
Mining Database Structure; Or, How to Build a Data Quality
Browser

Tamraparni Dasu, Theodore Johnson, S. Muthukrishnan, Vladislav Shkapenyuk
AT&T Labs-Research

{t amr,johnsont,muthu,vshkap }@research.att.com

ABSTRACT
Data mining research typically assumes that the data to be
analyzed has been identified, gathered, cleaned, and pro-
cessed into a convenient form. While data mining tools
greatly enhance the ability of the analyst to make data-
driven discoveries, most of the time spent in performing an
analysis is spent in data identification, gathering, cleaning
and processing the data. Similarly, schema mapping tools
have been developed to help automate the task of using
legacy or federated data sources for a new purpose, but
assume that the structure of the data sources is well un-
derstood. However the data sets to be federated may come
from dozens of databases containing thousands of tables and
tens of thousands of fields, with little reliable documentation
about primary keys or foreign keys.

We are developing a system, Bellman, which performs
data mining on the structure of the database. In this paper,
we present techniques for quickly identifying which fields
have similar values, identifying join paths, estimating join
directions and sizes, and identifying structures in the database.
The results of the database structure mining allow the an-
alyst to make sense of the database content. This informa-
tion can be used to e.g., prepare data for data mining, find
foreign key joins for schema mapping, or identify steps to
be taken to prevent the database from collapsing under the
weight of its complexity.

1. INTRODUCTION
A seeming invariant of large production databases is that

they become disordered over time. The disorder arises from
a variety of causes including incorrectly entered data, incor-
rect use of the database (perhaps due to a lack of documenta-
tion), and use of the database to model unanticipated events
and entities (e.g., new services or customer types). Admin-
istrators and users of these databases are under demanding
time pressures and frequently do not have the time to care-
fully plan, monitor, and clean their database. For example,
the sales force is more interested in making a sale than in

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM SIGMOD '2002 June 4-6, Madison, Wisconsin, USA
Copyright 2002 ACM 1-58113-497-5/02/06 ...$5.00.

correctly modeling a customer and entering all information
related to the sale, or a provisioning group may promptly
enter in the service/circuits they provision but might not
delete them as diligently.

Unfortunately, these disordered databases have a signif-
icant cost. Planning, analysis, and data mining are frus-
t rated by incorrect or missing data. New projects which
require access to multiple databases are difficult, expensive,
and perhaps even impossible to implement.

A variety of tools have been developed for database clean-
ing [42] and for schema mapping [35], as we discuss in more
detail below. In our experience, however, one is faced with
the difficult problem of understanding the contents and struc-
ture of the database(s) at hand before they can be cleaned
or have their schemas mapped. Large production databases
often have hundreds to thousands of tables with thousands
to tens of thousands of fields. Even in a clean database,
discovering the database structure is difficult because of the
scale of the problem.

Production databases often contain many additional prob-
lems which make understanding their structure much more
difficult. Constructing an entity (e.g., a corporate customer
or a data service offering) often requires many joins with
long join paths, often across databases. The schema doc-
umentat ion is usually sparse and out-of-date. Foreign key
dependencies are usually not maintained and may degrade
over time. Conversely, tables may contain undocumented
foreign keys. A table may contain heterogeneous entities,
i.e. sets of rows in the table that have different join paths.
The convention for recording information may be different in
different tables (e.g. a customer name might be recorded in
one field in one table, but in two or more fields in another).

As an aid to our data cleaning efforts, we have devel-
oped Bellman, a data quality browser. Bellman provides
the usual query and schema navigation tools, and also a col-
lection of tools and services which are designed to help the
user discover the structure in the database. Bellman uses
database profiling [13] to collect summaries of the database
tablespaces, tables, and fields. These summaries are dis-
played to the user in an interactive manner or are used for
more complex queries. Bellman collects the conventional
profiles (e.g., number of rows in a table, number of distinct
values in a field, etc.), as well as more sophisticated profiles
(which is one of the subjects of this paper).

In order to understand the structure of a database, it is
necessary to understand how fields relate to one another.
Bellman collects concise summaries of the values of the fields.
These summaries allow Bellman to determine whether two

240

fields can be joined, and if so the direction of the join (e.g.
one to many, many to many, etc.) and the size of the join
result. Even when two fields cannot be joined, Bellman can
use the field value summaries to determine whether they
axe textually similar, and if the text of one field is likely
to be contained in another. These questions can be posed
as queries on the summarized information, with results re-
turned in seconds. Using the summaries, Bellman can pose
da ta mining queries such as,

• Find all of the joins (primary key, foreign key, or oth-
erwise) between this table and any other table in the
database.

• Given field F , find all sets of fields {.T} such that the
contents of F are likely to be a composite of the con-
tents of .T.

• Given a table T, does it have two (largely) disjoint
subsets which join to tables T1 and T2 (i.e. is T het-
erogeneous)?

These da ta mining queries, and many others, can also be
answered from the summaries, and therefore evaluated in
seconds. This interactive database structure mining allows
the user to discover the structure of the database, enabling
the application of da ta cleaning, da ta mining, and schema
mapping tools.

1.1 Related Work
The database research community has explored some as-

pects of the problem of da ta cleaning [42]. One aspect of this
research addresses the problem of finding duplicate values in
a table [22, 32, 37, 38]. More generally, one can perform ap-
proximate matching, in which joins predicates can be based
on string distance [37, 39, 20]. Our interest is in finding
related fields among all fields in the database, rather than
performing any part icular join. In [8], the authors compare
two methods for finding related fields. However these axe
crude methods which heavily depend on schema informa-
tion.

AJAX [14] and ARKTOS [46] axe query systems designed
to express and optimize da ta cleaning queries. However, the
user must first determine the da ta cleaning process.

A related line of research is in schema mapping, and espe-
cially in resolving naming and structural conflicts [3, 27, 41,
36, 21]. While some work has been done to automatical ly de-
tect database structure [21, 11, 33, 10, 43, 5], they are aimed
at mapping particular pairs of fields, rather than summariz-
ing an entire database to allow da ta mining queries.

Several algorithms have been proposed to find keys and
functional dependencies (both exact and approximate) in ta-
bles [23, 4, 44, 45, 30]. While this information is valuable for
mining database structure (and in fact we use an algorithm
based on the one presented in [23]), additional information
about connections between fields is needed.

Data summaries of various forms have been used in databases
mainly for selectivity estimation; these typically include his-
tograms, samples or wavelet coefficients [16]. We use several
varieties of rain-hash signatures and sketches in our work.
Min-samples have been used in est imating transitive closure
size [9], and selectivity estimation [7]. Sketches have been
used in applications such as finding representative trends
[24] and streaming wavelets [19]. Their use for da ta clean-
ing is novel.

In this paper, we make the following contributions:

• We develop several methods for finding related database
fields using small summaries.

* We evaluate the size of the summaries required for
accuracy.

• We present new algorithms for mining the structure of
a database.

