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ABSTRACT 
Data mining research typically assumes that  the data to be 
analyzed has been identified, gathered, cleaned, and pro- 
cessed into a convenient form. While data mining tools 
greatly enhance the ability of the analyst to make data- 
driven discoveries, most of the time spent in performing an 
analysis is spent in data identification, gathering, cleaning 
and processing the data. Similarly, schema mapping tools 
have been developed to help automate the task of using 
legacy or federated data sources for a new purpose, but 
assume that the structure of the data sources is well un- 
derstood. However the data sets to be federated may come 
from dozens of databases containing thousands of tables and 
tens of thousands of fields, with little reliable documentation 
about primary keys or foreign keys. 

We are developing a system, Bellman, which performs 
data mining on the structure of the database. In this paper, 
we present techniques for quickly identifying which fields 
have similar values, identifying join paths, estimating join 
directions and sizes, and identifying structures in the database. 
The results of the database structure mining allow the an- 
alyst to make sense of the database content. This informa- 
tion can be used to e.g., prepare data for data mining, find 
foreign key joins for schema mapping, or identify steps to 
be taken to prevent the database from collapsing under the 
weight of its complexity. 

1. INTRODUCTION 
A seeming invariant of large production databases is that 

they become disordered over time. The disorder arises from 
a variety of causes including incorrectly entered data, incor- 
rect use of the database (perhaps due to a lack of documenta- 
tion), and use of the database to model unanticipated events 
and entities (e.g., new services or customer types). Admin- 
istrators and users of these databases are under demanding 
time pressures and frequently do not have the time to care- 
fully plan, monitor, and clean their database. For example, 
the sales force is more interested in making a sale than in 
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correctly modeling a customer and entering all information 
related to the sale, or a provisioning group may promptly 
enter in the service/circuits they provision but  might not 
delete them as diligently. 

Unfortunately, these disordered databases have a signif- 
icant cost. Planning, analysis, and data mining are frus- 
t rated by incorrect or missing data. New projects which 
require access to multiple databases are difficult, expensive, 
and perhaps even impossible to implement. 

A variety of tools have been developed for database clean- 
ing [42] and for schema mapping [35], as we discuss in more 
detail below. In our experience, however, one is faced with 
the difficult problem of understanding the contents and struc- 
ture of the database(s) at hand before they can be cleaned 
or have their schemas mapped. Large production databases 
often have hundreds to thousands of tables with thousands 
to tens of thousands of fields. Even in a clean database, 
discovering the database structure is difficult because of the 
scale of the problem. 

Production databases often contain many additional prob- 
lems which make understanding their structure much more 
difficult. Constructing an entity (e.g., a corporate customer 
or a data service offering) often requires many joins with 
long join paths, often across databases. The schema doc- 
umentat ion is usually sparse and out-of-date. Foreign key 
dependencies are usually not maintained and may degrade 
over time. Conversely, tables may contain undocumented 
foreign keys. A table may contain heterogeneous entities, 
i.e. sets of rows in the table that have different join paths. 
The convention for recording information may be different in 
different tables (e.g. a customer name might be recorded in 
one field in one table, but in two or more fields in another). 

As an aid to our data cleaning efforts, we have devel- 
oped Bellman, a data quality browser. Bellman provides 
the usual query and schema navigation tools, and also a col- 
lection of tools and services which are designed to help the 
user discover the structure in the database. Bellman uses 
database profiling [13] to collect summaries of the database 
tablespaces, tables, and fields. These summaries are dis- 
played to the user in an interactive manner  or are used for 
more complex queries. Bellman collects the conventional 
profiles (e.g., number of rows in a table, number  of distinct 
values in a field, etc.), as well as more sophisticated profiles 
(which is one of the subjects of this paper). 

In order to understand the structure of a database, it is 
necessary to understand how fields relate to one another. 
Bellman collects concise summaries of the values of the fields. 
These summaries allow Bellman to determine whether two 
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fields can be joined, and if so the direction of the join (e.g. 
one to many, many to many, etc.) and the size of the join 
result. Even when two fields cannot be joined, Bellman can 
use the field value summaries to determine whether they 
axe textually similar, and if the text  of one field is likely 
to be contained in another. These questions can be posed 
as queries on the summarized information, with results re- 
turned in seconds. Using the summaries, Bellman can pose 
da ta  mining queries such as, 

• Find all of the joins (primary key, foreign key, or oth- 
erwise) between this table and any other table in the 
database. 

• Given field F ,  find all sets of fields {.T} such that  the 
contents of F are likely to be a composite of the con- 
tents of .T. 

• Given a table T, does it have two (largely) disjoint 
subsets which join to tables T1 and T2 (i.e. is T het- 
erogeneous)? 

These da ta  mining queries, and many others, can also be 
answered from the summaries, and therefore evaluated in 
seconds. This interactive database structure mining allows 
the user to discover the structure of the database,  enabling 
the application of da ta  cleaning, da ta  mining, and schema 
mapping tools. 

1.1 Related Work 
The database research community has explored some as- 

pects of the problem of da ta  cleaning [42]. One aspect of this 
research addresses the problem of finding duplicate values in 
a table [22, 32, 37, 38]. More generally, one can perform ap- 
proximate matching, in which joins predicates can be based 
on string distance [37, 39, 20]. Our interest is in finding 
related fields among all fields in the database,  rather than 
performing any part icular  join. In [8], the authors compare 
two methods for finding related fields. However these axe 
crude methods which heavily depend on schema informa- 
tion. 

AJAX [14] and ARKTOS [46] axe query systems designed 
to express and optimize da ta  cleaning queries. However, the 
user must first determine the da ta  cleaning process. 

A related line of research is in schema mapping, and espe- 
cially in resolving naming and structural  conflicts [3, 27, 41, 
36, 21]. While some work has been done to automatical ly de- 
tect database structure [21, 11, 33, 10, 43, 5], they are aimed 
at mapping particular pairs of fields, rather than summariz- 
ing an entire database to allow da ta  mining queries. 

