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ABSTRACT 
Faceted navigation is being increasingly employed as an effective 

technique for exploring large query results on structured 

databases. This technique of mitigating the information overload 

problem leverages metadata of the query results to provide users 

with facet conditions that can be used to progressively refine the 

user’s query and filter the query results. However, the number of 

facet conditions can be quite large, thereby increasing the burden 

on the user. In this paper, we propose the FACeTOR system that 

proposes a cost-based approach to faceted navigation. At each 

step of the navigation, the user is presented with a subset of all 

possible facet conditions that are selected based on a cost model 

of user navigation, such that the overall expected navigation cost 

is minimized and every result is guaranteed to be reachable by a 

facet condition. We prove that the problem of selecting the 

optimal facet conditions at each navigation step is NP-Hard, and 

subsequently present two intuitive heuristics employed by 

FACeTOR. Our user study at Amazon Mechanical Turk shows 

that FACeTOR reduces the user navigation time compared to the 

cutting edge commercial and academic faceted search algorithms. 

The user study also confirms the validity of our cost model. 

Finally, we performed an extensive experimental evaluation using 

two real datasets on the performance of the proposed algorithms. 

A prototype of FACeTOR is available at http://facetor.com.   

1. INTRODUCTION 
In recent years, there has been a tremendous increase in the 

number and size of databases published online, commonly 

referred to as the “deep web” [5], exposing a wide range of 

content including product catalogs (e.g. Amazon, eBay), 

bibliographies (e.g. DBLP, CiteSeer, PubMed), local businesses 

(e.g. Yelp) and many more. These databases are commonly 

queried using forms or keyword-based interfaces. 

When users are not familiar with the content or the structure of the 

underlying database, or they are not experienced with 

sophisticated search interfaces, they issue queries that are 

exploratory in nature and may return a large number of results. In 

other cases, users often issue broad (underspecified) queries in 

fear of missing potentially useful results. As a consequence, users 

end up spending considerable effort browsing long lists of query 

results. This phenomenon, known as information overload, is a 

major hurdle in querying large databases. 

Information overload has been tackled from two directions – 

ranking and categorization. There have been many recent works 

on ranking the database results for both keyword [2,16] and 

structured queries [7]. Ranking is effective when the assumptions 

used by the ranking function are aligned with the user preferences. 

Ranking may not perform well for exploratory queries, since it is 

hard to judge which result is better than the other when the query 

is broad. Moreover, no summary (grouping) of the query result is 

provided for the user to refine her query. 

In categorization, query results are grouped based on hierarchies, 

keywords, tags, or attribute values. For instance, consider the 

MEDLINE database of biomedical citations [21], whose articles 

are tagged with terms from the MeSH concept hierarchy [19]. 

Categorization systems propose a method for users to effectively 

explore the large results by navigating the MeSH sub-hierarchy 

relevant to the particular query result [18]. Wider adoption of such 

hierarchical categorization systems is limited though as building 

these concept hierarchies requires an intense manual effort, and 

automatically assigning terms to tuples afterwards is not always a 

successful process [14]. 

A popular variant of categorization, which is the focus of this 

paper, is faceted navigation [10,22]. Here, the tuples in a query 

result are classified into multiple independent categories, or 

facets, instead of a single concept hierarchy. A facet comprises "a 

clearly defined, mutually exclusive, and collectively exhaustive 

aspect, property or characteristic of a class or specific subject" 

[24]. For an example car dataset, the result for keyword query "�����" shown in Fig. 1a is categorized based on ���	, 
��
 and ����� facets, among others. Each facet is associated with a set of 
facet conditions, each of which appears in the number of tuples 

shown in parenthesis (cardinality). For instance, the ���	 facet in 
Figure 1a is associated with the set �2000, 2001, … � of facet 
conditions. The user can narrow down or refine this result set by 

selecting a facet condition (e.g., ���	 � 2003� and clicking on it. 
The system then filters the query result to contain only the tuples 

satisfying the selected facet condition and displays the remaining 

facets conditions for the next navigation step, as shown in Figure 

1b. User studies have showed that faceted navigation improves the 

ability of users to explore large query results and identify tuples of 

interest when compared to single concept hierarchies [27]. 

Faceted navigation has been studied extensively by the 

Information Retrieval community, where the challenge is to 

dynamically determine the keyword facets for a given set of 

documents, assign classifications to fragments, and then organize 

the documents using these classifications [11]. The drawback of 

these systems is the unpredictability and counter-intuitiveness of 

the resulting facets [14,15]. In contrast, faceted navigation is 

much more intuitive and predictable for structured databases, 

where each attribute is a facet describing a particular 

characteristic of the tuples in the dataset. 

The following are some key concerns that need to be addressed to 

achieve effective faceted navigation when the number of facets 

and facet conditions are large: 

1. Which facets and facet conditions should be suggested 

(displayed) to the user? For example, the query result of 

Figure 1a consists of 789 tuples that can be categorized using 

41 facets and 234 facet conditions. Suggesting “familiar” 

facets and facet conditions would help the user make a 

refinement decision without requesting additional facet 

conditions (by clicking the “More” hyperlinks in Figure 1a). 



For example, most users are more familiar with the ���	 facet 
than the ������� facet in Figure 1a. Most current solutions, 
including the ones employed by Amazon and eBay, try to 

address the facet conditions selection problem in an ad hoc 

manner by ranking the facet conditions using results 

cardinality or other hard-coded factors. 

2. Which facet conditions will lead to the tuples of interest in 

fewer navigation steps? For example, the ���� � ����� 
facet condition has the highest cardinality for the query result 

in Figure 1a, but should not necessarily be suggested since it 

does not significantly prune the query results, that is, it does 

not help reduce the faceted navigation steps. 

3. The overlap of the query results among the set of suggested 

faceted conditions is another critical concern, since a low 

overlap can reduce the facet conditions inspected and shorten 

the navigation. In Figure 1a, if most of the 
��
 � ������ 
cars were made in ���	 � 2001, it is not wise to suggest both 
facet conditions, because if the user chooses one of them in 

one navigation step, she would have to inspect the other in the 

next step anyway. 

We present the FACeTOR system that takes a cost-based 

approach to selecting the best set of facet conditions to suggest to 

the user at each navigation step. These facet conditions are 

selected using an intuitive cost model that captures the expected 

cost of navigating a query result. At each navigation step, 

FACeTOR first computes the facet conditions applicable to the 

query result. However, instead of showing all of them or ranking 

them by an ad hoc function, FACeTOR suggests a subset of these 

facet conditions based on an intuitive user navigation cost model, 

which considers factors including the user’s familiarity with the 

suggested conditions, their overlap, and the expected number of 

navigation steps. The suggested facet conditions are chosen such 

that they minimize the expected navigation cost until the tuples of 

interest are reached, although these are not known a priori. 

Recent work on faceted navigation of database query results 

[6,22] has the following limitations, which we address in this 

paper. In both works, the navigation algorithm selects one facet 

(or possibly multiple ones [22]) and displays all its facet 

conditions to the user. Instead, we suggest a mix of facet 

conditions from several facets, that is, our algorithm operates at 

the facet condition level and not the facet level. Further, our cost 

model more closely estimates the actual user navigation cost. 

