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ABSTRACT
The increasing complexity of enterprise databases and the
prevalent lack of documentation incur significant cost in
both understanding and integrating the databases. Exist-
ing solutions addressed mining for keys and foreign keys,
but paid little attention to more high-level structures of
databases. In this paper, we consider the problem of dis-
covering topical structures of databases to support semantic
browsing and large-scale data integration. We describe iDisc,
a novel discovery system based on a multi-strategy learn-
ing framework. iDisc exploits varied evidence in database
schema and instance values to construct multiple kinds of
database representations. It employs a set of base cluster-
ers to discover preliminary topical clusters of tables from
database representations, and then aggregate them into fi-
nal clusters via meta-clustering. To further improve the
accuracy, we extend iDisc with novel multiple-level aggre-
gation and clusterer boosting techniques. We introduce a
new measure on table importance and propose an approach
to discovering cluster representatives to facilitate semantic
browsing. An important feature of our framework is that
it is highly extensible, where additional database represen-
tations and base clusterers may be easily incorporated into
the framework. We have extensively evaluated iDisc using
large real-world databases and results show that it discovers
topical structures with a high degree of accuracy.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Data Mining

General Terms
Algorithms, Design, Experimentation, Performance

Keywords
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1. INTRODUCTION
A large enterprise typically has a huge number of databases

that are increasingly complex [6, 16]. For example, the
database for a single SAP installation might now contain
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hundreds or even thousands of tables, storing several ter-
abytes of data [30]. To make things worse, the documenta-
tion and metadata for these enterprise databases are often
scattered throughout the IT departments of an enterprise—
they are incomplete, inaccurate, or simply missing [20]. In
fact, a recent study [19, 16] indicates that up to 70% of
a data architect’s time is actually spent on discovering the
metadata of databases. Thus, the scale of the databases
along with the prevalent lack of documentation, make it a
daunting task for data architects and application develop-
ers to understand the databases and incur significant cost in
integrating the databases [26, 16].

To illustrate these challenges, consider a data architect
who tries to understand and integrate two large Human-
Resource databases HR2 and HR3, shown in the source and
target panes of Figure 1.a respectively. These databases
are taken from a real-world scenario described in Section
6. Suppose that HR2 has 200 tables, HR3 has 300 tables,
and on the average there are 10 attributes per table. Both
databases were designed by contractors and have been in
service for several years. The designers left the company
but did not leave any design documents. Furthermore, the
implementation of the databases might not be consistent
with the design. For example, the referential relationships
of tables often are not enforced in the databases, due to
varied reasons including the cost of enforcing the constraints
[10, 28]. All these make it extremely difficult for the data
architect to understand, reverse-engineer, and integrate the
databases.

A key step in integrating the databases is to identify the
semantic correspondences or mappings among the attributes
from different databases [25, 12]. The scale of the databases
again poses serious challenges to this schema matching task.
Existing matching solutions typically attempt to find map-
pings between every two attributes [25, 12, 2]. This all-to-all
approach is based on the assumption that the databases are
small and all attributes in one database are potentially rele-
vant to all attributes in another database. This assumption
might not hold for large databases [26]. For example, ta-
bles in both HR2 and HR3 may be naturally divided into
several subject areas or topics such as employee and claim,
and the tables from different subject areas are likely not
very relevant. As a result, the all-to-all approach is ineffi-
cient in that it requires 6M attribute-level comparisons, and
inaccurate in that it may match many attributes from ir-
relevant tables. To illustrate, arrows in Figure 1.a indicate
tables whose attributes are matched by this approach. (To
avoid the cluttering, not all arrows are shown.) For exam-
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(a) Without the topical structures (b) With the topical structures

Figure 1: Understanding & integrating large databases

ple, a false mapping is discovered between attribute emp id
of table employee in HR2 and labor claim id of lbr clm (labor
claim) in HR3, which contain very similar data values.

To address these challenges, we consider the problem of
discovering the topical structure of a database that reveals
how the tables in the database are organized based on their
topics or subject areas. Conceptually, each topic or subject
area comprises a group of closely related entities, where each
entity may be represented by multiple tables in the database
(e.g., due to normalization).

The topical structure of a database provides an intuitive
way of browsing the semantic content of the database, and
helps users to quickly find relevant information in a large
database. For example, Figure 1.b shows the tables in HR2
and HR3 organized by their topics, where each topic is la-
beled with the name of the most representative table among
all the tables on that topic (details are given in Section 5).
For example, in HR2, the eight tables on the employee in-
formation are grouped under the topic employee.

Knowing topical structures of databases also enables a
new approach to matching large database schemas that is
both more scalable and more effective than the previous
all-to-all approach. Specifically, the matching of two large
schemas can now be done in a top-down, divide-and-conquer
fashion. First, we find similar topics in two databases, where
each topic may be simply represented as a text document,
e.g., comprising tokens in table names, attribute names, and
data values from the tables on that topic. Suppose that HR2
has 20 topics and HR3 has 30 topics. This step involves
only 600 comparisons (between text documents), a huge sav-
ing from the 6M attribute-level comparisons required by the
previous approach. To illustrate, Figure 1.b shows several
similar topics discovered between HR2 and HR3, indicated
by arrows. For example, topic employee in HR2 is similar
to emp in HR3, and clm lbr in HR2 to clm wrk area (claim
work area) in HR3. Next, we can focus the further match-
ing effort on the attributes from the tables on similar topics.
This would avoid producing many false mappings between
attributes from irrelevant tables, e.g., the mapping between
employee.emp id and lbr clm.labor claim id, discovered by the
previous approach.

The problem of mining structures of databases has been
studied in the context of data cleansing and data integration

[10, 3, 20, 28]. However, the focus of previous research was
mostly on the discovery of keys [10, 28], foreign keys [10,
21], and functional dependencies [3], while the problem of
discovering topical structures has received little attention.
A related problem is schema summarization [31] which pro-
duces an overview of a complex schema with important el-
ements in the schema. It measures the importance of an
element by the number of its relationship & attribute links
and the cardinality of its data values. It is not concerned
with the topics of the elements. For example, there may be
multiple elements in the summary which are all on the same
topic, or there may be no elements in the summary to repre-
sent the less dominant topics in the schema. In contrast, our
goal is to categorize the elements by their topics and exploit
the topical structures to not only facilitate semantic brows-
ing but also address the scalability issue in existing schema
matching solutions to support a large-scale integration. In
addition, we introduce a new measure on table importance
based on shortest paths, and propose an approach to discov-
ering representative tables within each topic.

In this paper, we describe iDisc, a system that automat-
ically discovers the topical structure of a database through
clustering. Developing iDisc required several innovations.

Modeling Databases: First, how should we represent the
database to the clustering process? There is much disparate
evidence on the topical relationships among the tables, e.g.,
table & attribute names, attribute values, and referential
relationships. As a result, it may be very difficult to come up
with a single best representation. To address this challenge,
we propose a novel modeling approach which examines the
database from several distinct perspectives and computes
multiple representations of the database based on its schema
information and instance values.

We describe methods for constructing three very differ-
ent kinds of representations: vector-based, graph-based, and
similarity-based. In a vector-based representation, each ta-
ble is represented as a text document and the database as a
collection of documents; in a graph-based representation, the
database is represented as a graph, where nodes are tables
and edges indicate the linkages (e.g., referential relation-
ships) between the tables; and in a similarity-based repre-
sentation, the database is represented as a similarity matrix
with table similarities computed from attribute values.