Several algorithms have been proposed to find keys and 
functional dependencies (both exact and approximate) in ta- 
bles [23, 4, 44, 45, 30]. While this information is valuable for 
mining database structure (and in fact we use an algorithm 
based on the one presented in [23]), additional information 
about connections between fields is needed. 

Data  summaries of various forms have been used in databases 
mainly for selectivity estimation; these typically include his- 
tograms, samples or wavelet coefficients [16]. We use several 
varieties of rain-hash signatures and sketches in our work. 
Min-samples have been used in est imating transitive closure 
size [9], and selectivity estimation [7]. Sketches have been 
used in applications such as finding representative trends 
[24] and streaming wavelets [19]. Their use for da ta  clean- 
ing is novel. 

In this paper,  we make the following contributions: 

• We develop several methods for finding related database 
fields using small summaries. 

* We evaluate the size of the summaries required for 
accuracy. 

• We present new algorithms for mining the structure of 
a database.  

2. SUMMARIZING VALUES OF A FIELD 
Our approach to database structure mining is to first col- 

lect summaries of the database.  These summaries can be 
computed quickly, and represent the relevant features of the 
database in a small amount of space. Our da ta  mining algo- 
r i thms operate from these summaries, and as a consequence 
are fast because the summaries are small. 

Many of these summaries are quite simple, e.g. the num- 
ber of tuples in each table, the number of distinct and the 
number of null values of each field, etc. Other summaries 
are more sophisticated and have significantly more power 
to reveal the structure of the database.  In this section, we 
present these more sophisticated summaries and the algo- 
r i thms which use them as input. 

2.1 Set Resemblance 
The resemblance of two sets A and B is p = [AnB[/[AUB[. 

The resemblance of two sets is a measure of how similar they 
are. These sets are computed from fields of a table by a 
query such as A =Select Distinct R.A. For our purposes we 
are more interested in computing size of the intersection of 
A and B, which can be computed from the resemblance by 

[ A n B I =  P p ~  (IAI + IBI) (1) 

Our system profiles the number of dist inct  values of each 
field, so [A[ and IBI is always available. 

The real significance of the resemblance is that  it can be 
easily estimated.  Let H be the universe of values from which 
elements of the sets are drawn, and let h : H ~ .Af map ele- 
ments of H uniformly and "randomly" to the set of natural  
numbers .Af. Let s(A) = mina~A(h(a)). Then 

Pr[s(A) = s(B)] ---- p 

That  is, the indicator variable I[s(A) = s(B)] is a Bernoulli 
random variable with parameter  p. For a proof of this state- 
ment, see [6], but  we give a quick intuitive explanation. Con- 
sider the inverse mapping h - l  : Af ~ H. T h e  function h -1 
defines a sampling strategy for picking an element of the set 
A, namely select h - l ( 0 )  if it is in A, else h - l ( 1 ) ,  else h-1(2),  
and so on. The process is similar to throwing darts at a dart  
board, stopping when an element of the set is hit. Let us 
consider h- l ( k ) ,  the first element in the sequence which is 
in A U B .  The chance that  h - l ( k )  E A N B  is p, and is 
indicated by s(A) = s(B).  

A Bernoulli random variable has a large variance relative 
to its mean. To tighten the confidence bounds, we collect N 
samples. The signature of set A is S(A)  = ( s i ( A ) , . . . ,  sN(A)),  
where each si(A) = minaeA(hi(a)). We est imate p by 

~5 = ~ I[s,(A) = si(b)]/N 
i = I , . . . , N  
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where N~ has a Binomial(p, N) distribution. For practical 
purposes, each of the hash functions hi could be pairwise 
independent.  

In our use of signatures, we make two modifications for 
simple and fast implementation. First ,  we map the set of all 
finite strings to the range [0, 2 al - 1] for convenient integer 
manipulation. While there is the possibility of a collision 
between hashed elements, the probabil i ty of a collision is 
small if the set size is small compared to the hash range 
(e.g. only a few million distinct values) [6]. For very large 
databases, a hash range of [0, 263 - 1] manipula ted by long 
longs should be used. Second, we do not use "random" 
permutations,  instead we use a collection of hash functions, 
namely the polynomial hash functions described in [29] page 
513. Therefore we need an experimental evaluation (given in 
Section 5) to determine what size set signature is effective. 

The set signature conveys more information than set re- 
semblance, it also can est imate PA\B = [A \ B[/[A U B[ and 
PANB ---- IS \ A[/[A O B[ by 

PA\B = E I[si(A) < si(B)I/N 
i=l,...,N 

PB\A = E I[s,(A) > s,(B)]/N 
i=l,...,N 

Although this is a simple observation given the context of 
the min hashes, we are not aware of any previous work that  
made use of this observation. 

I f~  and PB\A are large, but  PA\B is small, we can conclude 
that  A is largely contained in B, but  B is not contained in 
A. Finally, we note that  set signatures are summable.  That  
is 

S(A U B) = (min(s~ (A), sl ( B ) ) , . . . ,  min(sN CA), SN (B))) 

We use set signatures to find exact match joins in the 
database. During profiling, a set signature is collected for 
every field with at  least 20 distinct values (a user adjustable 
parameter) .  Non-string fields are converted to their string 
representations. These are stored in the database  using the 
schema: 

SIGNhTURE(Tablespace, Table, Field, HashNum, HashVal) 

We can find all fields which resemble a part icular  field 
X.Y.Z using the query: 

Select T2.Tablespace, T2.Table, T2.Field, count(*) 
From SIGNATURE T1, SIGNATURE T2 
Where T1.Tablespace='X' AND T1.Table='Y' AND 

T1.Field='Z' AND T1.HashNum=T2.HashNum 
AND T1.HashVal = T2.HashVal 

Given a resemblance between two fields, we can compute 
the size of their intersection using formula 1 and filter out 
fields with small intersection size. 

