% in the dataset on a scale from 0 to 1. These
values are taken to be the user preference AB("%� for attribute "%.
Computation of �(E� As defined in Section 3, A()� is the
probability that the user executes a REFINE action on suggested

condition). A user would choose to REFINE by), if she knows
or likes the attribute of) and is also familiar with the value of the
attribute in). Therefore, we use a two-pronged approach to
compute A()�. To estimate the popularity of a value of a facet
condition, we computed the frequency �	�É("% . È%� of each value
for each attribute in . Then, we multiply each frequency with the

attribute preference to obtain the attribute/value preferences A(): "% � È%� � �	�É("% . È%� · AB("%�, which we then normalize
by dividing by the maximum frequency for each attribute.

Table 2. Query Workload

 Query #Results #of Facet Conditions

UsedCars DataSet

1 honda 789 234

2 toyota 1470 366

3 dallas 2932 990

4 miami 211 230

5 coupe 599 334

6 sedan 1693 524

7 2000 896 641

8 2004 3711 1124

9 black 2391 972

10 gold 709 508

IMDB DataSet

11 baldwin 112 1545

12 oscar 189 2141

13 love 415 2989

14 American 111 1096

15 history 272 2716

16 white 284 3058

17 black 221 2327

18 time 145 907

19 john and 2007 391 4545

20 action and 2007 272 2601

7.1.3 Experimental Methodology
For each dataset, IMDB and UsedCars, we select a number of

keyword queries (see Table 2) whose results form the initial result

set , and a random result tuple as the target for navigation for
each query. Next, we measure the number of navigation actions

(REFINE/EXPAND actions, facet conditions displayed and

results viewed) incurred before reaching the target tuple as the

navigation cost for the query. In our system, the target tuple can

be reached by multiple navigations. For example, tuple �Ê in the
result set of Figure 3 can be reached by REFINEing by any one of

the two conditions in Figure 3b.

Since, the user’s navigation cannot be known in advance, we

consider an evaluation approach that considers both these

navigation paths. To account for uncertainty in user navigation,

we use a guided randomized simulation of user navigation. In this

simulation, we randomly select one of the facet conditions) &
9(-� for navigation. The probability that the agent selects a
condition) is proportional to A()�, the probability that the user
would know or likes the facet condition). The simulation is
guided in the sense that it only follows the paths that lead to the

target result. For example, if the agent encounters the two

suggestions in Figure 3b and the target is tuple �8, the simulation
would choose either ���� � ����� or EXPAND (“Don’t
Know” for INDG). The probability of choosing EXPAND is ∏ (1 � A()��<&=>(!?� , where
9s -t are the suggested conditions.
If an EXPAND action is chosen, the agent selects an attribute "% & �! with probability AB("%�, and selects a condition)Á & -("%�. In the UsedCars dataset, there is only one condition that
can be chosen, since the facet conditions on an attribute partitions

the result-set completely. However, in the IMDB dataset, there

can be multiple conditions that can be followed. In this case the

agent chooses a condition with probability proportional to A()Á�.

We execute the navigation for each query 1000 times using this

simulation technique and average the cost over the individual

navigations. We also report the average number of times each

navigation action is executed during the simulation.

The navigation cost is sensitive to the constant ~ according to the
cost function in Equation 1. Varying these constants changes the

set
9(-� for UniformSuggestions, but not for INDG or
ApproximateSetCover, since these algorithms do not consider ~.
Intuitively, ~ denotes the patience of the user towards suggestions
generated by the system. If the user sees a small number of

conditions she would have to execute more REFINE actions to

reach the result. Also, the chance that she would have to execute

the EXPAND action also increases. Thus by setting ~ to a large
value the user should typically see more suggestions per REFINE

and vice versa. We experiment with different values of ~ and
observe the effect on the overall navigation cost for the UsedCars

query workload in Table 2. We also compare the number of

suggested conditions generated (on average) and the number of

REFINE actions.

We compare our approach with the current state of the art INDG

algorithm [22]. This algorithm constructs a decision tree that

partitions the result set - by a facet (attribute) at each level. The
aim is to minimize the average depth of the decision tree in

reaching the results. The user is presented with all the facet

conditions on the attribute that forms the root of the decision tree.