These improvements introduce novel algorithmic challenges, due 

to the explosion of the search space and the interactive time 

requirement of exploration systems. This paper makes the 

following contributions: 

1. A complete framework for faceted navigation of structured 

query results (Section 2). 

2. Intuitive navigation and cost models that closely resemble the 

actions taken by the user during faceted navigation of query 

results (Section 3). 

3. The cost models introduced in Section 3 are necessarily 

probabilistic, given the uncertainty of user actions. We 

introduce these probability measures in the cost model 

(Section 3) and present methods of estimating these 

probabilities in Section 5. 

4. A theoretical modeling and analysis of the problem of 

selecting the best facet conditions to suggest at each 

navigation step; we prove that this problem is NP-Hard given 

our navigation model (Section 4). 

5. Two efficient and intuitive heuristics for the above problem 

(Section 6). 

6. An extensive experimental evaluation with two real datasets 

showing that FACeTOR outperforms state of the art systems 

(Section 7). 

7. A large-scale user study showing that FACeTOR decreases 

the user navigation time, which is proportional to the 

estimated navigation cost computed by our cost model 

(Section 8). 

We discuss related work in Section 9 and conclude in Section 10. 

(a) Initial Query Results and Suggested Facet Conditions (b) REFINE Action Effect (c) EXPAND Action Effect 

Figure 1. The FACeTOR Interface 



2. FACETOR FRAMEWORK 
The starting point of the FACeTOR framework is a result set that 

the user explores. 

Definition 1 (Result Set) A result set is a relation   with schema �! � �"#, … , "$�. Each attribute "% & �! has an associated active 
domain "��'("% ,  � of un-interpreted constants, including the 
null value. � 

The active domain "��'("% ,  � of an attribute "% under   is 
defined as the set of all constants returned by the query over   
projecting only "% [1]. The initial result set   could be the whole 
database or more realistically, the result of a keyword query. In 

this work, we assume that the user first submits a keyword query 

(e.g., "�����" in Figure 1a). The result of this query forms the 
initial result set  , which the user explores. At each step of a 
faceted navigation, FACeTOR classifies the tuples of a result set   according to their facets. Each attribute "% & �! of   
contributes a facet to the classification and, in turn, each facet 

contributes a set of conditions. 

Definition 2 (Facet Condition): Given a result set  , a facet 
condition is an equality predicate ): "% � �%, where "% & �! and �% & "��'("% ,  �. � 

The set of all possible facet conditions for a result set   is denoted 
as 
( �. 
Our running example considers a cars result set   whose tuples 
are classified by their ���	, 
��
, +,��	��	 
���	 and 37 more 
facets. As shown in Figure 1a, FACeTOR displays the name of 

each facet along with a list of facet conditions as hyperlinks, 

followed in parenthesis by the number of tuples in   satisfying the 
condition (cardinality). 

When the user clicks on a hyperlink corresponding to a facet 

condition )%, FACeTOR filters the result set   to the tuples that 
satisfy )%, thus yielding a new result set  - .  , and the faceted 
navigation proceeds to the next step where  - is now being 
classified. FACeTOR captures the progression of the faceted 

navigation using a query /, which is initially the identity query on 
the result set  . When the user clicks on a facet condition )%, then 
the equality predicate is added conjunctively to /, thus forming a 
refined query / 0 )%. 
For example, if on Figure 1a the user clicks on hyperlink 2003, 
FACeTOR executes the query / 0 ���	 � 2003 and filters the 
result set to the 200 tuples satisfying this facet condition. 

Subsequently, all facet conditions in 
( -0123456778� are 
displayed, as shown in Figure 1b. At each navigation step, 

FACeTOR suggests only a subset 
9 of all possible facet 
conditions in 
( -�. 
Definition 3 (Suggested Conditions): For a result set  -, a set of 
facet conditions 
9( -� . 
( -�, are suggested if ; ( -0<�<&=>(!?� �  -, that is, every tuple in  - satisfies at least 
one suggested condition. � 

In this work, we are interested in minimizing the overall expected 

navigation cost incurred by the user, by choosing the best set of 

suggested conditions for a given  -, without making any 
assumptions about the user’s preference over the tuples in  -. The 
navigation cost is based on an intuitive model of user navigation 

described next. 

Table 1. Symbol Reference 

Symbol Meaning �! The schema of the initial result set with attributes "#, … , "$   The initial result set. / The query formulated during a faceted navigation.  -  - .  , the result of a query / over  . ) A facet condition of the form "% � �@ . 
( -� All possible facet conditions for  -. 
("%� All possible facet conditions for attribute "%. 
9( -� 
9( -� . 
( -�, the suggested conditions given  -. A9!( -� The probability the user performs a SHOWRESULT 

action. A()� The probability the user performs a REFINE action by a 

facet condition ). AB("%� The probability the user prefers attribute "% over all other 
attributes. 

3. NAVIGATION AND COST MODELS 
The faceted navigation model of FACeTOR is formally presented 

in Section 3.1 and forms the basis for the navigation cost model 

defined in Section 3.2. In Section 3.3, we give the intuition behind 

the navigation cost model and discuss how it affects the choice of 

facet conditions FACeTOR suggests to the user. 

3.1 Faceted Navigation Model 
At each faceted navigation step, FACeTOR displays to the user 

the set of suggested conditions 
9( -� for the current result set  -. The user then explores  - by examining all conditions in 
9( -� and proceeds to the next navigation step by performing 
one of the following actions: 

1. SHOWRESULT(CD�: The user examines all tuples in the 
result set  -. If in Figure 1a the user chooses to stop 
navigation and read all the results, she would have to read a 

total of 789 result tuples and 21 labels. 

2. REFINE(D, E�: The user chooses a suggested condition ) & 
9( -� and refines query /, that is, / becomes / 0 ). 
The result of  +FGH+(/, ): 
��	 � 2003� is shown in 
Figure 1b. As a consequence of this action, the result set has 

now been narrowed down to 200 tuples and the new set of 

suggested conditions is available for this refined result set. 

3. EXPAND(IJ, CD� : The user is dissatisfied with (rejects) all 
suggested conditions in 
9( -�. Instead, she EXPANDs an 
attribute "% by clicking on its “More” hyperlink, which 
reveals the remaining facet conditions for "% in  -, and 
selects one of them to REFINE the query /. EXPAND occurs 
when the user is not familiar with any of the suggested 

conditions. The effect of EXPAND on ����� attribute is 
shown in Figure 1c, where the remaining facet conditions for ����� are revealed. She then selects one of the facet 
conditions in 
("%�\
9( -� and REFINEs the result set  -. 

The formal model of user navigation is presented in Figure 2. It is 

a recursive procedure and is initially called on the entire result set   and the identity query /, and terminates when the user finds all 
the tuples of interest, that is, when the user executes SHOWRESULT( -�. FACeTOR computes the result set  - and 
the suggested conditions 
9( -� at the beginning of each 
NAVIGATE step. 