1020



Combining Evidence: Second, which clustering algo-
rithm(s) should we employ to discover topical clusters from
the database representations? Every algorithm typically has
its own strength and weakness, and some may be more suit-
able for certain representations than others. No single al-
gorithm can perform well over all representations. To ad-
dress this challenge, we propose a novel discovery frame-
work based on the multi-strategy learning principle [23]. In
this framework, a multitude of base clusterers are employed,
each takes a representation and invokes a suitable clustering
algorithm to discover preliminary topical clusters of tables.
The results from the base clusterers are then aggregated
into final clusters via meta-clustering. We further propose
several approaches to constructing generic similarity-based
and linkage-based clustering algorithms and describe how to
instantiate them into clusterers for different representations.

The proposed framework is unique in that: (1) It is highly
extensible, where additional database representations and
base clusterers can be easily incorporated to the system, to
further improve its performance. (2) It provides an intuitive
and principled way of combining evidence through aggre-
gating the votes from the clusterers, rather than directly
combining the disparate evidence from the database via an
adhoc function.

Handling Complex Aggregations: A key component
of the framework is meta-clusterer. The meta-clusterer must
identify and remove errors in the input clusterers and com-
bine the strength of different clusterers, in order to produce
better clusters. A similar problem has been studied in the
context of clustering aggregation [15]. Unfortunately, exist-
ing solutions suffer from several key limitations.

First, flat aggregation: all base clusterers are aggregated
at once by a single meta-clusterer. Nevertheless, some clus-
terers are inherently more similar than others. For example,
clusterers using the same kind of representations may be
more similar or correlated since they look at the database
from similar perspectives. In other words, they are like ex-
perts with similar (but not exactly the same) expertise. In-
tuitively, it is easier to identify the errors made by an expert
if we compare him to others with similar expertise. To ad-
dress this limitation, we introduce the concept of similarity
level for clusterers and propose an approach to organizing
the clusterers into an aggregation tree to perform a multi-
level aggregation. We show that the new aggregation ap-
proach significantly improves iDisc’s performance.

Second, equal combination: all the input clusterers are
treated as being equally good by the meta-clusterer. Nev-
ertheless, the performance of the clusterers may often vary
a lot, depending on the characteristics of a particular data
set: the same clusterer may perform well on one data set
but very poorly on another. It is thus desirable to be able
to dynamically adjust the weights of the clusterers on-the-fly
so that the votes from the better-performing clusterers are
weighted more. To address this problem, we propose a novel
clusterer boosting approach and shows that it can effectively
identify and boost “good” clusterers based on their run-time
performance.

In summary, this paper makes the following contributions:

• We formally define the problem of discovering topical
structures of databases and demonstrate how topical
structures can support semantic browsing and large-
scale data integration.

• We propose a novel multi-strategy discovery frame-
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Figure 2: InvDB: An invoice management database

work and describe the iDisc system which realizes this
framework. The system is fully automatic & highly
extensible to other representations and clusterers.

• We propose novel clustering aggregation techniques to
address limitations of existing solutions.

• We propose a new approach to finding representative
tables using a novel measure on table importance.

• We have extensively evaluated iDisc over real-world
databases, and results indicate that it discovers top-
ical clusters of tables with a high degree of accuracy.

The rest of the paper is organized as follows. Section 2
defines the problem. Sections 3–5 describe the iDisc system.
Section 6 presents our results and discusses the current sys-
tem’s limitations. Section 7 reviews related work. Section 8
discusses future work and concludes the paper.

2. PROBLEM DEFINITION
We first formally define the problem. We will use the in-

voice management database InvDB, shown in Figure 2, as the
running example. Note that key attributes are underlined
and referential relationships between tables are indicated by
directed lines from foreign keys to primary keys. Note also
that these keys and foreign keys may not be documented or
enforced and may need to be discovered (see Section 3.1.2).
We can observe that the tables in InvDB actually fall into
three categories or topics: Invoice (the tables in Figure 2.a),
Shipment (the tables in Figure 2.b), and Product (the tables
in Figure 2.c). The goal of iDisc is then to automatically
discover these topics and the tables on each topic. We start
by defining topical relationship & structure.

Topical Relationship: Consider a set of topics P . Con-
sider further a database D with a set of tables, where each
table T is associated with a topic p ∈ P , denoted as topic(T ) =
p. Then, we say that there exists a topical relationship be-
tween two tables S and T , denoted as ρ(S, T ), if topic(S) =
topic(T ). For example, consider the database InvDB in Fig-
ure 2. Suppose P = {Invoice, Shipment, Product}. An exam-
ple topical relationship is ρ(InvoiceItem, InvoiceTerm), since
topic(InvoiceItem) = topic(InvoiceTerm) = Invoice.

Note that ρ is transitive, i.e., if ρ(R,S) and ρ(S, T ), then
ρ(R,T ). Clearly, ρ is both reflexive and symmetric. As a
result, ρ defines an equivalence class. The topics in P are
assumed to be mutually exclusive, so each table in D may
be associated with only one topic in P .
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Topical Structure: The topical structure of a database
describes how the tables in the database are grouped based
on their topical relationship. More precisely, consider a set of
topics P , a database D, and a topical relationship ρ between
the tables in D with respect to P . The topical structure of D
is given by a partition C = {C1, C2, ..., Ck} formed by ρ over
the tables in D, such that the tables in the same group Ci

are on the same topic, while the tables from different groups
are on different topics. For example, the topical structure of
InvDB with respect to the above P is: {C1, C2, C3}, where
C1 = {InvoiceStatus, InvoiceTerm, Invoice, InvoiceItem}, C2

= {Shipment, ShipmentMethod}, and C3 = {Product, Pro-
ductCategory, Category}.

Based on the above definitions, we define our problem as
follows. We discuss the extensions of the problem to multiple
topics per table and hierarchical topical structure in Section
6.3 and Section 8.

Problem Definition: Given a database D with a set of
tables, discover: (1) a set of topics P , which the tables in D
are about; and (2) the topical structure of D with respect to
P , in the form of a partition C = {C1, C2, ..., Ck} over the
tables in D, where k = |P |.

3. THE IDISC APPROACH
iDisc takes as the input a database D with a set of tables,

and returns the topical structure of D as the output. Figure
3 depicts the architecture of iDisc. It consists of four major
modules: model builder, base clusterers, meta-clusterer, and
representative finder.

iDisc proceeds as follows. First, the model builder exam-
ines D from a number of perspectives and obtains a variety
of representations for D. Next, each base clusterer takes a
representation and discovers a preliminary topical clustering
(i.e., partition) of the tables in D. These results are then
aggregated by the meta-clusterer into a final clustering. Fi-
nally, the representative finder takes the final clustering and
discovers representatives in each cluster.

This section describes the model builder, the base clus-
terers, and the meta-clusterer. Section 4 extends the meta-
clusterer to handle complex aggregations. Then Section 5
describes the representative finder.

3.1 The Model Builder
The model builder constructs varied representations for

the database from its schema information and instance data.

These representations fall into three categories: vector-based,
graph-based, and similarity-based.

3.1.1 Vector-Based Representations
Vector-based representations capture the topical structure

of the database via the descriptive information on the tables.
In a vector-based representation, each table is represented
as a text document and the database as a collection of doc-
uments. Note that in these representations, the structures
of individual tables are ignored. There are many possible
ways of constructing such documents for the tables in the
database, each resulting in a different representation of the
database. For example, the document for a table may con-
tain tokens from the name of the table, the names of its
attributes, and the content of its attribute values.

To illustrate, consider constructing documents for the ta-
bles in InvDB (Figure 2), such that the document for each
table contains tokens from both table and attribute names.
Then the document d for the table InvoiceStatus will com-
prise tokens: Invoice, Status, ID, and Code, where both In-
voice and Status occur twice in d.