2.2 Multiset Resemblance 
A field of a table is a multiset, i.e., a given element can ap- 

pear  many times. While set resemblance can provide infor- 
mation about  whether two multisets have overlapping val- 
ues, it does not provide any information about  the multi- 
plicity of the elements in the multiset. In many cases, we 
would like to have the multiplicity information. For exam- 
ple, would the join be one-to-one, one-to-many, or many to 
many? If it is e.g. one to many, is it 1 to 2, 1 to 20, or 1 to 

200? How large would the join be? Is there a dependence 
between overlapping field values and value frequency? Pre- 
vious join size est imation methods relied on sampling from 
relations for each join [15, 2]. Our method gives a a l ternate  
approach which is almost "free", given that  we collect the 
set signatures. 

A database profile typically contains the number of tuples 
in a table, and for each field the number of dist inct  and null 
values. These numbers can be used to compute the average 
multiplicity of the field values. However, this is a crude 
estimate. For example, many fields have one or more default 
values (other than NULL) which occur very frequently and 
bias the average value frequency. 

Let A be a multiset,  and let A be the set {a : a E A}.  
Let m(a, A)  be the number of times tha t  element a occurs 
in A.  We define the min hash count [40] to be M i ( A )  = 
m(h~ -1 (A), A) ,  i.e., the number of times that  hi -1 (A) occurs 
in multiset A.  Because h~-l(A) is selected uniformly ran- 
domly among the set of distinct values in A, m i ( A )  is an 
unbiased est imator  of the frequency distribution .T'(A) of A.  
That  is 

.(Pr[m'(A) = k] = Io E A : mIa, A ) l A i  = kl : k > 1 .  ~ ( A )  

Since each sample M/CA ) is a Bernoulli random variable 
with parameter  Pr[mi(A) = k] for each k, we can es t imate  
the .T'(A) with ~ ( A ) ,  where 

]Z(A~-~= { ~iN=I I[Mi(A)=k]N : k > l }  

In conventional sampling, items are uniformly randomly 
selected from A. By contrast,  min hash sampling uniformly 
randomly selects i tems from A, and the min hash count 
collects their multiplicities. The combination of min hash 
sampling and min hash counts create a multiset signature. 
In [17], the author  presents a sophisticated method  for sam- 
pling distinct values and used it for est imating the number  
of unique values in a field, but  their scheme does not have 
the estimation propert ies above of the multiset  signatures. 

Like set signatures, multiset signatures are summable,  us- 
ing 

s i (A  U B )  = min(si(A),si(B)) 
mi(A U B) = m i ( A )  s i (A)  < s i (B)  

= mi (B)  s i (A)  ) s i (B)  

= m i ( A )  + mi (B)  s i (A)  = s i (B)  

We can use the min hash count in a variety of ways. 

• The min hash count provides an accurate es t imate  of 
the tail  of the distr ibution of values in A.  In con- 
junction with techniques which accurately es t imate  the 
head of the distr ibution (e.g., end biased histograms[25]), 
we can characterize the entire frequency dis tr ibut ion 
of A. 

• The min hash count not only estimates the frequency 
distribution, but  does so in conjunction with a set sig- 
nature.  We can therefore compute a variety of useful 
information about the nature of a join. 

- We can compute the direction of the join, i.e. is 
it one-to-one, one-to-many, many-to-many,  and 
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how many? Suppose we are given the multiset  
signatures of A and B. Then, frequency distri- 
bution of the elements of A which join with B 
(respectively, B with A)  is given by 

f r ( A l B  ) = [~" ~ I[Mi(A)~_I~_£) ~- S ~ =  k] * I [S , (A)  = S,(B)] : k > 1 } 

- We can compute a distribution dependence of A 
on B (and vice versa) by comparing f=(A) and 
f~(AIB),  e.g. by comparing their mean values, 
using a X 2 test,  etc. 

- We can est imate the join size of A ~ B using 
multiset signatures. Let: 

E [ M ( A  ~ B)] = ~ v = l  Mi(A)Mi(B)I[Si(A) = Si(B)]  
N ~ ,=1  I[S,(A) = S,(B)] 

The est imate E [ M ( A  ~ B)] is the average num- 
ber of tuples that  each element in A N B con- 
tr ibutes to the join result. Therefore the esti- 
mated  join size is : 

I ~ B [  = E [ M ( A  ~ B ) ] i ~  (IAI + IBD 

- We can est imate the frequency distr ibution of the 
join result using 

f r (A ~ B) = 

{ ~ I[M,(A)M,(B) = k] * I[S,(A) = S,(B)] 1 
J 

The multiset signatures can be stored in a database using 
a schema similar to that  used for the set signatures, e.g., 

MULTISETSIG(Tablespace, Table, Field, HashNum, HashVal, 
MinCnt) 

For an example, we can find the est imated frequency dis- 
t r ibut ion of field X.Y.Z using 

Select MinCnt count(*) 
From MULTISETSIG 
Where Tablespace = 'X' AND Table = 'Y' AND Field = 'Z' 
Group By MinCnt 

2.3 Substring Resemblance 
Databases  maintained by different organizations often rep- 

resent da t a  using different formats, but  in "textually simi- 
lax" ways. For example, database D~ might store customer 
names in a field CustName in the format 'LastName, First-  
Name' ,  while database D2 might store customer names in 
two fields, LastName and FirstName. Another common oc- 
currence is for a key to have extra  text  appended, prepended, 
or inserted into the middle. For example, D1 might store 
Social Security numbers in the format 'ddd-dd-dddd ' ,  while 
D2 uses the format 'SSddd-dd-dddd '  (often the addit ional 
text  has context-specific meaning). 

Finding join paths  in which the keys must be catenated,  
transformed, or both is very difficult, because au tomated  
join testing does not incorporate transforms. It is often the 
case that  humans can identify common pat terns  in two fields 
and manually determine the transform. This process is labor 
intensive, so a filtering mechanism is needed to eliminate 
fields which are obviously poor matches. 