NAVIGATE(/� 
1 Choose one of the following: 2     SHOWRESULT( -� 3     Examine all suggested conditions 
9( -� 4         Choose one of the following: 5             REFINE(/, )� 6                 / � / 0 ) 7             EXPANDs"% ,  -t 8                 Examine all remaining conditions in 
("%�\
9( -� 9                 Choose a condition )x & s
("%�\
9( -�t 10                 / y / 0 )x 11         NAVIGATE(/� 

Figure 2. Faceted Navigation Model 

3.2 Cost Model 
The cost model measures the navigation cost incurred by the user 

when exploring a query result set  -, using the navigation model 
described in Section 3.1. The navigation cost is the sum of costs 

of the actions performed by the user, that is, examining suggested 

conditions, SHOWRESULT, REFINE and EXPAND actions. 

The cost of examining all tuples in a result set  -, that is, the cost 
of SHOWRESULT( -�, is | -|, and the cost of examining all 
suggested conditions is }
9( -�}.We assume that the REFINE and 
the EXPAND actions have a cost ~ associated with them, that is, ~ is the cost of “clicking” on a suggested condition or executing 
an EXPAND action on the attribute "% & �!. 
If the exact sequence of actions followed by the user in navigating  - were known a priori, we could accurately determine the cost 
of navigation. Since this sequence is not known in advance, we 

estimate the navigation cost, taking into account the inherent 

uncertainty in the user navigation. To estimate the navigation cost, 

we introduce three probabilities that capture the uncertainty in 

user actions and are estimated in Section 5: 

• SHOWRESULT Probability ��C(CD�: This is the 
probability that the user examines all tuples in the result set  - and thus terminates the navigation. If no facet conditions 
are suggested, then A9!( -� � 1. 

• REFINE Probability �(E�: This is the probability that the 
user refines the query / by a suggested condition ) & 
9( -�. 

• EXPAND Probability ��(CD�: The probability that the user 
does not choose a suggested condition and instead performs 

an EXPAND action is A�( -� � ∏ (1 � A()��<&=>(!?� . 

Since the navigation model is recursive, the expected navigation 

cost can be estimated by the following recursive cost formula: 

)���(/� � A9!s -t · } -} � �1�A9!s -t� · 
� ~ � }
9s -t} � (1 � A�( -�� · 	����� �/, 
9s -t� �A�s -t · � AB("%� · �}
("%�\
9s -t} � 	����� �/, 
("%�\
9s -t��B�&9�

� (1� 
where 

	�����(/, 
� � �sA��4$()� · )���(/ 0 )�t<&=    (2� 
The first line of Equation 1 captures the fact that the user has two 

options, when presented with a set of suggested conditions. One is 

to execute a SHOWRESULT action with probability A9!( -� and 
cost | -|. The other is to execute a REFINE or EXPAND action 
with probability 1 � A9!( -�. The cost entailed by this last option 
consists of the following parts shown in the square brackets of the 

cost formula: 

1. A fixed cost of ~ of a REFINE action, that is, clicking on a 
facet condition. 

2. The user reads the suggested conditions with cost |
9( -�|. 
3. With probability 1 � A�s -t the user decides to REFINE. 

The cost of REFINE, shown in Equation 2, is the sum of all 

possible REFINE choices weighted by their probabilities. 

These probabilities are normalized to sum to 1, as follows: 

A��4$()� � A()�Σ<&=A()� 
4. With probability A�( -�, the user does not choose any of the 

suggested conditions and performs an EXPAND action 

instead (third line of Equation 1). With probability AB("%�, the 
user prefers attribute "% over all other attributes and 
EXPANDs it. She examines all the non-suggested conditions 

for "%, }
("%�\
9( -�} in total, chooses one of them and 
refines query /. The estimated cost for the last step is also 
given by the refine formula in Equation 2 above, where 
 � 
("%�\
9( -�. 

3.3 Implications of the Cost Model 
In this section, we discuss the implications of the cost model and 

give an intuition about the characteristics of facet conditions that 

are selected as the set of suggested conditions. Consider a sample 

result set  - shown in Figure 3. Also shown, are three alternative 
sets of suggested conditions (Figure 3a, 3b and 3c) selected from 

the set of all facet conditions 
( -�. 

CS(RQ)

RQ C(RQ)
Make Year State Color

t1 Honda 2001 NY Red

t2 Honda 2005 NY Green

t3 Honda 2001 NY Gold

t4 Honda 2005 NY Green

t5 Toyota 2005 NY White

t6 Toyota 2005 NY Black

Facet Condition P(c)

Make=Honda 0.8

Make=Toyota 0.7

Color=Red 0.1

Color=Gold 0.1

Color=Green 0.4

Color=White 0.1

Color=Black 0.1

State=NY 0.2

Year=2001 0.5

Year=2005 0.7

Make

•Honda (4)

Year

• 2005 (4)

Color

• Red (1)

•White (1)

•Green (2)

•Gold (1)

• Black (1) 

Make

• Toyota (2)

Year

• 2001 (2)

Color

•Green (2)

(a) (b) (c)
 

Figure 3. Result Set CD, All Facet Conditions �(CD�, and 
Three Alternative Sets of Suggested Conditions ��(CD� 

A naïve algorithm to find the optimal suggested conditions would 

compute the estimated cost of every possible set of suggestions 

and output the one with minimum cost. Which one of the 

alternative set of suggestions shown in Figures 3a, 3b and 3c has 

the lowest cost, and therefore is more likely to be selected by the 

navigation cost model? 



The suggested conditions shown in Figure 3a are highly selective, 

since each one of them appears in a small number of results (low 

cardinality). Therefore, a large number of such conditions are 

required to cover the result set  - causing the navigation cost to 
increase as the user now has to read all the labels before 

proceeding to the next navigation step. 

A set of suggested conditions where each condition has low 

selectivity (Figure 3b) also leads to a high overall expected 

navigation cost. Such conditions typically have a high overlap and 

do not effectively narrow down the result set and therefore, the 

user has to execute more REFINE actions to narrow down the 

result set. For example, refining by either ���� � ����� or ���	 � 2005, in Figure 3b, reduces the number of results from 
the initial six to four, and the resulting result set may need to be 

refined further before reaching the desired result(s). Conditions 

with low selectivity can potentially lead to redundant navigation 

steps. For example, refining by ����� � H� does not narrow 
down the result but still adds to the navigation cost. 

Based on the above discussion, we observe that the facet 

conditions selected by the cost model as suggested ones should 

neither have high nor low selectivity. The suggested conditions in 

Figure 3c are facet conditions with such desired characteristics. 

The conditions ���� � ��
���, ���	 � 2001 and 
���	 ��	��� are moderately selective and thus have minimum overlap 
and do not require a large number of conditions to cover  -. 
Another factor that increases the navigation cost is the EXPAND 

action, since the user can potentially see a large number of 

conditions, thereby increasing the navigation cost. The expected 

cost of EXPAND is multiplied by ∏ (1 �  A()��<&=>(!?� , which is 

minimized when all the conditions in 
9( -� have a high A()�. 
4. COMPLEXITY RESULTS 
In this section, we study the complexity of the Facet Selection 

problem. 

Problem 1 (Facet Selection): Given a query / and a result set  -, find the set 
9( -� of suggested facet conditions that 
minimizes the expected navigation cost for the NAVIGATE 

navigation model described in Section 3.1. 