Suppose that the number of unique tokens among the doc-
uments for the tables in the database D is n. Then, each
document d may be represented as an n-dimensional vec-
tor <w1, w2, ..., wn>, where the i-th dimension corresponds
to the i-th unique token in D, and wi is the weight of the
token for the document d. Many weighting functions may
be employed, e.g., the TF ∗ IDF weight [27], and different
functions may produce very different representations.

3.1.2 Graph-Based Representations
Graph-based representations capture the topical structure

of the database via the linkage among the tables. Specifi-
cally, the database is represented as a graph, where nodes
are tables and edges indicate the linkage between the tables.
An important linkage between two tables is their referential
(i.e., FK-PK) relationship, where some attributes in one ta-
ble (i.e., foreign keys) refer to some key attributes in the
other table. For example, there is a referential relationship
between table InvoiceTerm and table Invoice in InvDB, since
the attribute InvoiceID in InvoiceTerm refers to the key at-
tribute InvoiceID in Invoice.

However, the information on keys and foreign keys is of-
ten missing in the catalogs, for a variety of reasons including
the cost of enforcing the constraints [10, 28]. In fact, in the
databases for our experiments (Section 6), keys and refer-
ential constraints are neither documented nor enforced by
the system. To address this challenge, iDisc implements a
method similar to [28] to discover primary keys and then
proceeds as follows to discover foreign keys.

Consider a key-attribute A in table T and an attribute B
in table T ′. B is determined to be a foreign key referring to
A in T , if the following conditions are met: (1) |B∩A| = |B|,
i.e., B is a subset of A. This is a necessary condition for B
to be a foreign key. (2) |B| > 2, which is to avoid many false
discoveries for boolean attributes, since a boolean attribute
may be contained in any other boolean/integer attributes.
(3) |B| > .8|A|, which is to ensure that the domain of B is
sufficiently similar to that of A (not just contained). Note
that if |A| ≤ 2, then Condition 2 might not be satisfied even
when Condition 3 is satisfied, e.g., when |A| = |B| = 2. (4)
NameSim(A, B) > .5, where NameSim is a measure (with
range [0,1]) on the similarity of attribute names.
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3.1.3 Similarity-Based Representations
Similarity-based representations capture the topical struc-

ture of the database via the value-based similarity between
the tables. The idea is that if two tables are about the same
topic, they may have several attributes containing similar
values [25, 12]. For example, the values for the attribute In-
voiceStatus.InvoiceID in InvDB (Figure 2) should be similar
to those for InvoiceTerm.InvoiceID. (Note that there are no
referential relationships between these two tables.)

In a similarity-based representation, the database D is
represented with a |D| × |D| matrix M , where |D| is the
number of tables in D and the entry M [i, j] stores the sim-
ilarity between the i-th and j-th tables in D. There are
many different ways of evaluating the table similarity, each
resulting in a different representation for the database. Cur-
rently, iDisc employs the following procedure to evaluate the
similarity between tables T and T ′.

1. Evaluate value similarity between attributes: For
every two attributes X and Y , one from each table, compute
their similarity as the Jaccard similarity between the sets of
values in X and Y , i.e., J(X, Y ) = |X ∩ Y |/|X ∪ Y |.
2. Discover matching attributes: This step then finds
a set Z of matching attributes based on a greedy-matching
strategy [25]: (1) Let Z = ∅, U = all attributes in T , and V
= all attributes in T ′. (2) Find U ∈ U and V ∈ V such that
they have a maximum (positive) similarity among all pairs
of attributes from U and V. (3) Add attribute pair (U, V )
to Z, remove U from U and V from V. (4) Repeat steps 2
and 3 until no more such pairs can be found.

For example, consider tables T = InvoiceStatus and T ′

= InvoiceTerm. Suppose that J(T .InvoiceID, T ′.InvoiceID)
= .75, J(T .InvoiceID, T ′.TermType) = .2, J(T .StatusCode,
T ′.TermType) = .15, and no other attributes have similar
values. Then, the first iteration matches attribute T .InvoiceID
and attribute T ′.InvoiceID, and the second (final) iteration
matches T .StatusCode and T ′.TermType.

3. Evaluate table similarity: The similarity of T and
T ′, denoted as Sim(T , T ′), is then given by the average

similarity of their matching attributes:
P

(X,Y )∈Z{J(X,Y )}
max(|T |,|T ′|) ,

where |T | is the number of attributes in T . For example,
Sim(InvoiceStatus, InvoiceTerm) = (.75 + .15) / 2 = .45.

To summarize this section, we stress that iDisc’s goal is
not to build best models (which typically do not exist), but
to show that it can produce a better solution by building &
combining many different (possibly imperfect) models.

3.2 The Base Clusterers
As described, the job of a base clusterer is to take a

database representation and discover a preliminary cluster-
ing over the tables in the database. Rather than building
the individual clusterers separately & repeatedly, iDisc first
implements several generic clustering algorithms and then
instantiates them into clusterers. In this section, we first de-
scribe two generic algorithms employed by iDisc: similarity-
based and linkage-based. We then show how to instantiate
the former into clusterers for the vector-based and similarity-
based representations, and the latter into clusterers for the
graph-based representations.

3.2.1 Generic Similarity-Based Algorithm
Figure 4 shows SimClust, a generic similarity-based clus-

tering algorithm. SimClust takes as the input a set of tables

SimClust(T , M , ClsrSim, Q) → C
Input: T , a set of table {T1, T2, ..., T|T |};

M , a similarity matrix for the tables in T ;
ClsrSim, a cluster similarity function;
Q, a clustering quality metric

Output: C, a partition of tables in T
1. Set up initial clusters:

1.1 Let i = 1
1.2 Let C1 = {{T1}, {T2}, ...,{T|T |}}

2. Repeat until |Ci| = 1
2.1 Evaluate the quality of Ci via Q
2.1 Evaluate the similarities of clusters in Ci via ClsrSim
2.2 Find Cx, Cy ∈ Ci with a maximum similarity
2.3 Merge clusters Cx and Cy

2.4 i← i + 1
3. Return Ci with a maximum Q value

Figure 4: The generic similarity-based algorithm

T = {T1, T2, ..., T|T |}, a similarity matrix M whose entry
M [i, j] is the similarity between tables Ti and Tj in T , a
cluster similarity function ClsrSim, and a clustering qual-
ity metric Q. It outputs a partition C over the tables in T .
Essentially, SimClust can be regarded as a highly customiz-
able hierarchical agglomerative clustering algorithm with an
automatic stopping rule [17].

SimClust starts by placing each table in T in a cluster by
itself. This generates the first version of the clustering C1.
It then evaluates the quality of C1, based on the clustering
quality metric Q. It also computes the similarities among
the clusters in C1, based on the similarity matrix M and
the cluster similarity function ClsrSim. Next, it chooses
two clusters with a maximum similarity and merges them
into a single cluster. This generates the next version of the
clustering C2. It then repeats this process until all the tables
are placed in a single cluster. Finally, SimClust returns as
the output the clustering with a maximum Q value, among
all the |T | versions of clusterings.

SimClust provides two customization points: ClsrSim
and Q. ClsrSim is a cluster similarity function which takes
the similarity matrix M and two clusters of tables, Cx and
Cy, and computes a similarity value between Cx and Cy.
There are many different ways of implementing ClsrSim,
such as single-link, complete-link, and average-link, where
the cluster similarity is respectively taken to be the maxi-
mum, minimum, and average similarity between two tables,
one from each cluster [17].