Finding substring similari ty between two fields is a diffi- 
cult problem because of the huge number of substrings of the 
two fields which must be compared. A typical approach for 
reducing the complexity of the problem is to summarize the 
substrings in a field with q-grams, the set of all q-character 
substrings of the field (see [20] and the references therein). 

For our purposes, the set of all q-grams is likely to be too 
large for convenient storage and manipulat ion (e.g., there 
are 2,097,152 possible 7 bi t  ASCII  3-grams). Therefore we 
will view the q-grams of a field as a set or multiset and store 
a summary of it. 

2.3.I Q-gram Signature 
A q-gram signature is a set signature of the set of q-grams 

of a set A or a multiset A.  A q-gram signature is computed 
by first computing the QGRAM(A), set of all q-grams of 
A, then computing the set signature of the q-gram set. The 
q-gram resemblance of two sets A and B is: 

pq = IQGRAM(A) n QGRAM(B)I 
IQGRAM(A) U QGRAM(B)I 

and is est imated by 

Pq = E I[s,(QGRAM(A)) = s,(QGRAM(B))]/N 
i : l , . . . , N  

Since we compute QGRAM(A) before computing its set 
signature, we can store ]QGRAM(A)[ as well as the q-gram 
signature. Therefore we can est imate the size of the inter- 
section of two q-gram sets by 

IQGRAM(A) • QGRAM(B)I = 

1 + ~q ([QGRAM(A)I + [QGRAM(B)D 

Two fields which have a small or zero set resemblance but  
a large q-gram resemblance are likely to be a related by a 
small transformation. However, it is often the case that  the 
set of q-grams of one field B are (largely) contained in the 
set of q-grams of another field B (for example, if values in 
field B contain a few extra  characters, or are composed of 
values from field A catenated with values from field C). We 
recall from Section 2.1 a couple of useful properties of set 
signatures. 

• We can determine q-gram set containment using the 
q-gram analogs of PA\B and PB\A, 

N 

~A\B ---- ~ I[si(QGRAM(A)) < si(QGRAM(B))I/N 
i=1 

N 

~ B \ A  "~ ~ I[s,(QGRAM(A)) > si(QGRAM(B))]/N 
i=l  

If A is mostly composed of substrings of B, then ~q 
will be large and ~A\B will be small. 

• Recall that  set signatures are summable by taking 
min(Si(A),  Si(B)), i = 1 , . . . ,  N. Suppose we are given 
two fields A and C whose q-gram sets are contained in 
field B 's  q-gram set. If QGRAM(A) U QGRAM(C) 
covers a significantly larger fraction of QGRAM(B) 
than either set of q-grams alone, it is likely that  B is 
a composite of A and C. When applied to finding join 
paths,  we can restrict our at tent ion to fields from table 
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T1 which are contained in a field of T2, leaving a highly 
tractable search process. 

• The q-gram signatures can be stored in the database 
and queries in a manner  analogous to that shown in 
Section 2.1. 

2.4 Q-gram Sketches 
Another method for determining substring similarity is 

to use sketches [26], a dimensionally reduced representa- 
tion of a vector. Let V be a d dimensional vector, and 
let X 1 , . . . , X ~  be k d-dimensional vectors with randomly 
chosen values (typically, k << d). The sketch of V, Sk(V) ,  is 

Sk(v) = ( y .  z~ , . . . ,  v .  xk) 

That  is, a sketch of a vector is a collection of random 
projections. The L2 distance between vectors V1 and V2, 
L2 (Vl, V2) is approximated by the function 

F~(v1, v2) = (Sk(yl)[i]  - Sk(Y~)[i])~/k 

In our application, we axe interested in the q-gram vector 
distance. The q-gram vector of a field is a normalized count 
of the number of times each possible times a q-gram appears 
in field A: 

QV(A)[i] = m(qi, Q G R A M ( A ) )  
X / ~ i  m( qi, QG R A M  ( A ) ) 2 

where qi is the i ~a q-gram. The q-gram vector distance is 
the distance between the q-gram vectors of two fields, e.g. 

Q D ( A , B ) =  I ~ ( Q V ( A ) [ i ] - Q V ( B ) [ i ] ) 2  

We compute and store the sketches of the q-gram vectors, 
S K ( Q V ( A ) ) .  Following [1], the entries in the random vec- 
tors Xj  are 1 with probability 1/2, and - 1  with probability 
1/2. Suppose there are n vectors Q V ( A j )  to be compared. If 

k > 8/e 2, then ~ ( Q V ( A 1 ) ,  QV(A2))  is in a (e, e) confidence 
interval around L2 ( Q V ( A1) , Q V ( A2 ) ). 

Like the q-gram signature, the q-gram sketch can be used 
to find pairs of fields which are textually similar. While the 
q-gram signature represents the set of q-grams in a field, 
the q-gram sketch represents the multiset of q-grams in a 
field, The q-gram sketch is therefore the more discriminating 
summary because its measure is based on the distribution of 
field values. This can be a positive or a negative attribute, 
depending on the type of search being done. 

Unlike q-gram signatures, it is difficult to determine set 
containment using q-gram sketches. However, sketches are 
summable, being linear combinations. 

The q-gram sketches can be stored in the database using 
the schema: 

QSKETCH(Tablespace, Table, Field, SkNum, SkVal) 

We can find the q-gram vector distance from a particular 
field X.Y.Z to all other fields in the database using the result 
of the following query (and dividing by k, then taking the 
square root): 

Select T2.Tablespace, T2.Table, T2.Field, 
Sum( (T1.SkVaI-T2.SkVal)* (T1.SkVaI-T2.SkVal)) 

From QSKETCH T1, QSKETCH T2 
Where T1.Tablespace='X' AND T1.Table='Y' AND 

T1.Field='Z' AND T1. SkNum = T2.SkNum 

2.5 Finding Keys 
In order to determine the structure of a database, we need 

to determine the minimal keys for each table, e.g. to deter- 
mine primary key-primary key or primary key-foreign key 
join paths. We implemented a levelwise key finding algo- 
r i thm similar to Tane [23]. Since our algorithm is subsumed 
by Tane, we note only the significant differences between our 
implementations: 

• We are interested only in keys, not all functional de- 
pendencies. Therefore we used a much simpler and 
more aggressive pruning condition. 