We prove that this problem is NP-Hard, by showing that a 

simplified version of the problem is also NP-Hard. The Simplified 

Facet Selection (SFS) problem considers a simpler navigation 

model, NAVIGATE-SINGLE, defined next. 

NAVIGATE-SINGLE: In NAVIGATE-SINGLE, the system 

performs a single REFINE action, where the user randomly 

selects one of the suggested conditions, and then performs a 

SHOWRESULT action. The cost of NAVIGATE-SINGLE 

navigation is the cost to examine all suggested conditions 

displayed (|
9( -�|) plus the cost } -0<} of performing the 
SHOWRESULT action for the randomly-selected suggested 

condition ). 
Suppose that the dominant cost of our cost model is that of 

examining a suggested condition. That is, suppose the cost to 

examine a suggested condition is 1 and the cost of 
SHOWRESULT is 0. Also suppose that all attributes of  - are 
Boolean (0, 1) and that the suggested conditions in 
9( -� are 
always positive, that is, "% � 1. Recall that facet conditions only 
specify a single attribute. 

Theorem 1: The SFS problem is NP-Hard. � 

Proof Intuition: In this simplified problem we minimize the cost 

by computing the minimum number of facet conditions that 

partition the result set  - such that every tuple in  - satisfies at 
least one of these conditions. 

Proof: SFS is clearly in NP. To prove the NP-Hardness we reduce 

the HITTING-SET problem to the SFS problem. First, we define 

the HITTING-SET problem. 

An instance of the HITTING-SET problem consists of: 

• a hypergraph � � (�, +�, where � is a finite set of vertices 
and + � �+#, … , +�� is a set of hyperedges, that is, subsets of �, and 

• a positive integer � � |�|. 
The problem is to determine whether there is a hitting set � . � 
of size � such that �� & �1, … ��: � � +% � �. 
We reduce HITTING-SET to SFS as follows. A node �% in � 
becomes a facet condition "% � 1. A hyperedge +% & + becomes a 
tuple �% in the result set  -. +% connects the vertices corresponding 
to the attributes that have value 1 for the result �%. The solution of 
HITTING-SET translates naturally to a solution to NAVIGATE-

SINGLE and vice versa. � 

5. ESTIMATING PROBABILITIES 
In order to compute the expected navigation cost using the cost 

formula in Equation 1 (Section 3.2), the probabilities A9!( -�, AB("%� and A()� must be estimated. 
Estimating ��C(CD�, the probability that the user executes 
SHOWRESULT on a given result set  -. We use the information 
theoretic measure of Entropy to estimate A9!. The rationale 
behind this decision is that the user would choose to further refine 

the query / and narrow down the result set  - if the tuples in  - 
are widely distributed among all possible facet conditions 
( -�. 
The entropy of a result set  - distributed amongst the facet 
conditions in 
( -� is given by: 

+��	��
 � -, 
s -t� � � � s} -0<} H⁄ t lns} -0<} H⁄ t<&=(!?�  

where H � ∑ | -0<|<&=(!?�  is the sum of the number of tuples 

over all facet conditions. 

Since the value of entropy can be greater than 1, we normalize it 

with the maximum value of entropy for a given result set  - 
distributed over }
( -�} facet conditions. Entropy is maximal 
when H tuples are distributed equally amongst }
( -�} facet 
conditions, that is, each facet condition is satisfied by H/|
( -�| 
tuples. The total entropy of such a system is: 

+��	��
¢B£ � -, 
s -t� � � � H}
s -t}H<&=s!?t ln H}
s -t}H � ln}
s -t} 
Hence,   

A9!( -� � � ∑ } -0<}H ln } -0<}H<&=(!?�ln}
s -t}  



The above formula for A9! does not distinguish between the sizes 
of result sets. Intuitively, a user is very likely to perform a 

SHOWRESULT action if | -| is very small, and a REFINE 
action if | -| is very large. For these cases, we use upper and 
lower thresholds as follows: 

A9!( -� �
¤¥¦
¥§1                                                    , �� } -} � 100                                                    , �� } -} ¨ 50

� ∑ } -0<}H ln } -0<}H<&=(!?�ln}
s -t} , ����	©���
ª 

Estimating �I(IJ�, the probability that the user chooses attribute "% over all other attributes. AB("%� is a subjective measure of 
user’s preference and is estimated in multiple ways, such as 

eliciting them from users, as we did for this work, or learning 

from navigation patterns. We provide more details in Section 7.1. 

Estimating �(E�, the probability that the user REFINEs with a 
facet condition ). To estimate A()�, we fist use the attribute level 
probabilities AB("%� estimated above. Then, the individual values 
within an attribute are assigned REFINE probabilities 

proportionally to their frequency in the database. 

6. ALGORITHMS 
An optimal set 
9( -� of suggested conditions for a given  - can 
be naively calculated by considering at each navigation step all 

combinations of candidate facet conditions from 
( -� and 
recursively computing the cost formula in Equation 1. However, 

this naïve approach is exponential on the size of 
( -� since all 
combinations of conditions are considered at each navigation step. 

We present two heuristics to efficiently compute the best set of 

suggested conditions. The first, ApproximateSetCover (Section 

6.1), is inspired by an approximation algorithm for the weighted 

set cover problem [8], and attempts to find a relatively small set of 

suggestions that have a high probability of being recognized by 

users (high A()�). A drawback of this heuristic is that it does not 
closely resemble the cost formula in Equation 1, since it cannot 

incorporate the cost parameter ~ and the uncertainty in the cost 
expression. The second heuristic, UniformSuggestions (Section 

6.2), which follows Equation 1 more closely, greedily selects each 

facet condition ) assuming that all future suggestions have 
identical properties as ). In Section 7, we present an evaluation of 
the two heuristics and show that both of these heuristics generate 

better faceted conditions than the state of the art. 

6.1 ApproximateSetCover Heuristic 
For a given result set  - and all its facet conditions 
( -�, the 
objective is to compute the set of suggested conditions 
9( -� 
such that the expected navigation cost, based on our cost model 

for user navigation, is minimal and the set 
9( -� covers  -, that 
is, ;  -0< �  -<&=>(!?� , where each facet condition ) covers } -0<} results in  -. 
This problem closely resembles the well-known NP-hard 

weighted set cover problem – given a set system («, ��, such that ; �¬&9 � «, and weights ©: � ­ ®¯, find a subfamily ° . � such 
that ; �¬&° � « and ∑ ©(��¬&°  is minimal. The approximation 

algorithm for weighted set cover [8], adds at every step the set � 
that maximizes the number of newly covered elements divided by 

the weight ©(��. 

In order to apply the approximation algorithm for weighted set 

cover to our problem, we need to define the weight function ©: 
( -� ­ ®¯. By observing the cost formula in Equation 1, 
each facet condition in the suggested set 
9( -� should have a 
high probability A()� of being selected for REFINEment. 
Otherwise, the probability that the user does not select a suggested 

condition and chooses to execute a EXPAND action would be 

high, resulting in a high overall cost. To achieve this objective, we 

set the weight function to be: ©: ) & 
( -� ­ 1/A()� 
Note that the overlap among conditions and number of elements 

covered by a selected condition do not need to be part of ©, since 
they are considered directly in the approximation algorithm. 