Q is a metric for evaluating the quality of clusterings. De-
termining the number of clusters in a data set is a well-
known difficult problem [17]. Many methods have been
proposed, such as elbow criterion, gap statistics, and cross-
validation, but there is no best solution. Intuitively, a good
clustering should be one such that objects within the same
cluster are similar while objects from different clusters are
dissimilar. Based on this intuition, iDisc implements a de-
fault Q as follows:

Q(C) =
X

Ci∈C

|Ci|/N ∗ (IntraSim(Ci) − InterSim(Ci)), (1)

where N is the total number of tables in the database, and
|Ci| is the number of tables in cluster Ci ∈ C. IntraSim(Ci)
is the average similarity of tables within the cluster Ci, while
InterSim(Ci) is the maximum similarity of Ci with any other
cluster in C, where the cluster similarity is the average simi-
larity of tables between clusters. This default Q is intuitive,
easy to implement, and has performed quite well over several
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LinkClust(T , G, EdgeDel, Q′) → C
Input: T , a set of tables;

G, a linkage graph for the tables in T ;
EdgeDel, a function that suggests edges to be removed;
Q′, a clustering quality metric

Output: C, a partition of tables in T
1. Let i = 1
2. Repeat until G has no edges

2.1 Let Ci = connected components in G
2.2 Evaluate the quality of Ci via Q′

2.3 Let Ec = EdgeDel(G)
2.4 Remove edges in Ec from G
2.5 i← i + 1

3. Return Ci with a maximum Q′ value

Figure 5: The generic linkage-based algorithm

databases in our experiments. But note that Q is customiz-
able to other possible implementations (see Section 3.2.3).

3.2.2 Generic Linkage-Based Algorithm
Figure 5 shows LinkClust, a generic linkage-based algo-

rithm. Unlike SimClust, LinkClust discovers groups of
related tables based on their linkage information. For ex-
ample, Figure 6 shows the tables in InvDB (Figure 2) and
their linkage information. (The details on how to obtain this
graph will be given in Section 3.2.3).

The main idea of LinkClust is to formulate the prob-
lem as one of discovering community structure in an inter-
connected network, e.g., a social network or the Internet. A
key observation is that often the links within a community
are dense, while the links between communities are relatively
sparse. By finding and removing those inter-community
links, we may reveal the communities in the network. For
example, dotted edges in Figure 6 are the inter-community
links in the graph.

LinkClust takes as the input: (1) a set of tables T ; (2)
a undirected graph G whose vertices are tables in T and
edges indicate the linkage between the tables; (3) a function
EdgeDel that suggests edges to be removed from G; and (4)
a metric Q′ on the clustering quality. It returns a partition
of tables in T as the output. LinkClust is a divisive al-
gorithm. It starts by finding connected components in G,
which forms the first version of the clustering. It then re-
moves edges suggested by the EdgeDel from G to produce
the next version of the clustering. The process is repeated
until no edges remain in G. Finally, the version of the clus-
tering with the highest Q′ value is returned as the output.

LinkClust also has two customization points: EdgeDel
and Q′. We first describe two possible implementations of
EdgeDel: one based on shortest-path betweenness [5], and
the other based on spectral graph theory [8].

(a) Shortest-path betweenness (SP): The key idea
is to first find the shortest paths between the vertices, and
then measure the betweenness of an edge (i.e., the possibility
of the edge lying between two clusters) by the fraction of the
shortest paths that contain the edge. For example, in the
linkage graph shown in Figure 6, the number of shortest
paths that contain the edge (InvoiceItem, Product) (an inter-
community link) is 18 (shown on the edge), the maximum
among all the edges, while the number for the edge (Invoice,
InvoiceTerm) (a within-community link) is only 8.

More precisely, the betweenness of an edge e ∈ E, denoted
as β(e), is given by:

P
s,t∈V,s�=t σst(e)/σst, where σst is the

number of distinct shortest paths between vertices s and t,
and σst(e) is the number of distinct shortest paths between

s and t that contain the edge e. EdgeDel(G) then returns
an edge with a maximum β value.

(b) Spectral graph partitioning (SPC): In this case,
EdgeDel returns an edge-cut of G, which comprises a set of
edges which are likely lying between two clusters. Spectral
graph theory provides an elegant way of finding a good edge-
cut. Specifically, consider G’s Laplacian matrix LG = DG -
AG, where DG is a diagonal matrix whose entry D[i, i] is the
degree of the i-th vertex in G, and AG is G’s adjacency ma-
trix. Then it can be shown that finding a minimum edge-cut
of G corresponds to finding the smallest positive eigenvalue
λ2 of LG [8]. Further, the eigenvector for λ2 (known as
Fiedler’s vector) suggests a possible bi-partitioning of the
vertices in G, where the vertices with positive values are
placed in one cluster and the vertices with negative values
in the other cluster. For example, Figure 6 shows these val-
ues next to the vertices. Accordingly, the three tables about
product will be placed in one cluster, and the rest of the
tables in another cluster. Note that if G contains several
connected components, EdgeDel finds edge-cuts for larger
components (with more vertices) first.

Metric Q′: Similar to Q in SimClust, Q′ measures the
quality of clusterings in LinkClust. Q′ captures the intu-
ition that a good partition of the network should be one such
that nodes within the same community are well-connected,
while there are only few edges connecting different commu-
nities. Based on this intuition, iDisc implements a default
Q′ as follows [24]:

Q′(C) =
X

Ci∈C

(|Eii|/|E| − (|Ei|/|E|)2), (2)

where |E| is the total number of edges in the graph, |Eii|
is the number of edges connecting two vertices both in the
cluster Ci, and |Ei| is the number of edges that are inci-
dent to at least one vertex in Ci. Note that |Eii|/|E| is the
observed probability that an edge falls into the cluster Ci,
while (|Ei|/|E|)2 is the expected probability under the as-
sumption that the connections between vertices are random,
i.e., without regard to the community structure. Finally, we
note that Q′ is also customizable to other implementations.

3.2.3 Generating Base Clusterers
We now describe how iDisc generates base clusterers by

instantiating SimClust or LinkClust. We consider in turn
the representations described in Section 3.1.

Vector-based representations: For vector-based rep-
resentations, iDisc generates base clusterers by instantiating
SimClust. Specifically, consider a database D with a set
of tables T = {T1, T2, ..., T|T |}, and denote the token vector

for table Ti as T̂i. First, for every two tables Ti, Tj ∈ T ,
we evaluate their similarity based on their token vectors.
The similarity between two vectors may be evaluated in a
variety of methods, e.g., via the Cosine function commonly
employed in Information Retrieval [27], where Cos(T̂i, T̂j) =

T̂i · T̂j/(‖T̂i‖‖T̂j‖). Note that multiple base clusterers may
be generated from the same representation by employing
different methods for evaluating the vector similarities.

Next, a similarity matrix M is constructed such that its
entry M [i, j] holds the similarity between tables Ti and Tj .
Finally, a base clusterer is created by instantiating Sim-
Clust with T , M , and particular implementations of Clsr-
Sim and Q. For example, if ClsrSim = single-link and Q =
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Table B1 B2 B3 Meta
InvoiceStatus 1 1 1 1
InvoiceTerm 1 1 1 1

Invoice 1 1 1 1
InvoiceItem 1 1 2 1
Shipment 2 2 2 2

ShipmentMethod 2 2 2 2
Product 3 3 3 3

ProductCategory 3 3 3 3
Category 4 3 3 3

Table 1: A meta-clusterer
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Figure 7: Vote-based similarities

the default Q (Formula 1), then the generated base clusterer
can be denoted as SimClust(T , M , single-link, default Q).