2. SUMMARIZING VALUES OF A FIELD
Our approach to database structure mining is to first col-

lect summaries of the database. These summaries can be
computed quickly, and represent the relevant features of the
database in a small amount of space. Our da ta mining algo-
r i thms operate from these summaries, and as a consequence
are fast because the summaries are small.

Many of these summaries are quite simple, e.g. the num-
ber of tuples in each table, the number of distinct and the
number of null values of each field, etc. Other summaries
are more sophisticated and have significantly more power
to reveal the structure of the database. In this section, we
present these more sophisticated summaries and the algo-
r i thms which use them as input.

2.1 Set Resemblance
The resemblance of two sets A and B is p = [AnB[/[AUB[.

The resemblance of two sets is a measure of how similar they
are. These sets are computed from fields of a table by a
query such as A =Select Distinct R.A. For our purposes we
are more interested in computing size of the intersection of
A and B, which can be computed from the resemblance by

[A n B I = P p ~ (IAI + IBI) (1)

Our system profiles the number of dist inct values of each
field, so [A[and IBI is always available.

The real significance of the resemblance is that it can be
easily estimated. Let H be the universe of values from which
elements of the sets are drawn, and let h : H ~ .Af map ele-
ments of H uniformly and "randomly" to the set of natural
numbers .Af. Let s(A) = mina~A(h(a)). Then

Pr[s(A) = s(B)] ---- p

That is, the indicator variable I[s(A) = s(B)] is a Bernoulli
random variable with parameter p. For a proof of this state-
ment, see [6], but we give a quick intuitive explanation. Con-
sider the inverse mapping h - l : Af ~ H. T h e function h -1
defines a sampling strategy for picking an element of the set
A, namely select h - l (0) if it is in A, else h - l (1) , else h-1(2),
and so on. The process is similar to throwing darts at a dart
board, stopping when an element of the set is hit. Let us
consider h- l (k) , the first element in the sequence which is
in A U B . The chance that h - l (k) E A N B is p, and is
indicated by s(A) = s(B).

A Bernoulli random variable has a large variance relative
to its mean. To tighten the confidence bounds, we collect N
samples. The signature of set A is S(A) = (s i (A) , . . . , sN(A)),
where each si(A) = minaeA(hi(a)). We est imate p by

~5 = ~ I[s,(A) = si(b)]/N
i = I , . . . , N

241

where N~ has a Binomial(p, N) distribution. For practical
purposes, each of the hash functions hi could be pairwise
independent.

In our use of signatures, we make two modifications for
simple and fast implementation. First , we map the set of all
finite strings to the range [0, 2 al - 1] for convenient integer
manipulation. While there is the possibility of a collision
between hashed elements, the probabil i ty of a collision is
small if the set size is small compared to the hash range
(e.g. only a few million distinct values) [6]. For very large
databases, a hash range of [0, 263 - 1] manipula ted by long
longs should be used. Second, we do not use "random"
permutations, instead we use a collection of hash functions,
namely the polynomial hash functions described in [29] page
513. Therefore we need an experimental evaluation (given in
Section 5) to determine what size set signature is effective.

The set signature conveys more information than set re-
semblance, it also can est imate PA\B = [A \ B[/[A U B[and
PANB ---- IS \ A[/[A O B[by

PA\B = E I[si(A) < si(B)I/N
i=l,...,N

PB\A = E I[s,(A) > s,(B)]/N
i=l,...,N

Although this is a simple observation given the context of
the min hashes, we are not aware of any previous work that
made use of this observation.

I f~ and PB\A are large, but PA\B is small, we can conclude
that A is largely contained in B, but B is not contained in
A. Finally, we note that set signatures are summable. That
is

S(A U B) = (min(s~ (A), sl (B)) , . . . , min(sN CA), SN (B)))

We use set signatures to find exact match joins in the
database. During profiling, a set signature is collected for
every field with at least 20 distinct values (a user adjustable
parameter) . Non-string fields are converted to their string
representations. These are stored in the database using the
schema:

SIGNhTURE(Tablespace, Table, Field, HashNum, HashVal)

We can find all fields which resemble a part icular field
X.Y.Z using the query:

Select T2.Tablespace, T2.Table, T2.Field, count(*)
From SIGNATURE T1, SIGNATURE T2
Where T1.Tablespace='X' AND T1.Table='Y' AND

T1.Field='Z' AND T1.HashNum=T2.HashNum
AND T1.HashVal = T2.HashVal

Given a resemblance between two fields, we can compute
the size of their intersection using formula 1 and filter out
fields with small intersection size.

2.2 Multiset Resemblance
A field of a table is a multiset, i.e., a given element can ap-

pear many times. While set resemblance can provide infor-
mation about whether two multisets have overlapping val-
ues, it does not provide any information about the multi-
plicity of the elements in the multiset. In many cases, we
would like to have the multiplicity information. For exam-
ple, would the join be one-to-one, one-to-many, or many to
many? If it is e.g. one to many, is it 1 to 2, 1 to 20, or 1 to

200? How large would the join be? Is there a dependence
between overlapping field values and value frequency? Pre-
vious join size est imation methods relied on sampling from
relations for each join [15, 2]. Our method gives a a l ternate
approach which is almost "free", given that we collect the
set signatures.

A database profile typically contains the number of tuples
in a table, and for each field the number of dist inct and null
values. These numbers can be used to compute the average
multiplicity of the field values. However, this is a crude
estimate. For example, many fields have one or more default
values (other than NULL) which occur very frequently and
bias the average value frequency.

Let A be a multiset, and let A be the set {a : a E A}.
Let m(a, A) be the number of times tha t element a occurs
in A. We define the min hash count [40] to be M i (A) =
m(h~ -1 (A), A) , i.e., the number of times that hi -1 (A) occurs
in multiset A. Because h~-l(A) is selected uniformly ran-
domly among the set of distinct values in A, m i (A) is an
unbiased est imator of the frequency distribution .T'(A) of A.
That is

.(Pr[m'(A) = k] = Io E A : mIa, A) l A i = kl : k > 1 . ~ (A)

Since each sample M/CA) is a Bernoulli random variable
with parameter Pr[mi(A) = k] for each k, we can es t imate
the .T'(A) with ~ (A) , where

]Z(A~-~= { ~iN=I I[Mi(A)=k]N : k > l }

In conventional sampling, items are uniformly randomly
selected from A. By contrast, min hash sampling uniformly
randomly selects i tems from A, and the min hash count
collects their multiplicities. The combination of min hash
sampling and min hash counts create a multiset signature.
In [17], the author presents a sophisticated method for sam-
pling distinct values and used it for est imating the number
of unique values in a field, but their scheme does not have
the estimation propert ies above of the multiset signatures.

Like set signatures, multiset signatures are summable, us-
ing

s i (A U B) = min(si(A),si(B))
mi(A U B) = m i (A) s i (A) < s i (B)

= mi (B) s i (A)) s i (B)

= m i (A) + mi (B) s i (A) = s i (B)

We can use the min hash count in a variety of ways.