• Tane uses a special file structure to accelerate the key 
finding process. Our software, Bellman, is intended to 
be an easily portable program residing on the client 
machine. Creating many large file on the client seems 
inadvisable, so instead we submit Count Distinct queries 
to the database. 

3. MINING DATABASE STRUCTURES 
The tools presented in the preceding section allow one 

to quickly determine components of the database structure. 
Once a summary of the database has been computed, they 
allow the user to submit browsing queries, such as What is 
the set off keys for this table, or what other fields have values 
that are similar to this field? 

One can also use these tools to ask further questions about  
structure of the database. For example What other tables 
join to this table?, or Is this field a composite of two or more 
fields in another table? In this section, we outline how the 
following three queries can be quickly answered using the 
signatures and sketches: 

• Finding join paths. 

• Finding composite fields. 

• Finding heterogeneous tables. 

3.1 Finding Join Paths 
Gives a table T, we would like to find all ways in which 

another table T '  can join with T. Further, we would like 
to restrict our attention to joins involving keys of T, T ' ,  or 
both. It is clear that  we can answer this query using the set 
signatures (or multiset signatures) and the list of keys of the 
tables. 

1. F ind all pairs of fields J = {(fT, f~)} such that  the 
pair has a high resemblance, fT is a field in T, and ff~ 
is a field in T '  ¢ T. 

2. Parti t ion J into {JT i , . . .  JTm}, where each JTi con- 
tains all and only those pairs with fields from tables T 
and T~. 

3. For each partit ion JT~, 

(a) For each key KT of table T such that  all fields in 
KT are in JTi, and can be matched with different 
fields of T/. 
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i. Output  all possible matchings of KT with 
fields of Ti drawn from JT~ such that  each 
field of KT is matched with a different field 
of Ti. 

(b) Find all keys gTi of table Ti such that all fields 
in KTi are in JT, and are matched with different 
fields of T. 

By using multiset signatures, it is possible to evaluate the 
strength of the join. It the key K is on a single field, then the 
join size and direction estimation methods described in Sec- 
tion 2.2 are applicable. If key K has multiple components, 
we cannot use the join size and direction estimates directly. 
However, we can still get an indication of the strength of the 
join. 

For concreteness, let the key be KT = (A, B). Let 
Isct(T.A,T'.A) be the size of the intersection of sets T.A 
and T' .A. Let the coverage of T ' .A be 

Cvr(T'.A, T.A ) = 
Isct(T.A, T'.A) N ~i=t  Mi (T'.A)I[si (T.A) = si (T'.A)] 

~N=i I[si(T.A) = si(T'.A)] 

Similarly, define the intersection and coverage of T'.B 
with T.B. Then we can estimate an upperbound on the 
number of tuples of T that will be joined with T '  by 

min( l sct ( T.A, T' .A ) I sct ( T.B , T' .B ), 

Cvr( T'.A, T.A ), Cvr( T'.B , T.B ) 

3.2 Finding Composite Fields 
A common problem in finding joins between tables in dif- 

ferent databases (and often, within the same database) is 
that two fields might contain the same information, but in 
a slightly different way (i.e., one field is a transformation of 
another). Often, the transformation from one field to an- 
other involves appending or prepending a short text (e.g. a 
customer identifier '10974' becomes 'C10974'). The q-gram 
signature and q-gram sketch summaries are useful for iden- 
tifying the similarity of these pairs. 

Other field transformations are more complex. One com- 
mon complex transformation is when a field in one table is a 
composite of two or more fields in another table. For exam- 
ple a customer's name might be stored as 'Hamid Ahmadi'  
in the Name field of table T1, and as 'Hamid'  and 'Ahmadi '  
in the FirstName and LastName fields, respectively, of table 
T2. 

Substring search and indexing is a difficult problem in gen- 
eral. While we cannot identify precisely which fields combine 
to make another, we can use the properties of the q-gram 
signature to produce a small number of candidates which 
might combine to form the composite field. 

1. Given field f ,  

2. Find the set of fields F with a high q-gram resemblance 
to f and whose q-grams are largely a subset of those 
in field F.  

3. Partition F into {FT1,..., FTm } where each FTi con- 
tains all and only those fields in F drawn from table 
Ti. 

4. For each partition FTi, 

(a) Add all combinations of 2 or more fields of FT~ to 
the candidate list C. 

5. Rank the entries in C and sort by ranking. 

Recall from Section 2.1 that we can determine whether .f~ 
is largely a subset of ff2 by using Pfl\f2" Depending on the 
minimum level of q-gram resemblance required for admission 
to f,  the number of entries in C might be very large. In this 
case, the ranking step is critical for presenting a useful set 
of results to the user. Fortunately, there are several simple 
but useful ranking heuristics available. First, a smaller set 
of fields is more likely to be interesting than a larger one. 
Second, the composite set of fields can be ranked by their 
q-gram resemblance or their q-gram sketch distance from f 
(Recall that  the signature or sketch of the q-grams of the 
union of  two fields is easily computed from the signature or 
sketch of the q-grams of the two individual fields). Third, 
combinations of fields which increase their resemblance to f 
(or decrease their q-gram sketch distance) as compared to 
the individual fields might gain in ranking. 

The algorithm step 4a) requires time proportional to I FT~ I!, 
although in practice the output would be limited to sets with 
at most e.g. three fields. To understand what the output  
size would be, we ran a query to collect all pairs of fields 
with a q-gram resemblance of at least 40% such that ~5~t\s 
o r  P~\A is no larger than 5%. We found that  the average 
size of FT~ is 3.8, the largest FT~ contains 18 elements, and 
that 90% of the FT~ have 7 or fewer elements. 