The system proposes to pre-compute the decision tree for a

predefined set of queries. The navigation in these cases will be

essentially fixed for a given query and does not depend on user

refinements. To ensure fairness, we modify the approach to re-

compute the decision tree at each REFINE step, even though this

is computationally expensive.

7.2 Experiments with Navigation Cost
The average navigation costs for the INDG,

ApproximateSetCover and UniformSuggestions algorithms for the

UsedCars queries in Table 2 are shown in Figure 6a. As seen in

the graph, the navigation cost incurred by following our approach

leads to significant savings in cost as compared to the existing

approach. The INDG algorithm ignores the cost of inspecting

suggested conditions and thus produces on average a large

number of suggestions at each navigation step.

Figure 6b shows some of the individual components of the total

cost for Figure 6a, that is, the average number of REFINE actions,

of EXPAND actions for ApproximateSetCover and

UniformSuggestions and of “Don’t Know” actions for the INDG

algorithm. Also shown on top of the bars in Figure 6b are the

average numbers of suggestions per navigation step. As expected,

the INDG algorithm has very few REFINE and “Don’t Know”

actions, but reveals a large number of facet conditions in each

navigation step, resulting in high total cost.

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

A
S

C

U
S

A
S

C

U
S

A
S

C

U
S

A
S

C

U
S

A
S

C

U
S

A
S

C

U
S

A
S

C

U
S

A
S

C

U
S

A
S

C

U
S

A
S

C

U
S

2000 2004 black coupe dallas gold honda miami sedan toyota

Figure 7. Average Overlap per Navigation Step for the

UsedCars Dataset, for Ë � Ì
The average cost incurred by UniformSuggestions algorithm is

less compared to ApproximateSetCover. ApproximateSetCover

has a higher number of REFINE and EXPAND actions as

compared to UniformSuggestions, even though the average

number of suggestions at each navigation step is comparable. In

each iteration, the greedy ApproximateSetCover algorithm selects

a small set of facet conditions with a high value of A()� that also
cover a large number of uncovered results. These suggested

conditions have thus a low selectivity and therefore tend to have a

high degree of overlap among the suggested conditions, as shown

in Figure 7, thereby reducing the effectiveness of REFINE

actions. Thus, the user has to perform many REFINE actions in

order to reach the target result. Also, since the number of

suggestions is small, the chance that the user executes an

EXPAND action is also significant. These EXPAND actions are

costly, since the user now has to read a (potentially) large number

of facet conditions.

Figure 6. For the UsedCars Dataset: (a) Average Navigation Cost, and (b) Average Number of REFINE and EXPAND Actions, and

Average Number of Suggested Conditions per Navigation Step (numbers on top of the bars), for Ë � Ì
(a) (b)

0

100

200

300

400

500

600

700

800

900

honda toyota dallas miami coupe sedan 2000 2004 black gold

INDG ApproximateSetCover (ASC) Uniform Suggestions (US)

9

81 11

9

157 14

12

133 13

4

28

252
18

10

81
10

5

27 13

107

8

5

75
12

20
10

0

5

10

15

20

25

A
S

C

IN
D

G

U
S

A
S

C

IN
D

G

U
S

A
S

C

IN
D

G

U
S

A
S

C

IN
D

G

U
S

A
S

C

IN
D

G

U
S

A
S

C

IN
D

G

U
S

A
S

C

IN
D

G

U
S

A
S

C

IN
D

G

U
S

A
S

C

IN
D

G

U
S

A
S

C

IN
D

G

U
S

2000 2004 black coupe dallas gold honda miami sedan toyota

EXPAND/Don't Know Refine

19

11

6

0

100

200

300

400

500

600

700

800
B=

5

B=
10 B=

5

B=
10 B=

5

B=
10 B=

5

B=
10 B=

5

B=
10 B=

5

B=
10 B=

5

B=
10 B=

5

B=
10 B=

5

B=
10 B=

5

B=
10

honda toyota dallas miami coupe sedan 2000 2004 black gold

INDG ApproximateSetCover (ASC) UniformSuggestions (US)

Figure 8. Average Navigation Cost for Ë � Í and Ë � ÌÎ
(UsedCars Dataset)

Figure 8 shows the effect of increasing ~, the cost of executing a
REFINE. As expected, the average overall cost increases. The

UniformSuggestions heuristic adapts to a changing value of ~,
whereas the ApproximateSetCover heuristic and INDG do not.