• The min hash count provides an accurate es t imate of
the tail of the distr ibution of values in A. In con-
junction with techniques which accurately es t imate the
head of the distr ibution (e.g., end biased histograms[25]),
we can characterize the entire frequency dis tr ibut ion
of A.

• The min hash count not only estimates the frequency
distribution, but does so in conjunction with a set sig-
nature. We can therefore compute a variety of useful
information about the nature of a join.

- We can compute the direction of the join, i.e. is
it one-to-one, one-to-many, many-to-many, and

242

how many? Suppose we are given the multiset
signatures of A and B. Then, frequency distri-
bution of the elements of A which join with B
(respectively, B with A) is given by

f r (A l B) = [~" ~ I[Mi(A)~_I~_£) ~- S ~ = k] * I [S , (A) = S,(B)] : k > 1 }

- We can compute a distribution dependence of A
on B (and vice versa) by comparing f=(A) and
f~(AIB), e.g. by comparing their mean values,
using a X 2 test, etc.

- We can est imate the join size of A ~ B using
multiset signatures. Let:

E [M (A ~ B)] = ~ v = l Mi(A)Mi(B)I[Si(A) = Si(B)]
N ~ ,=1 I[S,(A) = S,(B)]

The est imate E [M (A ~ B)] is the average num-
ber of tuples that each element in A N B con-
tr ibutes to the join result. Therefore the esti-
mated join size is :

I ~ B [= E [M (A ~ B)] i ~ (IAI + IBD

- We can est imate the frequency distr ibution of the
join result using

f r (A ~ B) =

{ ~ I[M,(A)M,(B) = k] * I[S,(A) = S,(B)] 1
J

The multiset signatures can be stored in a database using
a schema similar to that used for the set signatures, e.g.,

MULTISETSIG(Tablespace, Table, Field, HashNum, HashVal,
MinCnt)

For an example, we can find the est imated frequency dis-
t r ibut ion of field X.Y.Z using

Select MinCnt count(*)
From MULTISETSIG
Where Tablespace = 'X' AND Table = 'Y' AND Field = 'Z'
Group By MinCnt

2.3 Substring Resemblance
Databases maintained by different organizations often rep-

resent da t a using different formats, but in "textually simi-
lax" ways. For example, database D~ might store customer
names in a field CustName in the format 'LastName, First-
Name' , while database D2 might store customer names in
two fields, LastName and FirstName. Another common oc-
currence is for a key to have extra text appended, prepended,
or inserted into the middle. For example, D1 might store
Social Security numbers in the format 'ddd-dd-dddd ' , while
D2 uses the format 'SSddd-dd-dddd ' (often the addit ional
text has context-specific meaning).

Finding join paths in which the keys must be catenated,
transformed, or both is very difficult, because au tomated
join testing does not incorporate transforms. It is often the
case that humans can identify common pat terns in two fields
and manually determine the transform. This process is labor
intensive, so a filtering mechanism is needed to eliminate
fields which are obviously poor matches.

Finding substring similari ty between two fields is a diffi-
cult problem because of the huge number of substrings of the
two fields which must be compared. A typical approach for
reducing the complexity of the problem is to summarize the
substrings in a field with q-grams, the set of all q-character
substrings of the field (see [20] and the references therein).

For our purposes, the set of all q-grams is likely to be too
large for convenient storage and manipulat ion (e.g., there
are 2,097,152 possible 7 bi t ASCII 3-grams). Therefore we
will view the q-grams of a field as a set or multiset and store
a summary of it.

2.3.I Q-gram Signature
A q-gram signature is a set signature of the set of q-grams

of a set A or a multiset A. A q-gram signature is computed
by first computing the QGRAM(A), set of all q-grams of
A, then computing the set signature of the q-gram set. The
q-gram resemblance of two sets A and B is:

pq = IQGRAM(A) n QGRAM(B)I
IQGRAM(A) U QGRAM(B)I

and is est imated by

Pq = E I[s,(QGRAM(A)) = s,(QGRAM(B))]/N
i : l , . . . , N

Since we compute QGRAM(A) before computing its set
signature, we can store]QGRAM(A)[as well as the q-gram
signature. Therefore we can est imate the size of the inter-
section of two q-gram sets by

IQGRAM(A) • QGRAM(B)I =

1 + ~q ([QGRAM(A)I + [QGRAM(B)D

Two fields which have a small or zero set resemblance but
a large q-gram resemblance are likely to be a related by a
small transformation. However, it is often the case that the
set of q-grams of one field B are (largely) contained in the
set of q-grams of another field B (for example, if values in
field B contain a few extra characters, or are composed of
values from field A catenated with values from field C). We
recall from Section 2.1 a couple of useful properties of set
signatures.

• We can determine q-gram set containment using the
q-gram analogs of PA\B and PB\A,

N

~A\B ---- ~ I[si(QGRAM(A)) < si(QGRAM(B))I/N
i=1

N

~ B \ A "~ ~ I[s,(QGRAM(A)) > si(QGRAM(B))]/N
i=l

If A is mostly composed of substrings of B, then ~q
will be large and ~A\B will be small.

• Recall that set signatures are summable by taking
min(Si(A), Si(B)), i = 1 , . . . , N. Suppose we are given
two fields A and C whose q-gram sets are contained in
field B 's q-gram set. If QGRAM(A) U QGRAM(C)
covers a significantly larger fraction of QGRAM(B)
than either set of q-grams alone, it is likely that B is
a composite of A and C. When applied to finding join
paths, we can restrict our at tent ion to fields from table

243

T1 which are contained in a field of T2, leaving a highly
tractable search process.

• The q-gram signatures can be stored in the database
and queries in a manner analogous to that shown in
Section 2.1.

2.4 Q-gram Sketches
Another method for determining substring similarity is

to use sketches [26], a dimensionally reduced representa-
tion of a vector. Let V be a d dimensional vector, and
let X 1 , . . . , X ~ be k d-dimensional vectors with randomly
chosen values (typically, k << d). The sketch of V, Sk(V) , is

Sk(v) = (y . z~ , . . . , v . xk)

That is, a sketch of a vector is a collection of random
projections. The L2 distance between vectors V1 and V2,
L2 (Vl, V2) is approximated by the function

F~(v1, v2) = (Sk(yl)[i] - Sk(Y~)[i])~/k

In our application, we axe interested in the q-gram vector
distance. The q-gram vector of a field is a normalized count
of the number of times each possible times a q-gram appears
in field A:

QV(A)[i] = m(qi, Q G R A M (A))
X / ~ i m(qi, QG R A M (A)) 2

where qi is the i ~a q-gram. The q-gram vector distance is
the distance between the q-gram vectors of two fields, e.g.

Q D (A , B) = I ~ (Q V (A) [i] - Q V (B) [i]) 2

We compute and store the sketches of the q-gram vectors,
S K (Q V (A)) . Following [1], the entries in the random vec-
tors Xj are 1 with probability 1/2, and - 1 with probability
1/2. Suppose there are n vectors Q V (A j) to be compared. If

k > 8/e 2, then ~ (Q V (A 1) , QV(A2)) is in a (e, e) confidence
interval around L2 (Q V (A1) , Q V (A2)).