3.3 Finding Heterogeneous Tables 
Large production databases often become disordered be- 

cause a new and unanticipated entity must be modeled (e.g. 
a new service offering, a new customer type, a new account- 
ing procedure, etc.). Supporting the new entity often entails 
"pushing a square peg into a round hole" - the new entity 
is made to fit into the existing tables, often with the help of 
new supporting tables and dimension tables. After several 
of these additions, any given dimension or supporting table 
might join with only a portion of a fact table. 

For example, a company might provide a fixed-price dial- 
up Internet service, targeted at consumers. A database is de- 
signed to model individual consumers on a fixed-price plan. 
Later the company discovers that its Internet service offer- 
ing is popular with small businesses, so it develops market- 
ing and billing systems to better support the small business 
market. These require additional tables which describe the 
business customers. Shortly thereafter, the company decides 
to offer hourly rate plans as an alternative to the fixed price 
plan. A new table is added to the database which records 
modem usage for the hourly rate customers. 

While any single adjustment to the database structure is 
simple to understand, after a long sequence of these adjust- 
ments the database structure can become quite complex. 
Often, these structures are not documented, and the data 
analyst or schema mapper must discover them by trial and 
error. 

However, it is possible to use the properties of set signa- 
ture to discover tables which axe likely to be heterogeneous, 
and also the joins of the heterogeneous partitions of the ta- 
ble. 

1. Given table T, 

2. For every field f of table T 
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(a) Find J,  the set of fields with high resemblance to 

f 
(b) Parti t ion J into {JT , , . . . ,  flTm }, where the fields 

in each JT~ are all and only those in table Ti. 

(c) For each JTi, 

i. Output  all maximal subsets { f l , . . .  ffm} such 
that  I f N f i n f j [  is small, 1 _< i < j < m. and 
each fi is drawn from a different JT~. 

Determining that  If fq fi N ffj[ can be done using a simple 
extension of set signatures (recall Section 2.1) of f ,  fi and 
f j ,  i.e. by computing 

I[s~(f) = sk(fi) = s~(f j )] /N 
k=l,. . . ,N 

4. BELLMAN 
We are developing Bellman, a database  browser for com- 

plex databases. Bellman provides the usual database browser 
functions such as a query tool and a schema browser. Bell- 
man also collects profiles of the database,  and stores these 
profiles in the database itself. Many of the profiles which 
Bellman collects are simple, for example the number of ta- 
bles in a tablespace, the number of rows in a table, the num- 
ber of distinct and null values of each field. By caching these 
profiles in the database,  they can be interactively displayed 
to the user. We have found that  even this simple function- 
ality greatly simplifies the database  exploration process. 

Bellman also collects the more complex profiles discussed 
in the previous section (keys, multiset  signatures, q-gram 
signatures, and q-gram sketches). All fields (e.g., numeric, 
date, and fixed-length string) axe converted to variable-length 
string fields before profiling. We have implemented a vari- 
ety of tools (available as GUI windows callable by a but ton 
click) which allow the user to query the information in these 
profiles in an interactive way. For example, one tool allows 
the user to select a field of a table, and then find all other 
fields in the database that  have a high resemblance. The out- 
put  is loaded in a table which indicates the field name, the 
es t imated resemblance, and the es t imated intersection size. 
The user can select one of these fields and obtain more infor- 
mation, including the frequency distr ibution of the field, the 
est imated join size, the frequency distr ibution of the values 
of the fields which part icipate in the join, and the frequency 
distr ibution of the join result. The user can also submit  
canned queries to the (non-profile) database  to determine 
the actual intersection and join size, and to obtain a sample 
of values of the field. 

Even the complex da ta  mining queries of Section 3 are 
implemented mostly through SQL queries to the profile da t a  
in the database.  Because the profiles are small, the response 
t ime is fast enough to be interactive. 

We implemented Bellman in Java using JDBC to access 
an Oracle database. Because Bellman is intended to be an 
easily installed client, we made the decision to perform all of 
the analysis, including the profile computat ion,  at  the client. 
We found that  Java and JDBC are far too slow and buggy 
for actual  use, so we wrote the analysis code in C + +  using 
the OTL [31] l ibrary to access the database.  OTL is a C + +  
wrapper  which hides the details of database  accesses and 
which can use several connection methods including ODBC 
and OCI. We obtained good performance running Bellman 
on a 700 Mhz Pentium III  PC and accessing a 8-processor 

250 Mhz Solaris server running Oracle. The por table  nature  
of the Bellman code allows us to run it on the server as well. 

5. EXPERIMENTS 
We ran a collection of experiments to determine whether 

signatures and sketches can find similar fields, and the size of 
the signature or sketch required to do so. We also ran several 
experiments to determine the usefulness of the answers, for 
which we can give qualitative results. 1 

For our da ta  set, we used a snapshot of a database  which 
describes several aspects of a large da ta  networking service. 
The full database  contains 926 tables and 15,442 fields in 
four tablespaces. For the experiments described in this pa- 
per, we used the three smaller tablespaces containing 267 
tables and 3,356 fields. We collected signature and sketch 
profiles on all fields containing at  least 20 dist inct  values 
(1,078 fields met this criteria). 

When computing signatures and sketches, we collected 
250 samples. We computed 3-grams of the values of the 
fields for the q-gram signatures and sketches. Computing all 
of the profiles except for the keys required less than  three 
hours. Determining the keys of the tables is computat ional ly  
expensive, using a large number of count distinct queries, and 
required about  8 hours. 

5.1 Estimating Field Intersection Size 
For our first experiment,  we evaluated the  use of set sig- 

natures for est imating the size of the intersection between 
two fields. For a test da t a  set, we collected 68 random pairs 
of fields with a resemblance of at  least 57o. For each pair, we 
computed the es t imated intersection size using signatures of 
size 50, 100, 150, 200, and 250 samples, and also the  exact 
intersection size. 