Algorithm: ApproximateSetCover(/,  -� 
Input: A query /, a result set  -  
Output: The suggested conditions 
9( -� . 
( -� 
1 
9( -� y � 
2 ± y �  // ± are results covered so far 
3 while ± �  - // while not all results covered 
4  ) y �	�'�,<&=(!?�sA()� · | -0<\±|t 
5  
9( -� y 
9( -� ³ �)� 
6  ± y ± ³  -0<  
7  / y / 0 ) 
8 return 
9( -� 

Figure 4. ApproximateSetCover Heuristic 

Figure 4 presents the ApproximateSetCover heuristic, which is an 

adaptation of the weighted set cover approximation algorithm [8] 

using the above defined weight function, and has a running time 

of ´(|
( -�| · | -|� and an approximation ratio of ´(log(|
( -�|��. Note that this approximation ratio assumes that 
the quantity we want to minimize is the sum of the weights 

(1/A()�) of the selected conditions. However, the real objective 
of ApproximateSetCover is to minimize the navigation cost, 

which is much harder to bound, given that ApproximateSetCover 

does not capture all the details of Equation 1. Also note that this 

approximation ratio can be large if the number of conditions in 
( -� is large. However, the number of facet conditions is 
generally small and this algorithm performs reasonably well in 

practice, as demonstrated by the experiments in Section 7.  

Example Figure 3b shows the result of the ApproximateSetCover 

heuristic on the result set Rµ in Figure 3. The algorithm requires 
two iterations of the while loop (lines 3-7) before terminating with 

the set of suggested conditions in Figure 3b. In the first iteration, 

the algorithm selects Make � Honda, since this facet condition 
covers 4 results and has the maximum value of A()� · | -0<| �3.2 amongst all the conditions in 
( -� and V is empty. In the 
next iteration, two results (t# & t8� remain uncovered and are 
covered by facet condition Year � 2005. � 

6.2 UniformSuggestions Heuristic 
In this heuristic we follow the cost formula in Equation 1 more 

closely, which leads to a more robust heuristic as we show in 

Section 7. As mentioned earlier, computing the optimal suggested 

conditions involves recursively evaluating Equation 1 for each 

combination of facet conditions in 
( -�. This translates to a very 
large (in both height and width) recursion tree. 

UniformSuggestions replaces this recursion tree with a set of very 



small recursion trees, one for each condition in 
( -�. For that, 
we evaluate the expected cost of each facet condition 

independently, assuming that all future suggested conditions will 

have identical properties, and then select the facet conditions with 

minimal expected cost, until all results in  - are covered. 
In particular, the uniform-condition heuristic assumption states 

that for a given condition ) & 
( -�, evaluate the navigation cost 
using Equation 1, while assuming that every other condition in 
( -� has the same characteristics as ). The characteristics of ) 
are (a) its probability A()�, and (b) the ratio 	()� � | -0<|/| -| 
of the uncovered results that ) covers. This heuristic assumption 
reduces the search space of suggestions to }
( -�} as each 
condition is now evaluated independently. It also allows us to 

simplify the cost formula in Equation 1. 

If each suggested condition in 
9( -� covers a ratio 	 of the 
results in  -, we need a total of � � 1/	 conditions to cover all 
the results in  -. Also, REFINEment by ) narrows down  - to an 
estimated | -|/� number of results. On the other hand, if the user 
does not select a suggested condition and instead EXPANDs an 

attribute "%, she views an additional |
("%�\
9( -�| º |
("%�| 
facet conditions. Also, in the absence of any prior knowledge 

about the selectivity of facet conditions in 
("%�, we assume that 
each )x & 
("%� narrows down  - to an estimated } -}/|
("%�|. 
Thus, we can simplify the recursion in Equation 1 as follows: 

)���s), } -}t � A9!s -t · } -} � �1�A9!s -t� · 

»¼
¼¼
½~ � � � s1 � A�()�t · � �A��4$()� · )���s), } -}/�t��

%5# �
A�()� · � AB("%� · �|
("%�| � 	�����s
("%�, } -}t�B�&9� ¾¿

¿¿
À  (3� 

where A�()� � s1 � A()�t�
 and 

	�����s
("%�, } -}t � � �A��4$()x� · )���s)x, } -}/|
("%�|t�<Á&=(B��    (4� 
Observe that instead of /, the cost function in Equation 3 above 
uses ) and } -} as arguments for this heuristic, since a cost is 
computed for each ), and only the number of results | -| is 
important. The parameter / in the original cost formula (Equation 
1) captured the query progression with REFINE actions, which is 

not required in this heuristic, since only the result pruning at each 

step is important and not the query itself. 

In Equation 3 above, A��4$()� is the normalized probability of 
following one condition of type ). Since all � suggested 
conditions have the same A()�, then A��4$()� � 1 �⁄ . Therefore 

the cost component in Equation 3 for navigating all � suggested 
conditions can be rewritten as: 

� A��4$()� · )���s), } -} �⁄ t ��
%5# )���s), } -} �⁄ t 

By a similar argument, and since every facet condition )x in 
Equation 4 has the same characteristics as ) in Equation 3, we can 
simplify Equation 4 as follows, where "< is the attribute of facet 
condition ): 	�����s
("%�, } -}t � |
("<�| � )���s), | -|/|
("<�|t 

By the uniform-condition heuristic assumption, all the attributes 

of suggestions have the same characteristics. Therefore, we can 

reasonably assume that each attribute "% has AB("%� � 1/|�!| �AB("<�. Hence, the following simplification is possible: 
� AB("%� · 	�����s
("%�, } -}tB�&9�

� |
("<�| � )���s), | -|/|
("<�|t 
Based on the above, the cost formula in Equation 3 can now be re-

written as: )���s), } -}t
�

¤¥¦
¥§} -}                                                                             , } -} Â �A9!s -t · } -} � �1 � A9!s -t� ·

Ã ~ � � � s1 � A�()�t · )���s), } -}/�t �A�()� · �|
("=�| � )���s), } -}/|
("<�|t�Ä  , } -} Å �ª (5� 
The recursion terminates when the size of the result } -} drops 
below a threshold �. Since a navigation should be able to narrow 
down the result to a single tuple, we set � to 1. 
Algorithm: UniformSuggestions(/,  -� 
Input: A query /, a result set  -  
Output: 
9( -� . 
( -�, the suggested conditions. 
1 /Á y /; 
9s -t y �;  � y  - // �: uncovered results 