Therefore the cost of UniformSuggestions increases at a slower

rate than the other two algorithms. This is primarily because, for a

higher ~, UniformSuggestions generates more suggestions per
REFINE/EXPAND. While INDG is insensitive to ~, it reveals a
large number of labels, has very few REFINE/EXPAND actions,

and therefore the overall cost increases at a slow rate.

The results of IMDB workload queries in Table 2 are shown in

Figure 9. The INDG algorithm assumes that the facet

classification on an attribute partitions the result set. This is not

true in our IMDB dataset where a single movie can be classified

into multiple actors. Therefore, we cannot evaluate the INDG

algorithm for this dataset. As in the UsedCars workload, the

UniformSuggestions heuristic outperforms ApproximateSetCover.

Also, the observations for the number of EXPAND and REFINE

actions and the number of suggested conditions generated are also

similar to those for the UsedCars dataset. However, the

navigation cost with the UniformSuggestions algorithm is much

lower than ApproximateSetCover. A movie in the IMDB dataset

can be classified into a large number of facet conditions. For

example, each movie can have multiple actors or directors or

genres. Therefore executing an EXPAND action reveals a very

large number of facet conditions (the number on top of bars in

Figure 9b), thereby significantly increasing the navigation cost.

7.3 Execution Time Evaluation
This experiment aims to show that UniformSuggestions is fast

enough to be used in real-time. The average execution time of

UniformSuggestions per REFINE action for the queries in Table 2

(UsedCars dataset) is shown in Figure 10. The execution time for

this heuristic depends primarily on the number of facet conditions

in the result set -. As the number of facet conditions decreases,
as is the case towards the end of navigation, the performance of

UniformSuggestions improves dramatically. In the interest of

space, we omit reporting these values, as well as the results for

ApproximateSetCover which, given its simplicity, is much faster.

0

10

20

30

40

50

60

honda toyota dallas miami coupe sedan 2000 2004 black gold

m
se

c

Figure 10. Average Execution Time of UniformSuggestions

Heuristic (UsedCars dataset & Ë � Ì)
8. USER EVALUATION
In this section, we present the results of a large scale user study

we conducted to compare the user experience with FACeTOR and

other state of the art interfaces. We measure the following: (a) the

actual time it took users to navigate to designated target tuples

using different interfaces, (b) how realistic is our cost model, by

studying the relationship of the actual time (actual cost) with the

estimated cost as computed by the cost formula in Equation 1, and

(c) the users perception of the faceted interfaces through a

questionnaire. By comparing the actual navigation time to the

users’ perception, we study if lower actual time corresponds to

more intuitive (cognitively easier) interfaces or if the users’

familiarity with some interfaces skews their opinion.

The results show that FACeTOR achieves significant savings in

the effort required to navigate the query results, both in terms of

actual time and estimated navigation cost. Through the

questionnaire, a large majority of users also confirmed that the

FACeTOR interface is intuitive and rated it higher in terms of

quality of suggestions as compared to other interfaces.

Setup We constructed 8 randomly created result sets of 1000

tuples from the UsedCars dataset and for each one we created a

task that involves locating a set of 3 or fewer target tuples (cars),

which satisfy a set of attribute/value conditions. For each one of

Figure 9. For the IMDB Dataset: (a) Average Navigation Cost, and (b) Average Number of REFINE and EXPAND Actions, and

Average Number of Suggested Conditions per Navigation Step (numbers on top of the bars), for Ë � Ì
(a) (b)

0

100

200

300

400

500

600

700

800

baldwin oscar love american history white black time john and

2007

action

and 2007

ApproximateSetCover (ASC) UniformSuggestion (US)

120 12 188

10 186
12

93
12 112

12
225

16

293 14
109

10

348

90

109

30

0

2

4

6

8

10

ASC US ASC US ASC US ASC US ASC US ASC US ASC US ASC US ASC US ASC US

baldwin oscar love american history white black time john

2007

action

2007

REFINE EXPAND

the 8 result sets, we showed the requested conditions to the users

and asked them to locate the target tuples using three interfaces:

• FACeTOR,

• Amazon-Style, which suggests at most 5 facet conditions with

the highest cardinality for each attribute, and

• One-attribute-at-a-time INDG [22], where an attribute is

selected at each step and all its conditions are displayed.