In Figures 1 and 2 we plot the error in the  es t imate  of 
the intersection size (relative to the actual  intersection size) 
using 50 and 100 samples in the signature, respectively. The 
X axis is the actual resemblance. As the charts  show, the 
error in the intersection size est imate increases significantly 
when the resemblance is small (i.e., 25% or less). Except  for 
three da ta  points, the 50-sample est imate is able to distin- 
guish between small, medium and large intersections, which 
is good enough for the purpose of finding fields with similar 
values. The 100-sample est imate is able to distinguish in- 
tersection sizes for all samples. Larger sample sizes improve 
accuracy, but  not enough to justify the increased storage or 
evaluation t ime cost. 

Finding all fields with a large resemblance to a part icular  
field required about  90 seconds using 250-sample signatures 
on 1,078 profiled fields. We repeated the t iming test  on 
a Bellman installation in which all four tablespaces were 
profiled, and found tha t  the same query requires about  30 
seconds using 50-sample signatures on 4,249 profiled fields. 

5.2 Estimating Join Sizes 
In our next experiment,  we evaluate the abi l i ty  of the mul- 

tiset signature to est imate the frequency dis tr ibut ion of the 
values in a field. As these results would be difficult to present 
visually, we instead use an interesting proxy: es t imat ing the 
size of a join. If we can est imate the join size accurately, we 
can certainly est imate the frequency dis tr ibut ion accurately. 

tThe da ta  we used in our experiments is sensitive corporate 
da ta  which cannot be released to the public. 
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We reused the same 68 random pairs of fields that  were 
used in the intersection size experiment.  For each pair of 
fields, we est imated their join size using signatures of size 
50, 100, 150, 200, and 250 samples, and also computed their 
exact join size. 

In Figures 3 and 4 we plot the error in the est imate of 
the join size (relative to the actual join size) using 100 and 
250 samples in the signature, respectively. The X axis is the 
actual resemblance. 

The charts show that  the multiset  signature can compute 
the join size to within a 60% error for most of the sample 
points when the resemblance between the fields was large 
(e.g. at least 20%). This level of accuracy is good enough 
to get an idea of the size of the join result to within an 
order of magnitude. Increasing the sample size from 100 
to 250 samples generally increases the accuracy of the esti- 
mate,  except for three da ta  points with a resemblance larger 
than 20% and a very high error. On closer examination, we 
found that  the estimation error was due to a highly skewed 
distr ibution of values in these fields. 

The skewness of the fields for which the multiset signature 
join size est imate fails provides us with a solution for avoid- 
ing highly inaccurate join size estimates. In addition to the 
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multiset signature, we collect the N most frequent values in 
the fields, and a count of their occurrence. We use these 
most-frequent values to compute a lower bound on the join 
size, namely the size of the join of the most-frequent samples 
of the fields. 

We computed the adjus tment  and applied it to the da t a  
points in the 100-samples join size estimate. In figures 5, we 
plot the unadjus ted  100-sample join size est imate against the 
actual join size on a log-log plot. The high-error est imates 
are the da ta  points significantly below the t rend line. We 
plot the adjusted est imates in 6. Although there are still 
several high-error est imates even after the adjustment ,  in 
every case we are able to correctly est imate the order of 
magni tude of the join size. 

We note that  the a count of the most frequent i tems can 
be computed quickly and in small space using the methods 
described in [18]. Furthermore,  we do not need to store the 
actual values of the most frequent values, instead we can 
store their hash values. Based on our results, the join size of 
two fields (and therefore their  frequency distributions) can 
be accurately es t imated using multiset signatures with 100 
samples plus an addit ional  10 most-frequent samples. 

5.3 Q-gram Signatures 
In our next experiment,  we evaluate the accuracy of q- 

gram signatures. We randomly selected 67 pairs of fields 
with a q-gram resemblance of at least 15%. We est imated 
the q-gram resemblance using q-gram signatures with 50, 
100, 150, 200, and 250 samples, and also computed the exact 
resemblance between the pairs of fields. 

When finding similar fields using q-grams, we are inter- 
ested in a similarity measure rather  than a numeric value 
such as the intersection size. In Figures 7 and 8, we plot the 
es t imated versus the actual resemblance using 50-sample q- 
gram signatures and 150-sample q-gram signatures, respec- 
tively. Even in the 50-sample case and even for low resem- 
blance, the resemblance can be accurately estimated. The 
maximum estimation error (compared to the actual resem- 
blance) is 47% in the 50-sample experiment,  and 21% in 
the 150-sample experiment.  Accurately est imating q-gram 
resemblance is easier than est imating intersection sizes be- 
cause we are directly est imating the resemblance, and be- 
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cause the universe of possible values is much smaller. We 
can accurately tell the difference between large, medium, 
and small resemblance using a 50-sample q-gram signature. 

5.4 Q-gram Sketches 
Finally, we evaluate the accuracy of q-gram sketches. For 

this experiment,  we use the same set of 67 pairs of fields tha t  
we used in the q-gram signature experiment.  We est imate 
the L2 distance between the normalized q-gram occurrence 
vectors using q-gram sketches with 50, 100, 150, 200, and 
250 samples, and also computed  the actual  L2 distance. 

The est imated q-gram vector distance is plot ted against 
the actual q-gram vector distance in Figure 9 for 50-sample 
estimates, and in Figure 10 for 150-sample estimates. Al- 
though the 150-sample est imates have a much lower error 
than the 50-sample estimates,  the 50-sample est imates can 
readily distinguish between small, medium, and large dis- 
tances. We conclude that  only 50 samples are required for 
a q-gram vector sketch. 

We note that  q-gram vector distance and q-gram resem- 
blance are rather  different and complementary measures. In 
Figure 11, we plot the actual  q-gram vector distance against 
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the actual q-gram resemblance for the 67 pairs of fields used 
in the previous experiment.  Although high-resemblance pairs 
are not high-distance pairs, otherwise there is li t t le correla- 
tion between resemblance and distance. 