Like the q-gram signature, the q-gram sketch can be used
to find pairs of fields which are textually similar. While the
q-gram signature represents the set of q-grams in a field,
the q-gram sketch represents the multiset of q-grams in a
field, The q-gram sketch is therefore the more discriminating
summary because its measure is based on the distribution of
field values. This can be a positive or a negative attribute,
depending on the type of search being done.

Unlike q-gram signatures, it is difficult to determine set
containment using q-gram sketches. However, sketches are
summable, being linear combinations.

The q-gram sketches can be stored in the database using
the schema:

QSKETCH(Tablespace, Table, Field, SkNum, SkVal)

We can find the q-gram vector distance from a particular
field X.Y.Z to all other fields in the database using the result
of the following query (and dividing by k, then taking the
square root):

Select T2.Tablespace, T2.Table, T2.Field,
Sum((T1.SkVaI-T2.SkVal)* (T1.SkVaI-T2.SkVal))

From QSKETCH T1, QSKETCH T2
Where T1.Tablespace='X' AND T1.Table='Y' AND

T1.Field='Z' AND T1. SkNum = T2.SkNum

2.5 Finding Keys
In order to determine the structure of a database, we need

to determine the minimal keys for each table, e.g. to deter-
mine primary key-primary key or primary key-foreign key
join paths. We implemented a levelwise key finding algo-
r i thm similar to Tane [23]. Since our algorithm is subsumed
by Tane, we note only the significant differences between our
implementations:

• We are interested only in keys, not all functional de-
pendencies. Therefore we used a much simpler and
more aggressive pruning condition.

• Tane uses a special file structure to accelerate the key
finding process. Our software, Bellman, is intended to
be an easily portable program residing on the client
machine. Creating many large file on the client seems
inadvisable, so instead we submit Count Distinct queries
to the database.

3. MINING DATABASE STRUCTURES
The tools presented in the preceding section allow one

to quickly determine components of the database structure.
Once a summary of the database has been computed, they
allow the user to submit browsing queries, such as What is
the set off keys for this table, or what other fields have values
that are similar to this field?

One can also use these tools to ask further questions about
structure of the database. For example What other tables
join to this table?, or Is this field a composite of two or more
fields in another table? In this section, we outline how the
following three queries can be quickly answered using the
signatures and sketches:

• Finding join paths.

• Finding composite fields.

• Finding heterogeneous tables.

3.1 Finding Join Paths
Gives a table T, we would like to find all ways in which

another table T ' can join with T. Further, we would like
to restrict our attention to joins involving keys of T, T ' , or
both. It is clear that we can answer this query using the set
signatures (or multiset signatures) and the list of keys of the
tables.

1. F ind all pairs of fields J = {(fT, f~)} such that the
pair has a high resemblance, fT is a field in T, and ff~
is a field in T ' ¢ T.

2. Parti t ion J into {JT i , . . . JTm}, where each JTi con-
tains all and only those pairs with fields from tables T
and T~.

3. For each partit ion JT~,

(a) For each key KT of table T such that all fields in
KT are in JTi, and can be matched with different
fields of T/.

244

i. Output all possible matchings of KT with
fields of Ti drawn from JT~ such that each
field of KT is matched with a different field
of Ti.

(b) Find all keys gTi of table Ti such that all fields
in KTi are in JT, and are matched with different
fields of T.

By using multiset signatures, it is possible to evaluate the
strength of the join. It the key K is on a single field, then the
join size and direction estimation methods described in Sec-
tion 2.2 are applicable. If key K has multiple components,
we cannot use the join size and direction estimates directly.
However, we can still get an indication of the strength of the
join.

For concreteness, let the key be KT = (A, B). Let
Isct(T.A,T'.A) be the size of the intersection of sets T.A
and T' .A. Let the coverage of T ' .A be

Cvr(T'.A, T.A) =
Isct(T.A, T'.A) N ~i=t Mi (T'.A)I[si (T.A) = si (T'.A)]

~N=i I[si(T.A) = si(T'.A)]

Similarly, define the intersection and coverage of T'.B
with T.B. Then we can estimate an upperbound on the
number of tuples of T that will be joined with T ' by

min(l sct (T.A, T' .A) I sct (T.B , T' .B),

Cvr(T'.A, T.A), Cvr(T'.B , T.B)

3.2 Finding Composite Fields
A common problem in finding joins between tables in dif-

ferent databases (and often, within the same database) is
that two fields might contain the same information, but in
a slightly different way (i.e., one field is a transformation of
another). Often, the transformation from one field to an-
other involves appending or prepending a short text (e.g. a
customer identifier '10974' becomes 'C10974'). The q-gram
signature and q-gram sketch summaries are useful for iden-
tifying the similarity of these pairs.

Other field transformations are more complex. One com-
mon complex transformation is when a field in one table is a
composite of two or more fields in another table. For exam-
ple a customer's name might be stored as 'Hamid Ahmadi'
in the Name field of table T1, and as 'Hamid' and 'Ahmadi '
in the FirstName and LastName fields, respectively, of table
T2.

Substring search and indexing is a difficult problem in gen-
eral. While we cannot identify precisely which fields combine
to make another, we can use the properties of the q-gram
signature to produce a small number of candidates which
might combine to form the composite field.

1. Given field f ,

2. Find the set of fields F with a high q-gram resemblance
to f and whose q-grams are largely a subset of those
in field F.

3. Partition F into {FT1,..., FTm } where each FTi con-
tains all and only those fields in F drawn from table
Ti.

4. For each partition FTi,

(a) Add all combinations of 2 or more fields of FT~ to
the candidate list C.

5. Rank the entries in C and sort by ranking.

Recall from Section 2.1 that we can determine whether .f~
is largely a subset of ff2 by using Pfl\f2" Depending on the
minimum level of q-gram resemblance required for admission
to f, the number of entries in C might be very large. In this
case, the ranking step is critical for presenting a useful set
of results to the user. Fortunately, there are several simple
but useful ranking heuristics available. First, a smaller set
of fields is more likely to be interesting than a larger one.
Second, the composite set of fields can be ranked by their
q-gram resemblance or their q-gram sketch distance from f
(Recall that the signature or sketch of the q-grams of the
union of two fields is easily computed from the signature or
sketch of the q-grams of the two individual fields). Third,
combinations of fields which increase their resemblance to f
(or decrease their q-gram sketch distance) as compared to
the individual fields might gain in ranking.

The algorithm step 4a) requires time proportional to I FT~ I!,
although in practice the output would be limited to sets with
at most e.g. three fields. To understand what the output
size would be, we ran a query to collect all pairs of fields
with a q-gram resemblance of at least 40% such that ~5~t\s
o r P~\A is no larger than 5%. We found that the average
size of FT~ is 3.8, the largest FT~ contains 18 elements, and
that 90% of the FT~ have 7 or fewer elements.