We deployed our system as an Amazon Mechanical Turk [3] task

and collected a total of 37 valid responses.

0

50

100

150

200

AVG 1 2 3 4 5 6 7 8

A
ct

u
la

 T
im

e
 (

se
c)

FACeTOR Amazon-Style INDG

Figure 11. Actual User Navigation Time for 8 Result Sets

18

28

42

4 4 4 1 1 1

0

10

20

30

40

50

FACeTOR Amazon INDG FACeTOR Amazon INDG FACeTOR Amazon INDG

Suggestions REFINE EXPAND/Don’t Know

Figure 12. Average # of Suggestions and Actions

Actual Time Figure 11 shows the actual time taken by users to

navigate each of the eight result sets using the three interfaces.

Also shown is the average actual time for each interface. As

shown, FACeTOR speeds up the navigation by 18% and 37%

over Amazon-Style and INDG respectively, even for relatively

small result sets of 1000 tuples and short navigations consisting of

only 4 REFINE actions (Figure 12). This is primarily because

users spend less time in reading suggested conditions and

deciding which one to follow next, as evidenced by Figure 12.

FACeTOR shows 36% fewer suggestions than Amazon-style and

57% fewer suggestions than INDG, while it requires the same

number of REFINE and EXPAND actions (on average) to reach

the target tuples. This is an indication of high quality suggestions

provided by FACeTOR.

0

50

100

150

200

250

300

350

0 50 100 150 200

E
st

im
a

te
d

 C
o

st
 (

E
q

u
a

ti
o

n
 1

)

Actual Time (sec)

FACeTOR Amazon-Style INDG

Figure 13. Actual Time vs. Estimated Navigation Cost

Estimated Cost Figure 13 displays the data points of actual time

vs. estimated cost, as computed by Equation 1, for the eight result

sets for the three interfaces. Based on these data points, Figure 13

also shows the trend line between actual time and estimated

navigation cost for each interface. We observe that the actual time

is linearly proportional to the estimated navigation cost for all

three interfaces, which shows that our cost model is realistic.

17 17

2
1

14

19

2 2

7 8

18

4

0

5

10

15

20

Very Easy Easy Difficult Very

Difficult

17 17

3
0

10

22

5

0

9
12 11

5

0

5

10

15

20

25

Very Easy Easy Difficult Very

Difficult

11

24

2
5

25

7
9

11

17

0

5

10

15

20

25

30

Too Few Just Right Too Many

(a) Quality of Suggestions (c) Quantity of Suggestions(b) Difficulty in Selection

FACeTOR Amazon-Style INDG

Figure 14. Users Perception (Questionnaire)

Users Perception The study also included a questionnaire where

we elicited the users’ opinion on various aspects of the three

interfaces, including the ease of use, size and intuitiveness of

suggested conditions and their preferred choice of interface. The

results of this survey are shown in Figure 14. 92% of users said

that they thought the suggestions presented by FACeTOR at each

step made the task of locating the target tuples easier (Figure 14a),

compared to 89% for Amazon-style and 40% for INDG. A large

majority of users (92%) also said that the suggestions provided by

FACeTOR had a low “cognitive dissonance” (Figure 14b) in the

sense that it was very easy (45%) or easy (46%) to decide which

suggestion to follow next. The corresponding cumulative

percentages for Amazon and INDG were 81% and 54%

respectively.

We also asked the users if the number of suggestions provided by

the interfaces were adequate (Figure 14c). A significant

percentage (30%) said that FACeTOR provided too few

suggestions at each navigation step, indicating that users prefer

more choices even if it means an increase in absolute navigation

cost. Since FACeTOR is customizable to user's navigation

patterns, this could easily be remedied by increasing the value of

the constant ~ as discussed in Section 7.1.
9. RELATED WORK
Ranking Ranking could be applied in conjunction with a faceted

interface. Chaudhuri et al. [7] use the unspecified attributes and

apply Probabilistic Information Retrieval principles to rank the

results of a database selection query. Various ranking techniques

have also been proposed for keyword search on structured

databases [2,17] based on the size and relevance of the results.