Graph-based representations: For graph-based rep-
resentations, iDisc generates base clusterers by instantiat-
ing LinkClust. Since LinkClust expects a undirected
graph as the input, if the representation is a directed graph,
e.g., a reference graph described in Section 3.1, it firsts
needs to be transformed into a undirected graph. This is
done by ignoring the directions of the edges in the origi-
nal graph. For example, Figure 6 shows the linkage graph
transformed from the original reference graph for InvDB in
Figure 2. A base clusterer is then created by instantiating
LinkClust with particular T , G, EdgeDel, and Q′. For ex-
ample, LinkClust(T , G, SP, default Q′) denotes a base clus-
terer where EdgeDel is implemented using the SP method,
and the default implementation of Q′ (Formula 2) is used.

Similarity-based representations: Similar to vector-
based representations, for similarity-based representations,
iDisc also generates base clusterers by instantiating Sim-
Clust. The difference is that here the similarity matrix
in the representation is directly used for the instantiation.

3.3 Aggregating Results via Meta-Clusterer
Given a set of m preliminary clusterings C = {C1, C2, ..., Cm}

from the base clusterers, the goal of the meta-clusterer is to
find a clustering C, such that C agrees with the clusterings
in C as much as possible. More precisely, we say that C and
Ci ∈ C disagree on the placement of two tables T, T ′ ∈ T , if
one places them in the same cluster while the other places
them in different clusters. Denote the number of disagree-
ments among C and Ci as d(C, Ci). Then, the job of the
meta-clusterer is to find C that minimizes

Pm
i=1 d(C, Ci). A

similar problem has been studied in the context of cluster-
ing aggregation and ensemble clustering (e.g., see [15]). But
these research efforts focused mostly on combining different
clustering algorithms (e.g., single-link vs. complete-link),
and did not consider how to effectively combine different
representation models (see Section 7 for a detailed discus-
sion).

For example, columns 2–4 of Table 1 show the prelimi-
nary clusterings given by three base clusterers: Base 1 (B1),
Base 2 (B2), and Base 3 (B3), on InvDB. The value j in
the column for Base i indicates that Base i places the cor-
responding table in the j-th cluster of its clustering. For
example, the second cluster in the clustering given by Base
1 contains tables Shipment and ShipmentMethod. Both Base
1 & 2 take a vector-based representation (with tokens from
table names) as the input and employ SimClust with the de-
fault Q. Base 1 uses complete-link for ClsrSim, while Base 2
uses single-link. Base 3 takes a linkage-based representation
(the reference graph in Figure 2) as the input and employs
LinkClust with the default β and Q′.

It is interesting to note that Base 1 finds four clusters while

Base 2 finds three: the cluster on Product in Base 2 is split
into two clusters {Product, ProductCategory}, {Category} in
Base 1. (We will further discuss this in Section 6.2.) Fur-
thermore, InvoiceItem is placed in the Shipment cluster by
Base 3. This is due to the fact that the betweenness score
(18) for the edge (InvoiceItem, Invoice) is larger than the
score (14) for the edge (InvoiceItem, Shipment). Overall, we
can observe that the performance of base clusterers may
vary depending on particular database representations and
clustering algorithms employed.

The last column of Table 1 shows the clustering C ob-
tained by the meta-clusterer Meta (M). Note that there are
two disagreements between Meta and Base 1: on Category
and Product, and Category and ProductCategory. It can be
shown that the total number of disagreements among Meta
and the three base clusterers is seven, the minimum among
all possible C’s.

Unfortunately, the problem of finding the best aggregated
clustering can be shown to be NP-complete [15]. Several ap-
proximation algorithms have been developed [15], and most
of them are based on a majority-voting scheme. The meta-
clustering algorithm in iDisc is also based on a voting scheme,
but has a key difference. Unlike other solutions, e.g., the
Agglomerative algorithm in [15], it does not assume an ex-
plicit clustering threshold (e.g., 1/2 of the votes). Instead,
the algorithm automatically determines an appropriate num-
ber of clusters in the aggregated clustering, based on the
particular votes from the input clusterers.

Meta-Clustering: The algorithm involves two phases.
(a) Vote-based similarity evaluation: Consider two tables
T, T ′ ∈ T and a clustering Ci ∈ C. A vote from Ci on
the topical relationship between T and T ′ is given by a 0/1
function VT,T ′(Ci), which takes on the value one if T and
T ′ are placed in the same cluster in the clustering Ci; and
zero otherwise. Based on the votes from the base clusterers,
the similarity between two tables T, T ′ ∈ T is computed as:
1
m

Pm
i=1 VT,T ′(Ci), where m is the number of base clusterers.

For example, Figure 7 shows the similarities between the
tables in InvDB, based on the votes from B1, B2, and B3.

(b) Re-clustering: Next, a similarity matrix Mv is constructed
from the above similarities. iDisc then generates the meta-
clusterer as SimClust(T , Mv , single-link, default Q). But
note that other options for ClsrSim and Q may also be used.

4. HANDLING COMPLEX AGGREGATIONS
In this section, we extend iDisc to handle complex aggre-

gations. We first describe how to exploit the prior knowledge
on the inherent property of the clusterers to organize them
into an aggregation tree, to perform a multi-level aggrega-
tion. We then describe how to adjust the weights of certain
clusterers in the run-time based on their actual performance,
to achieve a more effective aggregation.
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Figure 8: Examples of aggregation trees

4.1 Multi-Level Aggregation
A key difference between multi-level and flat aggregations

is that in a flat or single-level aggregation, the clusterings
from all base clusterers are aggregated at once by a sin-
gle meta-clusterer, while in a multi-level aggregation, aggre-
gation is performed by multiple meta-clusterers, with some
meta-clusterers taking as the input the aggregated cluster-
ings from the previous meta-clusterers.

Aggregation tree: In general, we may represent the ag-
gregation structure with an aggregation tree H . The leaf
nodes of H correspond to base clusterers, while the internal
nodes correspond to meta-clusterers, each aggregating the
clusterings from its child clusterers. The level of the aggre-
gation is the depth of the deepest internal node in H . For ex-
ample, Figure 8.a shows a single-level aggregation tree with
eight base clusterers (B’s); Figure 8.b shows a two-level ag-
gregation tree with four meta-clusterers (M’s) on the same
base clusterers.

Given a set of base clusterers, the key problem is then how
to form an effective aggregation tree. A key observation is
that the clusterers were not created equally and some are
inherently more similar than others. For example, consider
again the base clusterers in Figure 8. Suppose that Bv

i ’s,
Bs

j ’s and Bg
k’s are respectively based on vector, similarity,

and graph representations. Then, Bv
1 is more similar to Bv

2

than to Bg
1 , since Bg

1 looks at the database from a very dif-
ferent angle and may find very different clusters. In other
words, Bv

1 and Bv
2 are experts with similar expertise, while

the expertise of Bv
1 and Bg

1 may be quite different. Intu-
itively, if we are to correct the errors by Bv

1 , then it may
be more effective to compare it against Bv

2 or Bv
3 , which has

similar expertise, than Bg
1 , which has different expertise.

Tree construction: Motivated by the above observa-
tion, we define the similarity level of clusterers as follows.
(a) Level 1 (the most similar): clusterers which take the
same representation (e.g., a vector-based representation),
but employ different clustering algorithms (e.g., single-link
vs. complete-link versions of the similarity-based algorithm);
(b) Level 2: clusterers which take the same kind of represen-
tations (e.g., a vector-based representation constructed from
table names vs. a vector-based representation constructed
from both table & attribute names); and (c) Level 3: clus-
terers which take different kinds of representations (e.g., a
vector-based vs. a graph-based representation). Further-
more, if one of the clusterers is a meta-clusterer, their sim-
ilarity level is given by the least similarity level among all
the base clusterers.