3.3 Finding Heterogeneous Tables
Large production databases often become disordered be-

cause a new and unanticipated entity must be modeled (e.g.
a new service offering, a new customer type, a new account-
ing procedure, etc.). Supporting the new entity often entails
"pushing a square peg into a round hole" - the new entity
is made to fit into the existing tables, often with the help of
new supporting tables and dimension tables. After several
of these additions, any given dimension or supporting table
might join with only a portion of a fact table.

For example, a company might provide a fixed-price dial-
up Internet service, targeted at consumers. A database is de-
signed to model individual consumers on a fixed-price plan.
Later the company discovers that its Internet service offer-
ing is popular with small businesses, so it develops market-
ing and billing systems to better support the small business
market. These require additional tables which describe the
business customers. Shortly thereafter, the company decides
to offer hourly rate plans as an alternative to the fixed price
plan. A new table is added to the database which records
modem usage for the hourly rate customers.

While any single adjustment to the database structure is
simple to understand, after a long sequence of these adjust-
ments the database structure can become quite complex.
Often, these structures are not documented, and the data
analyst or schema mapper must discover them by trial and
error.

However, it is possible to use the properties of set signa-
ture to discover tables which axe likely to be heterogeneous,
and also the joins of the heterogeneous partitions of the ta-
ble.

1. Given table T,

2. For every field f of table T

245

(a) Find J, the set of fields with high resemblance to

f
(b) Parti t ion J into {JT , , . . . , flTm }, where the fields

in each JT~ are all and only those in table Ti.

(c) For each JTi,

i. Output all maximal subsets { f l , . . . ffm} such
that I f N f i n f j [is small, 1 _< i < j < m. and
each fi is drawn from a different JT~.

Determining that If fq fi N ffj[can be done using a simple
extension of set signatures (recall Section 2.1) of f , fi and
f j , i.e. by computing

I[s~(f) = sk(fi) = s~(f j)] /N
k=l,. . . ,N

4. BELLMAN
We are developing Bellman, a database browser for com-

plex databases. Bellman provides the usual database browser
functions such as a query tool and a schema browser. Bell-
man also collects profiles of the database, and stores these
profiles in the database itself. Many of the profiles which
Bellman collects are simple, for example the number of ta-
bles in a tablespace, the number of rows in a table, the num-
ber of distinct and null values of each field. By caching these
profiles in the database, they can be interactively displayed
to the user. We have found that even this simple function-
ality greatly simplifies the database exploration process.

Bellman also collects the more complex profiles discussed
in the previous section (keys, multiset signatures, q-gram
signatures, and q-gram sketches). All fields (e.g., numeric,
date, and fixed-length string) axe converted to variable-length
string fields before profiling. We have implemented a vari-
ety of tools (available as GUI windows callable by a but ton
click) which allow the user to query the information in these
profiles in an interactive way. For example, one tool allows
the user to select a field of a table, and then find all other
fields in the database that have a high resemblance. The out-
put is loaded in a table which indicates the field name, the
es t imated resemblance, and the es t imated intersection size.
The user can select one of these fields and obtain more infor-
mation, including the frequency distr ibution of the field, the
est imated join size, the frequency distr ibution of the values
of the fields which part icipate in the join, and the frequency
distr ibution of the join result. The user can also submit
canned queries to the (non-profile) database to determine
the actual intersection and join size, and to obtain a sample
of values of the field.

Even the complex da ta mining queries of Section 3 are
implemented mostly through SQL queries to the profile da t a
in the database. Because the profiles are small, the response
t ime is fast enough to be interactive.

We implemented Bellman in Java using JDBC to access
an Oracle database. Because Bellman is intended to be an
easily installed client, we made the decision to perform all of
the analysis, including the profile computat ion, at the client.
We found that Java and JDBC are far too slow and buggy
for actual use, so we wrote the analysis code in C + + using
the OTL [31] l ibrary to access the database. OTL is a C + +
wrapper which hides the details of database accesses and
which can use several connection methods including ODBC
and OCI. We obtained good performance running Bellman
on a 700 Mhz Pentium III PC and accessing a 8-processor

250 Mhz Solaris server running Oracle. The por table nature
of the Bellman code allows us to run it on the server as well.

5. EXPERIMENTS
We ran a collection of experiments to determine whether

signatures and sketches can find similar fields, and the size of
the signature or sketch required to do so. We also ran several
experiments to determine the usefulness of the answers, for
which we can give qualitative results. 1

For our da ta set, we used a snapshot of a database which
describes several aspects of a large da ta networking service.
The full database contains 926 tables and 15,442 fields in
four tablespaces. For the experiments described in this pa-
per, we used the three smaller tablespaces containing 267
tables and 3,356 fields. We collected signature and sketch
profiles on all fields containing at least 20 dist inct values
(1,078 fields met this criteria).

When computing signatures and sketches, we collected
250 samples. We computed 3-grams of the values of the
fields for the q-gram signatures and sketches. Computing all
of the profiles except for the keys required less than three
hours. Determining the keys of the tables is computat ional ly
expensive, using a large number of count distinct queries, and
required about 8 hours.

5.1 Estimating Field Intersection Size
For our first experiment, we evaluated the use of set sig-

natures for est imating the size of the intersection between
two fields. For a test da t a set, we collected 68 random pairs
of fields with a resemblance of at least 57o. For each pair, we
computed the es t imated intersection size using signatures of
size 50, 100, 150, 200, and 250 samples, and also the exact
intersection size.

In Figures 1 and 2 we plot the error in the es t imate of
the intersection size (relative to the actual intersection size)
using 50 and 100 samples in the signature, respectively. The
X axis is the actual resemblance. As the charts show, the
error in the intersection size est imate increases significantly
when the resemblance is small (i.e., 25% or less). Except for
three da ta points, the 50-sample est imate is able to distin-
guish between small, medium and large intersections, which
is good enough for the purpose of finding fields with similar
values. The 100-sample est imate is able to distinguish in-
tersection sizes for all samples. Larger sample sizes improve
accuracy, but not enough to justify the increased storage or
evaluation t ime cost.

Finding all fields with a large resemblance to a part icular
field required about 90 seconds using 250-sample signatures
on 1,078 profiled fields. We repeated the t iming test on
a Bellman installation in which all four tablespaces were
profiled, and found tha t the same query requires about 30
seconds using 50-sample signatures on 4,249 profiled fields.

5.2 Estimating Join Sizes
In our next experiment, we evaluate the abi l i ty of the mul-

tiset signature to est imate the frequency dis tr ibut ion of the
values in a field. As these results would be difficult to present
visually, we instead use an interesting proxy: es t imat ing the
size of a join. If we can est imate the join size accurately, we
can certainly est imate the frequency dis tr ibut ion accurately.

tThe da ta we used in our experiments is sensitive corporate
da ta which cannot be released to the public.