Faceted Search on Structured Data Faceted search is employed

by major e-Commerce websites (Amazon, eBay) that typically

display all the facet conditions applicable to the current set of

query results. If too many values are available for a facet, then the

most popular are displayed, and a “more” button reveals the rest.

In contrast, our approach displays only a subset of applicable facet

conditions chosen to minimize the overall navigation cost. English

et al. [13] was one of the first to introduce faceted search and

discusses facets from a user interface perspective.

Our work is closest to the works of Chakrabarti et al. [6] and Roy

et al. [22], which also use a navigation cost based approach for

faceted navigation. In particular, FACeTOR adopts ideas from

both works and addresses their key shortcomings. In both these

works, the navigation algorithm selects one attribute (or possibly

multiple attributes [22]) and displays all the values of these

attributes to the user. Alternatively, a text box could be displayed

for each selected attribute [22], but we believe that this is

impractical, given that the user would already have specified all

known values in the original query. Our approach differs from

these works, because at each navigation step, we display a mix of

facet conditions from several attributes, that is, our algorithm

operates at the attribute value level and not the attribute level.

Moreover, facet conditions suggested by FACeTOR are selected

so that the overlap of the sets of results they cover is minimized.

The user does not have to choose between facet conditions that

could lead to the same set of results.

Ben-Yitzhak et al. [4] focuses on providing additional qualitative

information for each suggested facet to help users better choose a

condition. For instance, they may show the average price for each

author facet condition. Their work is complementary to ours,

since we could use their algorithms to display additional

information for each suggested condition.

Keyword-Based Faceted Search and Query Refinement The

GrowBag project [12] and Sarkas et. al [23] suggest additional

search terms based on the co-occurrence patterns of these terms in

the query result. The GrowBag algorithm[12] computes higher

order co-occurrences of terms in the document collection and

suggests terms appearing in the neighborhood of each search term

as refinement suggestions whereas [23] suggests terms that co-

occur with search terms and narrow down the result-set to

interesting subsets using the surprise metric. Dakka et al. [10,11]

propose using external resources like Wikipedia to find the best

keywords to suggest to the user. [10] uses a greedy algorithm to

select the set of conditions that fit in the screen and cover the

maximum number of results. However, in contrast to FACeTOR,

they do not use a navigation cost model to minimize the expected

navigation cost. Our work is also related to query refinement

systems [20,25]. [25] recommends new terms for refinement such

that the recall of the resulting query is maximized, whereas [20]

uses relevance judgment feedback on the results to refine the

query. Our approach also suggests facet conditions to refine the

query, but we use the navigation cost as metric.

Our navigation model is similar to BioNav [18], which uses the

ontological annotations of PubMed publications to create a

navigation tree. A key difference is that in BioNav, there is a

given concept hierarchy [19], which prunes the search space. In

contrast, there is not such tree in FACeTOR, which makes the

selection of a set of faceted conditions harder.

OLAP A faceted interface can be viewed as an OLAP-style cube

over the results. Wu et al.[26] generate hierarchical partitions over

the query results based on a cost model for user navigation and

display this hierarchy to the users. The interestingness of group-by

aggregations is used to rank candidate aggregations to display.

10. CONCLUSIONS
Faceted navigation is widely used to avoid information-overload

experienced by a user navigating query results. However, the

number of facet conditions encountered during faceted navigation

tends to be large thereby increasing the burden on the user. Our

system addresses this problem by selectively showing a subset of

the available facet conditions. The suggested conditions are

selected based on an intuitive cost model of user’s navigation that

attempts to minimize the expected navigation actions by hiding

uninteresting or ineffective conditions. We provide feasible

solutions for this problem and demonstrate their effectiveness by a

thorough experimental evaluation and a user study.

11. REFERENCES
[1] S. Abiteboul, R. Hull, V. Vianu: Foundations of Databases. Addison-

Wesley 1995.

[2] B. Aditya, G. Bhalotia, S. Chakrabarti, A. Hulgeri, C. Nakhe, Parag,
S. Sudarshan: BANKS: Browsing and Keyword Searching in

Relational Databases. VLDB 2002: 1083-1086.