5.5 Qualitative Experiments 
In the previous experiments, we have established tha t  

small summaries are sufficient for the purpose of exploring 
the structure of a large and complex database.  However, 
the question of whether the summaries actually help in the 
exploration process still needs to be answered. 

The da ta  set we use for experiments is confidential corpo- 
rate data,  so we cannot discuss any particular query results. 
However, we can discuss in general the usefulness of the 
tools. 

5.5.1 Using Multiset Resemblance 
A version of Bellman which has been released to several 

users collects and stores multiset signatures of all fields with 
at least 20 distinct values (a user-adjustable parameter) .  
Bellman contains a tool for querying the multiset signatures 
to find all fields with a minimum (estimated) resemblance 
to a given field. The result is displayed to the user in a ta- 
ble which includes columns indicating the est imated resem- 
blance, es t imated intersection size, est imated join frequency 
dependencies, and est imated join size. 

The released version of Bellman has been used to explore 
the four tablespace, 926 table da ta  set, a portion of which 
was used for the experimental  da ta  (actually; the problem 
of exploring this da ta  set was the motivation for developing 
Bellman). Bellman's abili ty to quickly and interactively find 
high-resemblance fields has been a distinct valuable feature, 
and has led to several unexpected discoveries. 

There are a variety of other methods for finding joinable 
fields. One method is to perform the join, but  doing so 
is unacceptably slow. Another  method is to look for fields 
with the same name. In our explorations, we have found 
that  joinable fields rarely have the same name (and often do 
not even have similar names). 

A more sophisticated method is to collect a variety of fea- 
tures of the field, such as the da ta  type  of the field, the 
length of the field, the nature of the characters in the field 
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(letters, numbers, punctuation).  This method is used by 
systems which profile databases, typically as preparat ion 
for migrating a legacy database [12, 34, 28]. Fields which 
have similar features are judged to be similar. However, 
this type of profiling is susceptible to false positives and 
false negatives. The reason for the false positives is evi- 
dent (e.g. two fields might contain an non-overlapping set 
of telephone numbers). When the database  contains fifteen 
thousand fields, eliminating as many false positives as is 
possible is critical. False negatives can occur when a field is 
polluted with unexpected values, e.g. a field which is sup- 
posed to contain a 10 digit key might contain entries 2 such 
as "none", "no key", "Hamid Ahmadi" ,  etc. The field seems 
to contain alphanumeric data, and therefore is not presented 
as a match to a f ie ld  with 10 digit entries. 

Some systems will a t t empt  to classify the nature of the 
data,  e.g. name, address, telephone number,  etc. [43, 5]. 
This type of more selective feature can help to eliminate 
false positives, but  it still suffers from the problems of the 
feature vector approach. In addition, the method is fragile 
- we always seem to encounter a new da ta  format in our 
explorations. However we note tha t  both  of these types 
of profiling are useful adjuncts to the profiling techniques 
discussed in this paper. 

5.5.2 Using Q-gram Similarity 
The q-gram summaries (both signatures and sketches) 

find fields which are "textually similar" to a target  field - 
tha t  is, typical field values look similar to the human eye. A 
q-gram similarity query often returns a long list of similar 
fields (as is likely to happen when 1,000+ fields axe profiled), 
but  ranked by similarity. The fields in the result list are of- 
ten semantically related to the target  field. For example, 
a query to find fields similar to a City field returned many 
other fields containing city names, but  also fields containing 
addresses and first and last names of people. A query on 
an field containing IP addresses re turned other IP address 
fields, but  also some fields containing fixed point numbers 
with three digits of precision after the decimal. 

By pruning high value-resemblance fields from the result 
of a q-gram similarity query and providing a da ta  explo- 
ration GUI, we can usually make serendipitous discoveries. 
For example, some of the fields found to be textual ly  sim- 
ilar to the City were labeled Country. On closer examina- 
tion, these fields actually contained county names (and many 
county and city names are identical). The q-gram similar- 
i ty query on an IP address field returned a field containing 
class-C prefixes of the IP addresses (i.e., the first 3 octets of 
the 4-octet IP addresses). 

We tried these q-gram similarity queries, and several oth- 
ers, using both q-gram signatures and q-gram sketches. As 
can be expected, we found the results of the query on the 
q-gram sketches to be highly targeted,  while the query on 
the q-gram signatures to be much less so. Almost  all of the 
highly ranked results returned by the q-gram sketch query 
were highly relevant, but  the query missed several interest- 
ing fields returned by the q-gram signature. We conclude 
tha t  these tools are complementary, and both  are useful in 
a browser. 

6. CONCLUSIONS 

~We have encountered many such examples. 

In this paper,  we have explored the use of rain hash sig- 
natures and sketches to summarize the values of a field, and 
have made a novel use of these summaries for da t a  cleaning 
and structural  da t a  mining purposes. 

Signatures and sketches have several a t t rac t ive  propert ies  
(e.g., summabili ty,  abili ty to detect subsets) which make 
them an appropr ia te  building block for da t a  mining queries 
on the structure of a large and complex database.  Many such 
queries are possible, we propose three and give algorithms 
for evaluating them. 

The profiles we collect of the database should be small, 
for efficient storage and fast query response time, but  large 
enough to give accurate answers. We evaluated the  t rade-  
off between summary  size and accuracy for set signatures, 
multiset signatures, q-gram signatures, and q-gram vector 
sketches. We found that  fifty samples per summarized field 
was sufficient to accurately determine intersection size, q- 
gram resemblance, and q-gram vector distance. One hun- 
dred samples plus the hashes and counts of the ten most 
frequent values suffice to est imate join sizes accurately. 

We have developed Bellman to browse large and complex 
databases.  Bellman profiles the database,  caches the re- 
sults, and provides interactive responses to the user. Users 
of Bellman have found the abil i ty to discover fields with high 
resemblance to be extremely useful in the da ta  explorat ion 
process. 
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