246

08

07

06

05

0.4

0.3

02

01

0

Error in intersection size estimation, 50 samples

1i)
i " . .

• . ' 2 " . . • • , •o
t • • • • , t O D i t

02 04 0.6 0.8

R e s e m b l a n c e

Figure 1: Intersect ion size e s t imat ion , 50 samples•

0.6

0.5

0.4

L2 0.3

02

01

E r r o r in I n t e r s e c t i o n s i z e e s t i m a t i o n , 1 0 0 s a m p l e s

0,8 ...

0.7

I

° e

0

• %

- w| •
,: ." . :.":-"

0.2

DQ m
I

0 4 0 6 0 8

R e s e m b l a n c e

Error in Join Size Estimation, 100 s a m p l e s

1.4=

1.2

1

08 • ."

e 0.6

0 .4

0.2 : "

0 0.2 04 06
Resemblance

0.8

Figure 3: Jo in size e s t imat ion , 100 samples•

Figure 2: Intersect ion s ize e s t imat ion , 100 samples .

We reused the same 68 random pairs of fields that were
used in the intersection size experiment. For each pair of
fields, we est imated their join size using signatures of size
50, 100, 150, 200, and 250 samples, and also computed their
exact join size.

In Figures 3 and 4 we plot the error in the est imate of
the join size (relative to the actual join size) using 100 and
250 samples in the signature, respectively. The X axis is the
actual resemblance.

The charts show that the multiset signature can compute
the join size to within a 60% error for most of the sample
points when the resemblance between the fields was large
(e.g. at least 20%). This level of accuracy is good enough
to get an idea of the size of the join result to within an
order of magnitude. Increasing the sample size from 100
to 250 samples generally increases the accuracy of the esti-
mate, except for three da ta points with a resemblance larger
than 20% and a very high error. On closer examination, we
found that the estimation error was due to a highly skewed
distr ibution of values in these fields.

The skewness of the fields for which the multiset signature
join size est imate fails provides us with a solution for avoid-
ing highly inaccurate join size estimates. In addition to the

16

1.4

12

1

08

06

0.4

02

0

Error in join size est imat ion, 250 samples

: - . : . . " .

• • ~ ° ~ &

02 04 06 0 8 1 12
Resemblance

Figure 4: Join size e s t imat ion , 250 samples•

247

Unadjusted join size vs. actual join size, 1 O0 samples

1000000

100000

10000

1000

100

10

1

10

• " •

o f • •

. 4

100 1000 10000 10000 1E+06 1E+07 1E+08

Actual join size 0

Figure 5: U n a d j u s t e d j o i n s ize e s t i m a t e , 100 sam-
ples.

multiset signature, we collect the N most frequent values in
the fields, and a count of their occurrence. We use these
most-frequent values to compute a lower bound on the join
size, namely the size of the join of the most-frequent samples
of the fields.

We computed the adjus tment and applied it to the da t a
points in the 100-samples join size estimate. In figures 5, we
plot the unadjus ted 100-sample join size est imate against the
actual join size on a log-log plot. The high-error est imates
are the da ta points significantly below the t rend line. We
plot the adjusted est imates in 6. Although there are still
several high-error est imates even after the adjustment , in
every case we are able to correctly est imate the order of
magni tude of the join size.

We note that the a count of the most frequent i tems can
be computed quickly and in small space using the methods
described in [18]. Furthermore, we do not need to store the
actual values of the most frequent values, instead we can
store their hash values. Based on our results, the join size of
two fields (and therefore their frequency distributions) can
be accurately es t imated using multiset signatures with 100
samples plus an addit ional 10 most-frequent samples.

5.3 Q-gram Signatures
In our next experiment, we evaluate the accuracy of q-

gram signatures. We randomly selected 67 pairs of fields
with a q-gram resemblance of at least 15%. We est imated
the q-gram resemblance using q-gram signatures with 50,
100, 150, 200, and 250 samples, and also computed the exact
resemblance between the pairs of fields.

When finding similar fields using q-grams, we are inter-
ested in a similarity measure rather than a numeric value
such as the intersection size. In Figures 7 and 8, we plot the
es t imated versus the actual resemblance using 50-sample q-
gram signatures and 150-sample q-gram signatures, respec-
tively. Even in the 50-sample case and even for low resem-
blance, the resemblance can be accurately estimated. The
maximum estimation error (compared to the actual resem-
blance) is 47% in the 50-sample experiment, and 21% in
the 150-sample experiment. Accurately est imating q-gram
resemblance is easier than est imating intersection sizes be-
cause we are directly est imating the resemblance, and be-

Adjusted join size vs. actual join size, 100 samples

100000000-

10000000

1000000

100000

10000

1000

100

10

1

.o, t ,~%
• , • •

10 100 1000 10000 10000 1E+06 1E+07 1E+08

Actual Join size 0

Figure 6: A d j u s t e d jo in s ize e s t i m a t e , 100 samples .

Estimated vs. Actual Q-gram Resemblance, 50 samples

I I

0.8

0 . 6 ° ° • •

• °

0.4 - • t .

0.2 - .::

o
o 0.2 0.4 0.6 0.8

Actua l resemblance

Figure 7: Q-gram r e s e m b l a n c e e s t i m a t i o n , 50 sam-
ples.

cause the universe of possible values is much smaller. We
can accurately tell the difference between large, medium,
and small resemblance using a 50-sample q-gram signature.

5.4 Q-gram Sketches
Finally, we evaluate the accuracy of q-gram sketches. For

this experiment, we use the same set of 67 pairs of fields tha t
we used in the q-gram signature experiment. We est imate
the L2 distance between the normalized q-gram occurrence
vectors using q-gram sketches with 50, 100, 150, 200, and
250 samples, and also computed the actual L2 distance.

The est imated q-gram vector distance is plot ted against
the actual q-gram vector distance in Figure 9 for 50-sample
estimates, and in Figure 10 for 150-sample estimates. Al-
though the 150-sample est imates have a much lower error
than the 50-sample estimates, the 50-sample est imates can
readily distinguish between small, medium, and large dis-
tances. We conclude that only 50 samples are required for
a q-gram vector sketch.

We note that q-gram vector distance and q-gram resem-
blance are rather different and complementary measures. In
Figure 11, we plot the actual q-gram vector distance against

248

1

0.8

0.6

0.4

0.2

0

Estimated vs. Actual Q-gram Resemblance, 150 Samples

o• • #..

OI• O

". " Ib •

0.2 0 .4 0.6 0.8

Actual resemblance

Figure 8: Q-gram resemblance est imation, 150 sam-
ples.

1.4

1.2

1 • 0.8

0.6

~ 0.4

0.2

0

F i g u r e 11:
s e m b l a n c e .

Q-gram vec tor d is tance vs. g-gram resemblance

• " : :" . I
o• . . , ., - . =

0.2 0.4 0.6 0.8

O-gnlm resemblance

Q-gram vector distance vs. q-gram re-

Est imated vs. actual q -gram vector d istance, 50
sketch samples

1.2- '] ... : :

O.S I

0.4

0.2

0

0 0.2 0.4 0.6 0.8 1 1.2 1.4

Actual q-gram vector distance

Figure 9: Q-gram vector distance est imation, 50
samples.