2 A9! y A9! � -, 
s -t� 

3 while � � � do 

4     foreach ) & 
( -� 

5         � y |Y| |Y �  -Á0<|⁄  

6         A9! y A9!s -t 7         � y |�| 8         compute )���(), �� using Equation 5 
9     endFor 

10     Let )'�� be the suggestion with min ���
���(), |�|� 

11     
9( -� y 
9( -� ³ )'�� 

12     /x y / 0 )'�� 

13     � y �\ -Á0<$%� 

14     
s -t y 
s -t\�)'��� 

15 endWhile 

16 return 
9( -� 

Figure 5. UniformSuggestions Heuristic 

The algorithm, based on the uniform-condition heuristic 

assumption is presented in Figure 5. The algorithm computes the 

estimated )��� of each facet condition using the simplified cost 
formula in Equation 5 (lines 4-9), and selects the condition with 

the minimum )��� ()'��) to be added to the set of selected 
conditions (lines 10-11). Next, we remove from the set ± of 
uncovered results the results covered by )'��. The algorithm 
terminates when all the results in  - are covered. 
The result of applying the UniformSuggestions heuristic 

algorithm to the result set  - in Figure 3 is shown in Figure 3c. 
Recall from the discussion in Section 3.3 that the cost model 

selects conditions with moderate selectivity and high A()�. Under 
our heuristic assumption, a facet condition ) is evaluated under 
the assumption that all conditions in 
( -� have the same 
characteristics as ). Therefore, a condition with moderate 
selectivity and a high A()� has a lower cost when evaluated using 
the simplified cost formula in Equation 5 and these are just the 

conditions selected by the algorithm. 



7. EXPERIMENTAL EVALUATION 
In this section, we present a thorough evaluation of the algorithms 

and heuristics described in Section 6. We show that FACeTOR 

achieves a significant decrease in navigation cost compared to 

current approaches. The experiments are based on a large-scale 

simulation of user navigations presented in Section 7.2. The 

metric used is the average navigation cost as defined by the cost 

formula in Equation 1. In Section 7.1, we describe the 

experimental setup, including the choice of datasets. Section 7.3 

measures the time requirements of our heuristics and shows that 

they can be used for real-time interaction. 

7.1 Experimental Setup 
The primary goal of these experiments is to evaluate the 

effectiveness of the system in decreasing the user navigation cost 

for a set of query results. To this end, we compare the two 

heuristics presented in Section 6 to each other and to the current 

state of the art algorithm, which is the single-facet-based-search 

[22], henceforth called INDG. 

The experiments reported in this section were conducted on a Dell 

Optiplex machine with 3GHz CPU and 3GB of RAM. We use 

MySQL as our database and Java for the algorithms. 

7.1.1 Datasets 
We evaluate FACeTOR on two datasets, UsedCars and IMDB. 

We assume that the numeric attributes have been appropriately 

discretized. The UsedCars database was downloaded from 

Yahoo! Autos site and contains 15,191 car tuples with 41 

attributes/facets, of which 7 are categorical, 3 numerical, and the 

rest Boolean. 

From the IMDB dataset, we extracted a total of 37,324 movies. 

For our experiments we only leveraged the movie, actors, 

directors, ratings and genre data. Note that actors, directors and 

genres are set-valued attributes, that is, each movie can have 

multiple actors and/or directors. These set attributes can be 

problematic in a faceted search and navigation settings as these 

techniques are biased towards results that have a large number of 

facet conditions [9]. We use the Binarization technique presented 

in [9] in dealing with set-valued attributes. 

7.1.2 Data Pre-processing 
From the initial dataset relation  , we extract all the candidate 
facet conditions 
( � and store them in a relation with schema Â ���	�Ç���, È����, )���� Å, where )���� stores the number of 
tuples in   that satisfy the facet condition ) with the given ���	�Ç���/È���� combination. This value is used to compute the 
estimate of A()� of each facet condition ) & 
( �. 
Computation of �I(IJ� This is the probability that the user 
knows or likes attribute "%. We estimated this probability using a 
survey of 10 users (students and faculty in our institutions) who 

rated each attribute "% in the dataset on a scale from 0 to 1. These 
values are taken to be the user preference AB("%� for attribute "%. 
Computation of �(E� As defined in Section 3, A()� is the 
probability that the user executes a REFINE action on suggested 

condition ). A user would choose to REFINE by ), if she knows 
or likes the attribute of ) and is also familiar with the value of the 
attribute in ). Therefore, we use a two-pronged approach to 
compute A()�. To estimate the popularity of a value of a facet 
condition, we computed the frequency �	�É("% . È%� of each value 
for each attribute in  . Then, we multiply each frequency with the 

attribute preference to obtain the attribute/value preferences A(): "% � È%� � �	�É("% . È%� · AB("%�, which we then normalize 
by dividing by the maximum frequency for each attribute. 

Table 2. Query Workload 

 Query #Results #of Facet Conditions 

UsedCars DataSet 

1 honda 789 234 

2 toyota 1470 366 

3 dallas 2932 990 

4 miami 211 230 

5 coupe 599 334 

6 sedan 1693 524 

7 2000 896 641 

8 2004 3711 1124 

9 black 2391 972 

10 gold 709 508 

IMDB DataSet 

11 baldwin 112 1545 

12 oscar 189 2141 

13 love 415 2989 

14 American 111 1096 

15 history 272 2716 

16 white 284 3058 

17 black 221 2327 

18 time 145 907 

19 john and 2007 391 4545 

20 action and 2007 272 2601 

 

7.1.3 Experimental Methodology 
For each dataset, IMDB and UsedCars, we select a number of 

keyword queries (see Table 2) whose results form the initial result 

set  , and a random result tuple as the target for navigation for 
each query. Next, we measure the number of navigation actions 

(REFINE/EXPAND actions, facet conditions displayed and 

results viewed) incurred before reaching the target tuple as the 

navigation cost for the query. In our system, the target tuple can 

be reached by multiple navigations. For example, tuple �Ê in the 
result set of Figure 3 can be reached by REFINEing by any one of 

the two conditions in Figure 3b. 

Since, the user’s navigation cannot be known in advance, we 

consider an evaluation approach that considers both these 

navigation paths. To account for uncertainty in user navigation, 

we use a guided randomized simulation of user navigation. In this 

simulation, we randomly select one of the facet conditions ) & 
9( -� for navigation. The probability that the agent selects a 
condition ) is proportional to A()�, the probability that the user 
would know or likes the facet condition ). The simulation is 
guided in the sense that it only follows the paths that lead to the 

target result. For example, if the agent encounters the two 

suggestions in Figure 3b and the target is tuple �8, the simulation 
would choose either ���� � ����� or EXPAND (“Don’t 
Know” for INDG). The probability of choosing EXPAND is ∏ (1 � A()��<&=>(!?� , where 
9s -t are the suggested conditions. 
If an EXPAND action is chosen, the agent selects an attribute "% & �! with probability AB("%�, and selects a condition )Á & -("%�. In the UsedCars dataset, there is only one condition that 
can be chosen, since the facet conditions on an attribute partitions 

the result-set completely. However, in the IMDB dataset, there 

can be multiple conditions that can be followed. In this case the 

agent chooses a condition with probability proportional to A()Á�. 



We execute the navigation for each query 1000 times using this 

simulation technique and average the cost over the individual 

navigations. We also report the average number of times each 

navigation action is executed during the simulation. 