[3] Amazon Mechanical Turk. Online: https://www.mturk.com
[4] O. Ben-Yitzhak, N. Golbandi, N. Har'El, R. Lempel, A. Neumann, S.

Ofek-Koifman, D. Sheinwald, E. J. Shekita, B. Sznajder, S. Yogev:

Beyond Basic Faceted Search. WSDM 2008: 33-44.

[5] M. Bergman. (2000) The Deep Web: Surfacing Hidden Value.
[Online] Available: http://brightplanet.com/index.php/white-

papers/119.html

[6] K. Chakrabarti, S. Chaudhuri, S. Hwang: Automatic Categorization
of Query Results. SIGMOD Conference 2004: 755-766.

[7] S. Chaudhuri, G. Das, V. Hristidis, G. Weikum: Probabilistic
Information Retrieval Approach for Ranking of Database Query

Results. ACM Trans. Database Syst. 31(3): 1134-1168 (2006).

[8] V. Chvatal: A Greedy Heuristic for the Set Cover Problem.
Mathematics of Operations Research 4(3): 233-235 (1979).

[9] W. W. Cohen: Learning Trees and Rules with Set-Valued Features.
AAAI/IAAI, Vol. 1 1996: 709-716.

[10] W. Dakka, P. G. Ipeirotis, K. R. Wood: Automatic Construction of
Multifaceted Browsing Interfaces. CIKM 2005: 768-775.

[11] W. Dakka, P. G. Ipeirotis: Automatic Extraction of Useful Facet
Hierarchies from Text Databases. ICDE 2008: 466-475.

[12] J. Diederich, W. Balke: The Semantic GrowBag Algorithm:
Automatically Deriving Categorization Systems. ECDL 2007: 1-13.

[13] J. English, M. A. Hearst, R. R. Sinha, K. Swearingen, K. Yee:
Hierarchical Faceted Metadata in Site Search Interfaces. CHI

Extended Abstracts 2002: 628-639.

[14] M. A. Hearst: Clustering versus Faceted Categories for Information
Exploration. Commun. ACM 49(4): 59-61 (2006).

[15] M. A. Hearst: User Interfaces and Visualization. Modern
Information Retrieval. Ricardo Baeza-Yates and Berthier Ribeiro-

Neto, Eds. ACM Press, New York, 1999, 257–323.

[16] V. Hristidis, L. Gravano, Y. Papakonstantinou: Efficient IR-Style
Keyword Search over Relational Databases. VLDB 2003: 850-861.

[17] V. Hristidis, H. Hwang, Y. Papakonstantinou: Authority-Based
Keyword Search in Databases. ACM Trans. Database Syst. 33(1):

(2008).

[18] A. Kashyap, V. Hristidis, M. Petropoulos, S. Tavoulari: BioNav:
Effective Navigation on Query Results of Biomedical Databases.
ICDE 2009: 1287-1290.

[19] Medical Subject Headings http://www.nlm.nih.gov/mesh/
[20] M. Ortega-Binderberger, K. Chakrabarti, S. Mehrotra: An Approach

to Integrating Query Refinement in SQL. EDBT 2002: 15-33.

[21] PubMed. http://www.ncbi.nlm.nih.gov/pubmed/
[22] S. B. Roy, H. Wang, G. Das, U. Nambiar, M. K. Mohania:

Minimum-Effort Driven Dynamic Faceted Search in Structured
Databases. CIKM 2008: 13-22.

[23] N. Sarkas, N. Bansal, G. Das, N. Koudas: Measure-driven Keyword-
Query Expansion. PVLDB 2(1): 121-132 (2009).

[24] A. G. Taylor: Wynar’s Introduction to Cataloging and Classification,
10th ed. Libraries Unlimited, Inc. 2006.

[25] B. Vélez, R. Weiss, M. A. Sheldon, D. K. Gifford: Fast and Effective
Query Refinement. SIGIR 1997: 6-15.

[26] P. Wu, Y. Sismanis, B. Reinwald: Towards Keyword-Driven
Analytical Processing. SIGMOD Conference 2007: 617-628.

[27] K. Yee, K. Swearingen, K. Li, M. A. Hearst: Faceted Metadata for
Image Search and Browsing. CHI 2003: 401-408.