Est imated vs. actual q-gram vector distance, 150 sketch
s a m p l e s

1.2

1-

• 0.8

E • 0.6

~ 0 . 4

:.:-.
0.2 ~.¢.'"

0

0.2 0.4 0.6 0.8 1 1.2 1.4

Actual q-gram vector distance

F i g u r e 10: Q - g r a m v e c t o r d i s t a n c e , 150 s a m p l e s .

the actual q-gram resemblance for the 67 pairs of fields used
in the previous experiment. Although high-resemblance pairs
are not high-distance pairs, otherwise there is li t t le correla-
tion between resemblance and distance.

5.5 Qualitative Experiments
In the previous experiments, we have established tha t

small summaries are sufficient for the purpose of exploring
the structure of a large and complex database. However,
the question of whether the summaries actually help in the
exploration process still needs to be answered.

The da ta set we use for experiments is confidential corpo-
rate data, so we cannot discuss any particular query results.
However, we can discuss in general the usefulness of the
tools.

5.5.1 Using Multiset Resemblance
A version of Bellman which has been released to several

users collects and stores multiset signatures of all fields with
at least 20 distinct values (a user-adjustable parameter) .
Bellman contains a tool for querying the multiset signatures
to find all fields with a minimum (estimated) resemblance
to a given field. The result is displayed to the user in a ta-
ble which includes columns indicating the est imated resem-
blance, es t imated intersection size, est imated join frequency
dependencies, and est imated join size.

The released version of Bellman has been used to explore
the four tablespace, 926 table da ta set, a portion of which
was used for the experimental da ta (actually; the problem
of exploring this da ta set was the motivation for developing
Bellman). Bellman's abili ty to quickly and interactively find
high-resemblance fields has been a distinct valuable feature,
and has led to several unexpected discoveries.

There are a variety of other methods for finding joinable
fields. One method is to perform the join, but doing so
is unacceptably slow. Another method is to look for fields
with the same name. In our explorations, we have found
that joinable fields rarely have the same name (and often do
not even have similar names).

A more sophisticated method is to collect a variety of fea-
tures of the field, such as the da ta type of the field, the
length of the field, the nature of the characters in the field

249

(letters, numbers, punctuation). This method is used by
systems which profile databases, typically as preparat ion
for migrating a legacy database [12, 34, 28]. Fields which
have similar features are judged to be similar. However,
this type of profiling is susceptible to false positives and
false negatives. The reason for the false positives is evi-
dent (e.g. two fields might contain an non-overlapping set
of telephone numbers). When the database contains fifteen
thousand fields, eliminating as many false positives as is
possible is critical. False negatives can occur when a field is
polluted with unexpected values, e.g. a field which is sup-
posed to contain a 10 digit key might contain entries 2 such
as "none", "no key", "Hamid Ahmadi" , etc. The field seems
to contain alphanumeric data, and therefore is not presented
as a match to a f ie ld with 10 digit entries.

Some systems will a t t empt to classify the nature of the
data, e.g. name, address, telephone number, etc. [43, 5].
This type of more selective feature can help to eliminate
false positives, but it still suffers from the problems of the
feature vector approach. In addition, the method is fragile
- we always seem to encounter a new da ta format in our
explorations. However we note tha t both of these types
of profiling are useful adjuncts to the profiling techniques
discussed in this paper.

5.5.2 Using Q-gram Similarity
The q-gram summaries (both signatures and sketches)

find fields which are "textually similar" to a target field -
tha t is, typical field values look similar to the human eye. A
q-gram similarity query often returns a long list of similar
fields (as is likely to happen when 1,000+ fields axe profiled),
but ranked by similarity. The fields in the result list are of-
ten semantically related to the target field. For example,
a query to find fields similar to a City field returned many
other fields containing city names, but also fields containing
addresses and first and last names of people. A query on
an field containing IP addresses re turned other IP address
fields, but also some fields containing fixed point numbers
with three digits of precision after the decimal.

By pruning high value-resemblance fields from the result
of a q-gram similarity query and providing a da ta explo-
ration GUI, we can usually make serendipitous discoveries.
For example, some of the fields found to be textual ly sim-
ilar to the City were labeled Country. On closer examina-
tion, these fields actually contained county names (and many
county and city names are identical). The q-gram similar-
i ty query on an IP address field returned a field containing
class-C prefixes of the IP addresses (i.e., the first 3 octets of
the 4-octet IP addresses).

We tried these q-gram similarity queries, and several oth-
ers, using both q-gram signatures and q-gram sketches. As
can be expected, we found the results of the query on the
q-gram sketches to be highly targeted, while the query on
the q-gram signatures to be much less so. Almost all of the
highly ranked results returned by the q-gram sketch query
were highly relevant, but the query missed several interest-
ing fields returned by the q-gram signature. We conclude
tha t these tools are complementary, and both are useful in
a browser.

6. CONCLUSIONS

~We have encountered many such examples.

In this paper, we have explored the use of rain hash sig-
natures and sketches to summarize the values of a field, and
have made a novel use of these summaries for da t a cleaning
and structural da t a mining purposes.

Signatures and sketches have several a t t rac t ive propert ies
(e.g., summabili ty, abili ty to detect subsets) which make
them an appropr ia te building block for da t a mining queries
on the structure of a large and complex database. Many such
queries are possible, we propose three and give algorithms
for evaluating them.

The profiles we collect of the database should be small,
for efficient storage and fast query response time, but large
enough to give accurate answers. We evaluated the t rade-
off between summary size and accuracy for set signatures,
multiset signatures, q-gram signatures, and q-gram vector
sketches. We found that fifty samples per summarized field
was sufficient to accurately determine intersection size, q-
gram resemblance, and q-gram vector distance. One hun-
dred samples plus the hashes and counts of the ten most
frequent values suffice to est imate join sizes accurately.

We have developed Bellman to browse large and complex
databases. Bellman profiles the database, caches the re-
sults, and provides interactive responses to the user. Users
of Bellman have found the abil i ty to discover fields with high
resemblance to be extremely useful in the da ta explorat ion
process.

7. REFERENCES
[1] D. Achlioptas. Database-friendly random projections.

In PODS, 2001.
[2] N. Alon, P. Gibbons, and M. S. Y. Matias and.

Tracking join and self-join sizes in l imited storage. I n

PODS, pages 10-20, 1999.
[3] C. Batani, M. Lenzerini, and S. Navathe. A

comparat ive analysis of methodologies for da tabase
schema integration. Computing Surveys,
18(4):323-364, 1986.

[4] D. Bitton, J. Millman, and S. Torgerson. A feasibility
s tudy and performance s tudy of dependency inference.
In Proc. Intl. Conf. Data Engineering, pages 635-641,
1989.