Based on the above definition, the aggregation tree is then
constructed from a set of base clusterers in a bottom-up,
clustering-like fashion. It involves the following steps: (1)
Initialize a set W of current clusterers with all the base clus-
terers. (2) Determine the maximum similarity level l among
all the clusterers in W. (3) Find a set S of all clusterers with
the similarity level l. (4) Aggregate the clusterers in S using
a meta-clusterer M and remove them from W. Add M into

Table Pairs B1 B2 B3 MV
(InvoiceStatus, InvoiceTerm) 1 1 1 1

(InvoiceStatus, Invoice) 1 1 1 1
(InvoiceStatus, InvoiceItem) 1 1 0 1

(InvoiceTerm, Invoice) 1 1 1 1
(InvoiceTerm, InvoiceItem) 1 1 0 1

(InvoiceItem, Invoice) 1 1 0 1
(InvoiceItem, Shipment) 0 0 1 0

(InvoiceItem, ShipmentMethod) 0 0 1 0
(Shipment, ShipmentMethod) 1 1 1 1
(Product, ProductCategory) 1 1 1 1

(Product, Category) 0 1 1 1
(ProductCategory, Category) 0 1 1 1

Table 2: An example on clusterer boosting

W. (5) Repeat steps 2–4 until there is only one clusterer left
in W, which is the root meta-clusterer.

For example, given the eight base clusterers shown in Fig-
ure 8.a, the algorithm produces the aggregation tree shown
in Figure 8.b, where Bv

1 , Bv
2 , and Bv

3 are first aggregated by
Mv, which is further aggregated with Ms and Mg by Ml.

4.2 Clusterer Boosting
Unlike the multi-level aggregation which utilizes the static

property of the clusterers, boosting exploits their dynamic
behavior. It first estimates the performance of a clusterer
by comparing it to other clusterers and then assigns more
weights to the clusterers which are likely to be more accu-
rate. The results from the clusterers are then re-aggregated
based on the new weights. Specifically, consider a meta-
clusterer M aggregating clusterings from a set of clusterers
C = {C1, ..., Cn}. Boosting involves the following steps:

1. Determining a pseudo-solution: The pseudo-solution
S consists of a set of table pairs (T, T ′) which the major-
ity of the input clusterers place them in the same clus-
ter. Following the notation in Section 3.3, we have S =
{(T, T ′)|

Pn
i=1 VT,T ′(Ci) > n/2}. For example, consider the

meta-clusterer shown in Table 1. Table 2 lists the table pairs
(out of 36 for InvDB) which are placed in the same cluster
by at least one base clusterer. For each pair, it shows which
base clusterers (columns 2–4) and whether the majority of
the base clusterers (column MV) place them in the same
cluster (indicated by 1/0). Then S comprises the 10 table
pairs which have value 1 in the column MV.

2. Ranking input clusterers: S is then utilized to
evaluate the input clusterers Ci’s. For this, iDisc employs a
measure Ψ which is taken to be the percentage of table pairs
in S that are found by Ci (i.e., VT,T ′(Ci) = 1). Ψ is similar
to the recall metric in Section 6. For example, Ψ(B1) = .8,
Ψ(B2) = 1, and Ψ(B3) = .7. Ci’s are then ranked by their
Ψ scores. For example, we have B2 > B1 > B3.

3. Adjusting weights: First, set the initial weights
for all clusterers in C to 1. Consider top k clusterers in C,
for a desired number k. Select the clusterer with the best
score, increase its weight to 2. Repeatedly find a clusterer Ci

with next best score. If Ci is not highly correlated with any
previously selected clusterers, set its weight to 2; otherwise,
move to the next best clusterer (intuitively, this is because a
clusterer with similar expertise has already been boosted).

The correlation between two clusterers Ci and Cj is given
by their correlation coefficient: ρXCi

,XCj
= cov(XCi , XCj )/

σXCi
σXCj

, where XCi = VT,T ′(Ci) is a random variable cor-

responding to the clusterer Ci, and the sample space is taken
to be the set of all table pairs (T, T ′), where T 	= T ′. Based
on a well-known rule-of-thumb from Statistics, two cluster-
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Figure 9: An example on finding representatives

ers may be regarded to be highly correlated if their |ρ| ≥ .3.
For example, the sample space for InvDB contains 36 table
pairs (12 of them are shown in Table 2). It can be shown
that ρ(B1, B2) = .86, ρ(B1, B3) = .46, and ρ(B2, B3) = .64.
So B2 will first be boosted; since B2 is highly correlated to
both B1 and B3, no other clusterers will be boosted.

5. FINDING CLUSTER REPRESENTATIVES
In a complex database, there may be a large number of

tables on the same topic. As a result, it is often desirable to
discover important tables within each cluster. These tables
are cluster representatives. They serve as the entry points to
the cluster and give users a general idea of what the cluster is
about. In addition, the names of these representative tables
may be used to label the cluster as Figure 1.b illustrates.

In this section, we describe iDisc’s representative finder
component. The key issue in discovering representative ta-
bles is a measure on the importance of tables. A key ob-
servation is that if a table is important, then it should be
at a focal point in the linkage graph for the cluster. Mo-
tivated by this observation, iDisc measures the importance
of a table based on its centrality score on the linkage graph.
Specifically, given a linkage graph G(V, E), the centrality of
a vertex v ∈ V , denoted as ξ(v), is computed as follows:

ξ(v) =
X

s,t∈V,s�=t

σst(v)

σst
, (3)

where σst is the number of distinct shortest paths between
vertices s and t, while σst(v) is the number of distinct short-
est paths between s and t that pass through the vertex v.
Based on this definition, we now describe the representative
discovery algorithm RepDisc in detail.

Representative Discovery: RepDisc takes as the in-
put a clustering C = {C1, C2, ..., Ck} over the tables in the
database D, a linkage graph G of D, and a desired number
r. It returns as the output up to r representative tables for
each cluster in C.

Consider a cluster Ci ∈ C, RepDisc proceeds as follows
to find representatives for Ci. (1) Obtain the linkage graph
GCi for the tables in the cluster Ci. GCi is a subgraph
of G induced by a set of tables in Ci. For example, con-
sider the clustering C from the meta-clusterer Meta shown
in Table 1. C contains three clusters {C1, C2, C3}, e.g., C1

= {InvoiceStatus, Invoice, InvoiceItem, InvoiceItem}. Figure 9
shows the linkage graphs for these clusters, induced from the
complete linkage graph in Figure 6. (2) Evaluate centrality
scores for the tables in Ci using Formula 3. (3) Rank the
tables by the descending order of their centrality scores, and
return top r tables in the ranked list. For example, suppose
r = 1, the discovered representative tables for the clusters
in Figure 9 are highlighted with their names bolded.

Complexity of RepDisc: For each of the k clusters in C,
three steps are executed. Consider cluster Ci ∈ C and de-
note the induced graph for Ci as G(Vr, Er), where Vr is a
set of tables in Ci and Er is a set of linkage edges between
the tables in Ci. In step 1, for every two tables in Vr, we
need to determine if there is an edge between them. Sup-
pose G is implemented with an adjacency matrix. This can
be done in O(|Vr|2). Further, the time to create the graph
is O(|Vr| + |Er|). Thus, the overall complexity of step 1 is
O(|Vr|2) (since |Er| is O(|Vr |2)). Step 2 can be implemented
based on Brandes [5], where the complexity can be shown
to be O(|Vr | ∗ |Er|). The complexity of step 3 is O(|Vr|).
So the overall complexity for steps 1–3 is O(|Vr| ∗ |Er|),
with the dominant factor being the time for step 2. As-
sume that each cluster contains about the same number of
tables with roughly the same amount of linkage between the
tables, the complexity of RepDisc is O(k ∗ |Vr| ∗ |Er|) =
O(k ∗ |V |/k ∗ |E|/k) = O(|V | ∗ |E|/k). In other words, it
is about 1/k of the time for computing centrality scores for
the entire graph G.