The navigation cost is sensitive to the constant ~ according to the 
cost function in Equation 1. Varying these constants changes the 

set 
9( -� for UniformSuggestions, but not for INDG or 
ApproximateSetCover, since these algorithms do not consider ~. 
Intuitively, ~ denotes the patience of the user towards suggestions 
generated by the system. If the user sees a small number of 

conditions she would have to execute more REFINE actions to 

reach the result. Also, the chance that she would have to execute 

the EXPAND action also increases. Thus by setting ~ to a large 
value the user should typically see more suggestions per REFINE 

and vice versa. We experiment with different values of ~ and 
observe the effect on the overall navigation cost for the UsedCars 

query workload in Table 2. We also compare the number of 

suggested conditions generated (on average) and the number of 

REFINE actions. 

We compare our approach with the current state of the art INDG 

algorithm [22]. This algorithm constructs a decision tree that 

partitions the result set  - by a facet (attribute) at each level. The 
aim is to minimize the average depth of the decision tree in 

reaching the results. The user is presented with all the facet 

conditions on the attribute that forms the root of the decision tree. 

The system proposes to pre-compute the decision tree for a 

predefined set of queries. The navigation in these cases will be 

essentially fixed for a given query and does not depend on user 

refinements. To ensure fairness, we modify the approach to re-

compute the decision tree at each REFINE step, even though this 

is computationally expensive. 

7.2 Experiments with Navigation Cost 
The average navigation costs for the INDG, 

ApproximateSetCover and UniformSuggestions algorithms for the 

UsedCars queries in Table 2 are shown in Figure 6a. As seen in 

the graph, the navigation cost incurred by following our approach 

leads to significant savings in cost as compared to the existing 

approach. The INDG algorithm ignores the cost of inspecting 

suggested conditions and thus produces on average a large 

number of suggestions at each navigation step. 

Figure 6b shows some of the individual components of the total 

cost for Figure 6a, that is, the average number of REFINE actions, 

of EXPAND actions for ApproximateSetCover and 

UniformSuggestions and of “Don’t Know” actions for the INDG 

algorithm. Also shown on top of the bars in Figure 6b are the 

average numbers of suggestions per navigation step. As expected, 

the INDG algorithm has very few REFINE and “Don’t Know” 

actions, but reveals a large number of facet conditions in each 

navigation step, resulting in high total cost. 
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Figure 7. Average Overlap per Navigation Step for the 

UsedCars Dataset, for Ë � Ì 
The average cost incurred by UniformSuggestions algorithm is 

less compared to ApproximateSetCover. ApproximateSetCover 

has a higher number of REFINE and EXPAND actions as 

compared to UniformSuggestions, even though the average 

number of suggestions at each navigation step is comparable. In 

each iteration, the greedy ApproximateSetCover algorithm selects 

a small set of facet conditions with a high value of A()� that also 
cover a large number of uncovered results. These suggested 

conditions have thus a low selectivity and therefore tend to have a 

high degree of overlap among the suggested conditions, as shown 

in Figure 7, thereby reducing the effectiveness of REFINE 

actions. Thus, the user has to perform many REFINE actions in 

order to reach the target result. Also, since the number of 

suggestions is small, the chance that the user executes an 

EXPAND action is also significant. These EXPAND actions are 

costly, since the user now has to read a (potentially) large number 

of facet conditions. 

Figure 6. For the UsedCars Dataset: (a) Average Navigation Cost, and (b) Average Number of REFINE and EXPAND Actions, and 

Average Number of Suggested Conditions per Navigation Step (numbers on top of the bars), for Ë � Ì 
(a) (b)
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Figure 8. Average Navigation Cost for Ë � Í and Ë � ÌÎ 
(UsedCars Dataset) 

Figure 8 shows the effect of increasing ~, the cost of executing a 
REFINE. As expected, the average overall cost increases. The 

UniformSuggestions heuristic adapts to a changing value of ~, 
whereas the ApproximateSetCover heuristic and INDG do not. 

Therefore the cost of UniformSuggestions increases at a slower 

rate than the other two algorithms. This is primarily because, for a 

higher ~, UniformSuggestions generates more suggestions per 
REFINE/EXPAND. While INDG is insensitive to ~, it reveals a 
large number of labels, has very few REFINE/EXPAND actions, 

and therefore the overall cost increases at a slow rate. 

The results of IMDB workload queries in Table 2 are shown in 

Figure 9. The INDG algorithm assumes that the facet 

classification on an attribute partitions the result set. This is not 

true in our IMDB dataset where a single movie can be classified 

into multiple actors. Therefore, we cannot evaluate the INDG 

algorithm for this dataset. As in the UsedCars workload, the 

UniformSuggestions heuristic outperforms ApproximateSetCover. 

Also, the observations for the number of EXPAND and REFINE 

actions and the number of suggested conditions generated are also 

similar to those for the UsedCars dataset. However, the 

navigation cost with the UniformSuggestions algorithm is much 

lower than ApproximateSetCover. A movie in the IMDB dataset 

can be classified into a large number of facet conditions. For 

example, each movie can have multiple actors or directors or 

genres. Therefore executing an EXPAND action reveals a very 

large number of facet conditions (the number on top of bars in 

Figure 9b), thereby significantly increasing the navigation cost. 

7.3 Execution Time Evaluation 
This experiment aims to show that UniformSuggestions is fast 

enough to be used in real-time. The average execution time of 

UniformSuggestions per REFINE action for the queries in Table 2 

(UsedCars dataset) is shown in Figure 10. The execution time for 

this heuristic depends primarily on the number of facet conditions 

in the result set  -. As the number of facet conditions decreases, 
as is the case towards the end of navigation, the performance of 

UniformSuggestions improves dramatically. In the interest of 

space, we omit reporting these values, as well as the results for 

ApproximateSetCover which, given its simplicity, is much faster. 
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Figure 10. Average Execution Time of UniformSuggestions 

Heuristic (UsedCars dataset & Ë � Ì) 
8. USER EVALUATION 
In this section, we present the results of a large scale user study 

we conducted to compare the user experience with FACeTOR and 

other state of the art interfaces. We measure the following: (a) the 

actual time it took users to navigate to designated target tuples 

using different interfaces, (b) how realistic is our cost model, by 

studying the relationship of the actual time (actual cost) with the 

estimated cost as computed by the cost formula in Equation 1, and 

(c) the users perception of the faceted interfaces through a 

questionnaire. By comparing the actual navigation time to the 

users’ perception, we study if lower actual time corresponds to 

more intuitive (cognitively easier) interfaces or if the users’ 

familiarity with some interfaces skews their opinion. 

The results show that FACeTOR achieves significant savings in 

the effort required to navigate the query results, both in terms of 

actual time and estimated navigation cost. Through the 

questionnaire, a large majority of users also confirmed that the 

FACeTOR interface is intuitive and rated it higher in terms of 

quality of suggestions as compared to other interfaces.  

Setup We constructed 8 randomly created result sets of 1000 

tuples from the UsedCars dataset and for each one we created a 

task that involves locating a set of 3 or fewer target tuples (cars), 

which satisfy a set of attribute/value conditions. For each one of 

Figure 9. For the IMDB Dataset: (a) Average Navigation Cost, and (b) Average Number of REFINE and EXPAND Actions, and 

Average Number of Suggested Conditions per Navigation Step (numbers on top of the bars), for Ë � Ì 
(a) (b)
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the 8 result sets, we showed the requested conditions to the users 

and asked them to locate the target tuples using three interfaces: 

• FACeTOR,  

• Amazon-Style, which suggests at most 5 facet conditions with 

the highest cardinality for each attribute, and  

• One-attribute-at-a-time INDG [22], where an attribute is 

selected at each step and all its conditions are displayed.  