[5] V. Borkar, K. Deshmukh, and S. Sarawagi.
Automat ical ly extracting structure from free text
addresses. Data Engineering Bulletin, 23(4):27-32,
2000.

[6] A. Broder. On the resemblance and containment of
documents. In IEEE Compression and Complexity of
Sequences '97, pages 21-29, 1997.

[7] Z. Chen, F. Korn, N. Koudas, and S. Muthukrishnan.
Selectivity estimation for boolean queries. In PODS,
pages 216-225, 2000.

[8] C. Clifton, E. Housman, and A. Rosenthal. Experience
with a combined approach to a t t r ibute-matching
across heterogeneous databases. In IEEE Workshop
on Data Semantics, 1997.

[9] E. Cohen. Size-estimation framework with
applications to transit ive closure and reachability.
JCSS, 55(3):441-453, 1997.

[10] A. Doan, P. Domingos, and A. Halevy. Reconciling
schemas of disparate da ta sources: A machine-learning
approach. In Proe. SIGMOD Conf., pages 509-520,
2001.

250

[11] A. Doan, P. Domingos, and A. Levy. Learning source
description for data integration. In Proe. Intl.
Workshop on The Web and Databases, 2000.

[12] Evoke Software. http://www.evokesoftware.com/.
[13] Evoke Software. Data profiling and mapping, the

essential first step in data migration and integration
projects.
http://www.evokesoftware.com/pdf/wtpprDPM.pdf,
2000.

[14] H. Galhardas, D. Florescu, D. Shasha, and E. Simon.
AJAX: An extensible data cleaning tool. In Proe.
SIGMOD Conf., page 590, 2000.

[15] S. Ganguly, P. Gibbons, Y. Matias, and
A. Silberschatz. Bifocal sampling for skew-resistant
join size estimation. In SIGMOD, pages 271-281, 1996.

[16] M. Garofalakis and P. Gibbons. Approximate query
processing: Taming the terabytes. VLDB 2001
tutorial.

[17] P. Gibbons. Distinct sampling for highly-accurate
answers to distinct values queries and event reports.
In VLDB, pages 541-550, 2001.

[18] P. Gibbons and Y. Matias. Synopsis data structures
for massive data sets. In Symp. on Discrete
Algorithms, pages 909-910, 1999.

[19] A. Gilbert, Y. Kotidis, S. Muthukrishnan, and
M. Strauss. Surfing wavelets on streams: One-pass
summaries for approximate aggregate queries. In
VLDB, pages 79-88, 2001.

[20] L. Gravano, P. Ipeirotis, H. Jagadish, N. Koudas,
S. Muthukrishnan, and D. Srivastava. Approximate
string joins in a database (almost) for free. In Proe.
Intl. Conf. VLDB, 2001.

[21] M. Hernandez, R. Miller, and L. Haas. Schema
mapping as query discovery. In Proe. SIGMOD Conf.,
page 607, 2001.

[22] M. Hernandez and S. Stolfo. Real-world data is dirty:
data cleansing and the merge/purge problem. Data
Mining and Knowledge Discovery, 2(1):9-37, 1998.

[23] Y. Huhtala, J. Karkkainen, P. Porkka, and
H. Toivonen. Efficient discovery of functional
dependencies and approximate dependencies using
partitions. In Proe. IEEE Intl. Conf. on Data
Engineering, pages 392-401, 1998.

[24] P. Indyk, N. Koudas, and S. Muthukrishnan. Trends
in massive time series data sets using sketches. In
VLDB, pages 363-372, 2000.

[25] Y. Ioannidis and V. Poosala. Histogram-based
solutions to diverse database estimation problems.
Data Engineering Bulletin, 18(3):10-18, 1995.

[26] W. Johnson and J. Lindenstrauss. Extensions of
lipschitz mappings into a hilbert space. In Conference
in Modern Analysis and Probability, pages 189-206,
1984.

[27] V. Kashyap and A. Seth. Semantic and schematic
similarities between database objects: A context-based
approach. VLDB Journal, 5(4):276-304, 1996.

[28] Knowledge Driver. http://www.knowledgedriver.com/.
[29] D. Knuth. The Art of Computer Programming Vol. 3,

Sorting and Searching. Addison Wesley, 1973.
[30] S. Krarner and B. Pfahringer. Efficient search of string

parital determinations. In Proc. Intl. Conf. on

Knowledge Discover and Data Mining, pages 371-378,
1996.

[31] S. Kuchin. Oracle, odbc and db2-cli template library
programmer's guide.
http://www.geocities.com/skuchin/otl/home.htm.

[32] M. Lee, H. Lu, T. Ling, and Y. Ko. Cleansing data for
mining and warehousing. In Proe. lOth DEXA, 1999.

[33] W. Li and S. Clifton. SEMINT: A tool for identifying
attribute correspondances in hetergenous datbases
using neural networks. Data and Knowledge
Engineering, 33(1):49-84, 2000.

[34] Metagenix Inc. http://www.metagenix.com/home.asp.
[35] R. Miller, L. Haas, and M. Hernandez. Schema

mapping as query discovery. In Proc. 26th VLDB
Conf., pages 77-88, 2000.

[36] R. Miller, L. Haas, and M. Hernandez. Schema
mapping as query discovery. In Proe. Intl. Conf.
VLDB, pages 77-88, 2000.

[37] A. Monge. The field matching problem: Algorithms
and applications. IEEE Data Engineering Bulletin,
23(4):14-20, 2000.

[38] A. Monge and P. Elkan. The field matching problem:
Algorithms and applications. In Proe. Intl. Conf.
Knowledge Discovery and Data Mining, 1996.

[39] A. Monge and P. Elkan. An efficient
domain-independent algorithm for detecting
approximately duplicate database records. In Proc.
SIGMOD Workshop on Research Issues in Data
Mining and Knowledge Discovery, 1997.

[40] S. Muthukrishnan. Estimating number of rare values
on data streams, 2001. Submitted for publication.

[41] C. Parent and S. Spaccepietra. Issues and approaches
of database integration. Comm. of the ACM,
41(5):166-178, 1998.

[42] E. Rahm and H. Do. Data cleaning: Problems and
current approaches. IEEE Data Engineering Bulletin,
23(4):1-11, 2000.

[43] V. Raman and J. Hellerstein. Potters wheel: An
interactive data cleaning system. In Proc. VLDB,
2001.

[44] I. Savnik and P. Flach. Bottom-up induction of
functional dependencies from relations. In Proc. AAAI
Knowledge Discovery in Databases, pages 174-185,
1993.

[45] J. Schlimmer. Efficiently inducing determinations: A
complete and systematic search algorithm that uses
pruning. In Proc. A A A I Knowledge Discovery in
Databases, pages 284-290, 1993.

[46] P. Vassiliadias, Z. Vagena, S. Skiadopoulos,
N. Karayannidis, and T. Sellis. ARKTOS: A tool for
data cleaning and transformation in data warehouse
environments. Data Engineering Bulletin, 23(4):43-48,
2OOO.

251