6. EMPIRICAL EVALUATION
We have evaluated iDisc on several real-world databases.

Our goals were to evaluate the effectiveness of iDisc and the
contribution of different system components.

6.1 Experiment Setup
Data Set: We report the evaluation of iDisc on three large
Human-Resource (HR) databases: HR1, HR2 and HR3, whose
characteristics are shown in Table 3. These databases were
obtained from the service department of a large enterprise
and cover varied aspects of resource management: HR1 on
engagement management, HR2 on skill development, and
HR3 on invoice tracking. They are among a large number
of HR databases in the service department which has an on-
going effort of understanding & integrating these databases.
For each database, we asked a data architect who has been
using the database to manually examine the database, and
determine (1) a set of topics in the database, and (2) which
topic each table in the database is about. These were then
used as the “gold standard” for our experiments.

Performance Metrics: We measured the performance of
iDisc using three metrics: precision (P), recall (R), and F-
measure (F1) [27]. Precision is the percentage of table pairs
determined by iDisc to be on the same topic that are indeed
on the same topic according to the gold standard. Recall
is the percentage of table pairs determined by the domain
expert to be on the same topic that are discovered by iDisc.
F-measure incorporates both precision and recall. We use
the F-measure where precision P and recall R are equally
weighted, i.e., F1 = 2PR/(R + P ).

Experiments: For each database we conducted three
sets of experiments. First, we measured the utility of var-
ious database representations (Section 3.1) and the accu-
racy of individual base clusterers (Section 3.2). Second, we
measured the aggregation accuracy of the baseline meta-
clustering algorithm (Section 3.3). Third, we measured the
impact of the proposed complex aggregation techniques (Sec-
tion 4). For all the base clusterers and meta-clusterers, the
default Q and Q′ (Sections 3.2.1 & 3.2.2) were employed.
Vector-based representations were constructed from table &
attribute names and the Cosine function was employed for
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Database # Tables

HR1
HR2

HR3

97
141

282

# Columns
# Rows

1M
140M

29M

TextualNumerical Date/TimeTotal
1,347
1,549

4,367

365
325

821

771
1,003

2,721

221
221

825

Table 3: The data set for our experiments

computing vector similarities. Since the databases contain
a huge number of rows, we first created a sample of 4k size
for each attribute, and then use them for discovering foreign
keys (Section 3.1.2) and attribute matches (Section 3.1.3).

6.2 Results & Observations
Database Representations & Base Clusterers: Fig-
ures 10.a, 10.b & 10.c show the performance of base cluster-
ers on HR1, HR2 & HR3, respectively. For each database,
eight base clusterers were employed. These base cluster-
ers are indicated by the types of database representations
and clustering algorithms they use. For example, Vec-SL
represents a base clusterer which uses vector representation
and implements single-link as its ClsrSim function (Section
3.2.1); Graph-SPC represents a base clusterer which uses
graph representation and implements the EdgeDel function
using the spectral method (Section 3.2.2). For each base
clusterer, three bars are shown, representing its performance
in precision, recall, and F1 (from left to right). From these
results, we can make several observations.

First, base clusterers employing a complete-link algorithm
(CL) tend to have higher precision and lower recall than
ones based on a single-link algorithm (SL). This is not sur-
prising, given that CL-based clusterers typically produce a
large number of small clusters, while SL-based ones pro-
duce a small number of large clusters. Second, the precision
of base clusterers using graph-based representations is rela-
tively low in HR1 & HR3. Detailed analysis reveals that keys
and foreign keys in many tables of these two databases are
named using patterns such as “xxx ID”and “xxx CD”. This
confused the foreign-key discovery algorithm and as a result,
many false foreign keys were discovered. A possible solution
to this is to first determine which tables are similar, e.g.,
by using vector-based representations, then only discover
foreign-keys among the similar tables. Third, the base clus-
terers utilizing vector-based representations perform consis-
tently well over all three databases. This is due to the fact
that similar tables in these database tend to have many
common words, e.g., Emp, Emp Resume, and Emp Photo.
Fourth, the base clusterers utilizing similarity-based repre-
sentations had poor performance on HR2. The main reason
is that a large number of tables in HR2 have several similar
timestamp-like columns, e.g., create dt and del dt for table
creation and deletion datetimes. As a result, many tables
are falsely determined to be similar to each other, reducing
the effectiveness of similarity-based representations. In sum-
mary, the performance of different base clusterers may vary a
lot, depending on the characteristics of particular databases,
database representations, and clustering algorithms.

Meta-clusterers: For each database, four meta-clusterers
were constructed. Meta-Vec aggregates base clusterers Vec-
SL, Vec-CL, and Vec-AL; Meta-Sim aggregates Sim-SL, Sim-
CL, and Sim-AL; and Meta-G aggregates Graph-SP and Graph-
SPC. Note that all these three meta-clusterers aggregate
base clusterers which use the same kind of database rep-
resentations. The last meta-clusterer Meta-All aggregates

0
5

10
15
20
25
30
35
40
45

HR1 HR2 HR3

# 
of

 to
pi

cs

Gold Standard iDisc

0
5

10
15
20
25
30
35
40
45

HR1 HR2 HR3

# 
of

 to
pi

cs

Gold Standard iDisc

(a) All topics (b) Topics with at least two tables
Figure 12: # of topics: Gold standard vs. iDisc

all eight base clusterers. The results are shown in the first
four groups of bars in Figures 11.a–11.c. We observe that
with the aggregation, the effects of “bad” base clusterers
can be cancelled out. For example, in HR1, the precision
of Meta-Vec (87.6%) is much higher than that of Vec-SL
(44.8%); furthermore, Meta-All is far more accurate than
Vec-SL, Graph-SP, and Graph-SPC, and its F1 is higher than
that of all base clusterers. All these strongly indicate the
effectiveness of meta-clustering.

Multi-Level Aggregation: We then formed a two-level
aggregation tree with a top-level meta-clusterer, Meta-LVL,
combining three lower-level meta-clusterers: Meta-Vec, Meta-
Sim, and Meta-G. The structure of the tree is as shown in
Figure 8. The performance of Meta-LVL is shown in the
second to last group of bars in Figures 11.a–11.c. By con-
trasting Meta-LVL with Meta-All (i.e., one-level aggregation),
we can observe that F1 values significantly improve over all
three databases, ranging from 2.6 percentage points in HR3
to as high as 12.7 percentage points in HR1. Furthermore,
the recall increases consistently, with very significant im-
provement in both HR1 (by 19 percentage points) and HR2
(by 15.7 percentage points). All these indicate the effective-
ness of multi-level aggregation, where clusterers using the
same kind of representations are first aggregated to remove
errors and increase the precision, and then a second level
meta-clusterer is employed to combine clusterers with differ-
ent kinds of representations (and thus with quite different
“expertise”) to increase the recall.

Clusterer Boosting: Next, we applied the boosting
technique (Section 4.2) on Meta-LVL, where k was set to
�n/2� + 1 (i.e., up to two input clusterers will be boosted).
The boosted version of Meta-LVL is called Meta-WGT, whose
performance is shown in the last group of bars of Figures
11.a–11.c. By contrasting Meta-WGT with Meta-LVL, we can
observe increase in F1 consistently over all three databases,
with the largest increase (26.8) in HR3. These indicate the
effectiveness of the proposed boosting technique.