We deployed our system as an Amazon Mechanical Turk [3] task 

and collected a total of 37 valid responses. 
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Figure 12. Average # of Suggestions and Actions 

Actual Time Figure 11 shows the actual time taken by users to 

navigate each of the eight result sets using the three interfaces. 

Also shown is the average actual time for each interface. As 

shown, FACeTOR speeds up the navigation by 18% and 37% 

over Amazon-Style and INDG respectively, even for relatively 

small result sets of 1000 tuples and short navigations consisting of 

only 4 REFINE actions (Figure 12). This is primarily because 

users spend less time in reading suggested conditions and 

deciding which one to follow next, as evidenced by Figure 12. 

FACeTOR shows 36% fewer suggestions than Amazon-style and 

57% fewer suggestions than INDG, while it requires the same 

number of REFINE and EXPAND actions (on average) to reach 

the target tuples. This is an indication of high quality suggestions 

provided by FACeTOR. 
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Figure 13. Actual Time vs. Estimated Navigation Cost 

Estimated Cost Figure 13 displays the data points of actual time 

vs. estimated cost, as computed by Equation 1, for the eight result 

sets for the three interfaces. Based on these data points, Figure 13 

also shows the trend line between actual time and estimated 

navigation cost for each interface. We observe that the actual time 

is linearly proportional to the estimated navigation cost for all 

three interfaces, which shows that our cost model is realistic. 
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Figure 14. Users Perception (Questionnaire) 

Users Perception The study also included a questionnaire where 

we elicited the users’ opinion on various aspects of the three 

interfaces, including the ease of use, size and intuitiveness of 

suggested conditions and their preferred choice of interface. The 

results of this survey are shown in Figure 14. 92% of users said 

that they thought the suggestions presented by FACeTOR at each 

step made the task of locating the target tuples easier (Figure 14a), 

compared to 89% for Amazon-style and 40% for INDG. A large 

majority of users (92%) also said that the suggestions provided by 

FACeTOR had a low “cognitive dissonance” (Figure 14b) in the 

sense that it was very easy (45%) or easy (46%) to decide which 

suggestion to follow next. The corresponding cumulative 

percentages for Amazon and INDG were 81% and 54% 

respectively. 

We also asked the users if the number of suggestions provided by 

the interfaces were adequate (Figure 14c). A significant 

percentage (30%) said that FACeTOR provided too few 

suggestions at each navigation step, indicating that users prefer 

more choices even if it means an increase in absolute navigation 

cost. Since FACeTOR is customizable to user's navigation 

patterns, this could easily be remedied by increasing the value of 

the constant ~ as discussed in Section 7.1. 
9. RELATED WORK 
Ranking Ranking could be applied in conjunction with a faceted 

interface. Chaudhuri et al. [7] use the unspecified attributes and 

apply Probabilistic Information Retrieval principles to rank the 

results of a database selection query. Various ranking techniques 

have also been proposed for keyword search on structured 

databases [2,17] based on the size and relevance of the results. 

Faceted Search on Structured Data Faceted search is employed 

by major e-Commerce websites (Amazon, eBay) that typically 

display all the facet conditions applicable to the current set of 

query results. If too many values are available for a facet, then the 

most popular are displayed, and a “more” button reveals the rest. 

In contrast, our approach displays only a subset of applicable facet 

conditions chosen to minimize the overall navigation cost. English 

et al. [13] was one of the first to introduce faceted search and 

discusses facets from a user interface perspective. 

Our work is closest to the works of Chakrabarti et al. [6] and Roy 

et al. [22], which also use a navigation cost based approach for 

faceted navigation. In particular, FACeTOR adopts ideas from 

both works and addresses their key shortcomings. In both these 



works, the navigation algorithm selects one attribute (or possibly 

multiple attributes [22]) and displays all the values of these 

attributes to the user. Alternatively, a text box could be displayed 

for each selected attribute [22], but we believe that this is 

impractical, given that the user would already have specified all 

known values in the original query. Our approach differs from 

these works, because at each navigation step, we display a mix of 

facet conditions from several attributes, that is, our algorithm 

operates at the attribute value level and not the attribute level. 

Moreover, facet conditions suggested by FACeTOR are selected 

so that the overlap of the sets of results they cover is minimized. 

The user does not have to choose between facet conditions that 

could lead to the same set of results. 

Ben-Yitzhak et al. [4] focuses on providing additional qualitative 

information for each suggested facet to help users better choose a 

condition. For instance, they may show the average price for each 

author facet condition. Their work is complementary to ours, 

since we could use their algorithms to display additional 

information for each suggested condition. 

Keyword-Based Faceted Search and Query Refinement The 

GrowBag project [12] and Sarkas et. al [23] suggest additional 

search terms based on the co-occurrence patterns of these terms in 

the query result. The GrowBag algorithm[12] computes higher 

order co-occurrences of terms in the document collection and 

suggests terms appearing in the neighborhood of each search term 

as refinement suggestions whereas [23] suggests terms that co-

occur with search terms and narrow down the result-set to 

interesting subsets using the surprise metric. Dakka et al. [10,11] 

propose using external resources like Wikipedia to find the best 

keywords to suggest to the user. [10] uses a greedy algorithm to 

select the set of conditions that fit in the screen and cover the 

maximum number of results. However, in contrast to FACeTOR, 

they do not use a navigation cost model to minimize the expected 

navigation cost. Our work is also related to query refinement 

systems [20,25]. [25] recommends new terms for refinement such 

that the recall of the resulting query is maximized, whereas [20] 

uses relevance judgment feedback on the results to refine the 

query. Our approach also suggests facet conditions to refine the 

query, but we use the navigation cost as metric. 

Our navigation model is similar to BioNav [18], which uses the 

ontological annotations of PubMed publications to create a 

navigation tree. A key difference is that in BioNav, there is a 

given concept hierarchy [19], which prunes the search space. In 

contrast, there is not such tree in FACeTOR, which makes the 

selection of a set of faceted conditions harder. 

OLAP A faceted interface can be viewed as an OLAP-style cube 

over the results. Wu et al.[26] generate hierarchical partitions over 

the query results based on a cost model for user navigation and 

display this hierarchy to the users. The interestingness of group-by 

aggregations is used to rank candidate aggregations to display. 

10. CONCLUSIONS 
Faceted navigation is widely used to avoid information-overload 

experienced by a user navigating query results. However, the 

number of facet conditions encountered during faceted navigation 

tends to be large thereby increasing the burden on the user. Our 

system addresses this problem by selectively showing a subset of 

the available facet conditions. The suggested conditions are 

selected based on an intuitive cost model of user’s navigation that 

attempts to minimize the expected navigation actions by hiding 

uninteresting or ineffective conditions. We provide feasible 

solutions for this problem and demonstrate their effectiveness by a 

thorough experimental evaluation and a user study. 
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