Meta-WGT is also the best performer among all the clus-
terers on the data set. Its precision ranges from 67.2 to as
high as 89.5, recall from 57.1 to as high as 84.3, and F1 from
61.7 to as high as 86.8. These indicate iDisc’s effectiveness.

Number of Topics: Finally, we compared the number of
clusters (i.e., topics) discovered by Meta-WGT with that in
the gold standard. Figure 12.a plots the total numbers of
topics versus the databases. Figure 12.b plots the total num-
bers of topics with at least two tables versus the databases.
We observe that the numbers of topics discovered by iDisc
are very close to the numbers given by the gold standard.
These further indicate the effectiveness of iDisc.

6.3 Discussion
There are several reasons that prevent iDisc from achiev-

ing perfect accuracy. First, iDisc may disagree with the do-
main expert on the granularity of partitioning and the num-
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Figure 10: The utility of different kinds of database representations & the accuracy of various base clusterers
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Figure 11: The performance of the baseline meta-clustering algorithm & the complex aggregation techniques

ber of subject areas in a database. For example, tables on
the employee information and tables on the department in-
formation may be placed in the same cluster by the domain
expert, e.g., a department cluster based on the view that
employees may be organized around the departments they
work for, while iDisc may produce more refined clusters, e.g.,
one focusing on the employee information and the other on
the department information.

Second, iDisc and the domain expert may also disagree on
the assignment of the tables to the clusters, particularly for
those “boundary” tables that connect several related enti-
ties. For example, a works-for table (which employees work
for which departments) may be placed in the employee clus-
ter by one and in the department cluster by the other. A
possible solution to the above two cases is to construct the
gold standard by employing multiple domain experts and
accept a discovered table pair as a correct answer as long
as it agrees with one of the domain experts. But there may
be a need to first reconcile any conflicts among the domain
experts. Another possible solution is to first determine the
table pairs which the majority of the domain experts agree
on and then compare iDisc’s results only to these pairs.

Third, some databases in our experiments contain refer-
ence tables such as country (with attributes like name, region
and ISO code) and language (with attributes like name and
code). These tables are often referred to from multiple sub-
ject areas. The domain expert may decide to form a subject
area (e.g., reference entities) to include all such reference
tables or may place them in some referring subject areas.
Since iDisc may make very different decisions, this situation
largely affects its performance. A possible solution is to ex-
tend iDisc so that it produces soft clusters, where each table
may be assigned to multiple clusters, i.e., with “soft” mem-
bership, and regard these assignments as correct answers if
one of them (or one of the top k most confident assignments)
agrees with that given by the domain expert.

7. RELATED WORK
We discuss related work from several perspectives.

Mining Database Structures: There has been a lot of
research on mining database structure [10, 3, 20, 28, 21].
Bellman [10] is a well-known system that discovers join re-
lationships among the tables in a database. There exists
a join relationship between two tables if they have join-

able attributes, i.e., attributes which are semantically simi-
lar. Similar attributes are identified using several set resem-
blance functions, similar to the Jaccard function we utilized
to compute attribute similarities (Section 3.1.3). The struc-
ture of the database is then a set of tables connected via
join relationships or join paths. As we have seen, two tables
connected via a join relationship (in particular, a referential
relationship) may not be on the same topic. So the goal of
our work is to identify such inter-topic links and partition
the tables accordingly. In fact, the problem of finding clus-
ters of inter-related tables was also identified in Bellman as
an important direction for further research [20].

There is also previous work on abstracting and classify-
ing conceptual schemas such as ER models [13, 29, 7]. As
discussed earlier, conceptual schemas are rarely available as
part of the database design documentation. Furthermore,
this research largely relied on manually specified semantic
links among the elements, such as is-a and aggregation re-
lationships. In contrast, our solution does not require this
information.

Data modeling products, such as ERwin [1] and RDA [2],
allow users to organize entities in a large logical model by
subject areas during a top-down modeling process, to cope
with the complexity and facilitate a modular development.
Our solution complements these functions by enabling users
to reverse-engineer subject areas from a large-scale physical
database during a bottom-up modeling process.

Information Integration & Complexity Issues: Infor-
mation integration is a key problem in enterprise data man-
agement [6] and has been extensively studied [12]. Recently,
the complexity issue in data integration has received active
attention [26, 4], largely due to the increasing complexity
of data sources. [26] proposes a fragment-oriented approach
to matching large schemas in order to reduce the matching
complexity. It first decomposes large schemas into several
sub-schemas or fragments and then performs fragment-wise
matching. A fragment considered in [26] is either an XML
schema segment, a relational table, or manually specified.
Our work is complementary to this work by providing an
automatic approach to partitioning a large schema into se-
mantically meaningful fragments. [4] proposes an incremen-
tal approach to matching large schemas.

The complexity issue has been also studied in view in-
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tegration [18], where user views are mapped to a common
semantic data model to reduce the complexity of integration.

Multi-Strategy Learning & Clustering Aggregation:
The multi-strategy learning paradigm [23] has been employed
in schema matching [11] and information extraction [14]
tasks with great success. But we are not aware of any pre-
vious attempts to apply this paradigm for mining database
structures. [11] describes LSD, a system that matches source
schemas against a mediated schema for data integration.
LSD employs a set of base learners such as name matcher,
naive Bayes learner, and country-name recognizer. The pre-
dictions from the base learners are then combined via a
meta-learner. LSD needs training data to train both its
base learners and meta-learner. In contrast, the base clus-
terers and meta-clusterers in iDisc do not require training.
In other words, the learning in iDisc is unsupervised.

DELTA [9] computes the textual similarity between at-
tributes based on their definitions in data dictionary (when
available) to discover attribute correspondence. SemInt [22]
automatically learns a neural-network classifier based on
schema information & data statistics and employs it to match
attributes. [22] notes the complementary nature of these two
tools and suggests to combine them to improve the matching
accuracy. [14] employs a multi-strategy learning approach
to extracting information from text documents, where the
extraction segments are represented in various models such
as term-space and relational models.

A formal treatment to clustering aggregation can be found
in [15]. There is a key difference between multi-strategy
learning [23] and clustering aggregation [15]. A multi-strategy
learning approach [23] typically starts with raw evidence and
addresses problems such as how to construct multiple effec-
tive representations from the evidence and how to design
suitable base clusterers for each representation. In contrast,
clustering aggregation [15] does not concern with these prob-
lems. It starts directly from the results from base clusterers
and seeks an effective way of combining them.

8. CONCLUSIONS & FUTURE WORK
We introduced the problem of discovering topical struc-

tures of databases and described an automatic discovery
system iDisc. iDisc is unique in that (1) it examines the
database from varied perspectives to construct multiple rep-
resentations; (2) it employs a multi-strategy framework to
effectively combine evidence through meta-clustering; (3) it
employs novel multi-level aggregation and clusterer boost-
ing techniques to handle complex aggregations; and (4) it
employs novel measure on table importance to effectively
discover cluster representatives. Experiments over several
large real-world databases indicate that iDisc is highly effec-
tive, with an accuracy rate (F1) of up to 87%.

Besides further evaluation on additional data set, we are
investigating two directions to extend iDisc. First, we plan
to develop soft clustering & meta-clustering techniques as
discussed in Section 6.3 and incorporate them into iDisc
to examine their impact on its performance. We intend to
draw upon and extend recent research in faceted browsing
and search. Second, we plan to extend iDisc to produce
hierarchical topical structure, where each topic may be fur-
ther divided into sub-topics. This would not only enable
directory-style semantic browsing but also further support
the divide-and-conquer approach to schema matching and
reduce the complexity of large-scale integration.
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