
Building a Database on S3

Matthias Brantner♦ Daniela Florescu† David Graf♦ Donald Kossmann♦♣ Tim Kraska♣

28msec Inc.♦ Oracle†

{firstname.lastname}@28msec.com dana.florescu@oracle.com

Systems Group, ETH Zurich♣

{firstname.lastname}@inf.ethz.ch

ABSTRACT
There has been a great deal of hype about Amazon’s simple storage
service (S3). S3 provides infinite scalability and high availability at
low cost. Currently, S3 is used mostly to store multi-media docu-
ments (videos, photos, audio) which are shared by a community of
people and rarely updated. The purpose of this paper is to demon-
strate the opportunities and limitations of using S3 as a storage sys-
tem for general-purpose database applications which involve small
objects and frequent updates. Read, write, and commit protocols
are presented. Furthermore, the cost ($), performance, and consis-
tency properties of such a storage system are studied.

Categories and Subject Descriptors
H.2.2 [Database Management]: Physical Design; H.2.4 [Database
Management]: Systems—Concurrency , Distributed databases

General Terms
Algorithms, Design, Experimentation, Performance

Keywords
Cloud Computing, Database, AWS, Concurrency, Eventual Con-
sistency, Storage System, Cost Trade-Off, Performance, SQS, S3,
EC2, SimpleDB

1. INTRODUCTION
The Web has made it easy to provide and consume content of

any form. Building a Web page, starting a blog, and making both
searchable for the public have become a commodity. Arguably,
the next wave is to make it easy to provide services on the Web.
Services such as Flickr, YouTube, SecondLife, or Myspace lead the
way. The ultimate goal, however, is to make it easy for everybody
to provide such services — not just the big guys. Unfortunately,
this is not yet possible.

Clearly, there are non-technical issues that make it difficult to
start a new service on the Web. Having the right business idea and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’08, June 9–12, 2008, Vancouver, BC, Canada.
Copyright 2008 ACM 978-1-60558-102-6/08/06 ...$5.00.

effective marketing are at least as difficult on the Web as in the real
world. There are, however, also technical difficulties. One of the
most crucial problems is the cost to operate a service on the Web,
ideally with 24 × 7 availability and acceptable latency. To run a
large-scale service like YouTube, several data centers all around
the world are needed. But, even running a small service with a few
friends involves a hosted server and a database which both need
to be administrated. Running a service becomes particularly chal-
lenging and expensive if the service is successful: Success on the
Web can kill! In order to overcome these issues, utility computing
(aka cloud computing) has been proposed as a new way to operate
services on the Internet [17].

The goal of utility computing is to provide the basic ingredients
such as storage, CPUs, and network bandwidth as a commodity by
specialized utility providers at low unit cost. Users of these utility
services do not need to worry about scalability because the storage
provided is virtually infinite. In addition, utility computing pro-
vides full availability; that is, users can read and write data at any
time without ever being blocked; the response times are (virtually)
constant and do not depend on the number of concurrent users, the
size of the database, or any other system parameter. Furthermore,
users do not need to worry about backups. If components fail, it is
the responsibility of the utility provider to replace them and make
the data available using replicas in the meantime. Another impor-
tant reason to build new services based on utility computing is that
service providers only pay for what they get; i.e., pay by use. No
investments are needed upfront and the cost grows linearly and pre-
dictably with the usage. Depending on the business model, it is
even possible for the service provider to pass the cost for storage,
computing, and networking to the end customers because the utility
provider meters the usage.

The most prominent utility service today is AWS (Amazon Web
Services) with its simple storage service, S3, as the most popular
representative. Today, AWS and in particular S3 are most success-
ful for multi-media objects. Smugmug (www.smugmug.com), for
instance, is implemented on top of S3 [6]. Furthermore, S3 is popu-
lar as a backup device. For instance, there already exist products to
backup data from a MySQL database to S3 [16]. In summary, S3 is
already a viable option as a storage medium for large objects which
are rarely updated. The purpose of this work is to explore whether
S3 (and related utility computing services) are also attractive for
other kinds of data (i.e., small objects) and as a general-purpose
store for Web-based applications.

While the advantages of storage systems like S3 are compelling,
there are also important disadvantages. First, S3 is slow as com-
pared to an ordinary locally attached disk drive. Second, storage

251

systems like S3 were designed to be cheap and highly available (see
above), thereby sacrificing consistency [7]. In S3, for instance, it
might take an undetermined amount of time before an update to an
object becomes visible to all clients. Furthermore, updates are not
necessarily applied in the same order as they were initiated. The
only guarantee that S3 gives is that updates will eventually become
visible to all clients and that the changes persist. This property is
called eventual consistency [19]. If an application has additional
consistency requirements, then such additional consistency guar-
antees must be implemented on top of S3 as part of the application.

The purpose of this paper is to explore how Web-based database
applications (at any scale) can be implemented on top of utility ser-
vices like S3. The paper presents various protocols in order to store,
read, and update objects and indexes using S3. The ultimate goal
is to preserve the scalability and availability of a distributed system
like S3 and achieve the same level of consistency as a database sys-
tem (i.e., ACID transactions). Unfortunately, it is not possible to
have it all because of Brewer’s famous CAP theorem [10]. Given
the choice, this work follows the distributed systems’ approach,
thereby preserving scalability and availability and maximizing the
level of consistency that can be achieved under this constraint. As
a result, we will not even try to support ACID transactions because
we feel that it is not needed for most Web-based applications [21],
whereas scalability and availability are a must. We will show how
certain transactional properties (e.g., atomicity and durability) can
be implemented; however, we will only sketch (Section 5.3) what
it takes to implement full ACID transactions and why these ap-
proaches do not scale.

We are aware that the results presented in this paper capture
merely a snapshot (November 2007) of the current state-of-the-
art in utility computing. Given the success of S3, it is likely that
there will be competitors with different features on the market place
soon. Furthermore, it is likely that Amazon itself will add features
and possibly provide new services with additional guarantees. In
fact, Amazon already changed the interface of one of its services
(SQS) and introduced a new service (SimpleDB) in early 2008.
Nevertheless, we believe that the results presented in this paper will
remain applicable because they study fundamental tradeoffs of dis-
tributed data management based on utility computing. If Amazon
decides to provide additional features and guarantees, then Ama-
zon itself will need to use similar protocols as those studied in this
work.

In summary, this paper makes the following contributions: (Here
S3 is used as a placeholder for more general utility computing by
Amazon and other providers.)

• Show how small objects which are frequently updated by
concurrent clients can be implemented using a distributed
storage system like S3.

• Show how a B-tree can be implemented on top of a storage
system like S3.

• Present protocols that show how different levels of consis-
tency can be implemented using S3.

• Present the results of performance experiments with the TPC-
W benchmark in order to study the cost (response time and
$) of running a Web-based application at different levels of
consistency on S3.

The remainder of this paper is organized as follows: Section 2
describes AWS (i.e., S3, SQS, and EC2). Section 3 presents the
proposed architecture to build Web-based database applications on
top of AWS. Sections 4 and 5 present the protocols to implement

reads and writes on top of S3 at different levels of consistency.
Sections 3-5 also cover the implementation of a B-tree on S3. Sec-
tion 6 summarizes the most significant results of performance ex-
periments with the TPC-W benchmark. Section 7 discusses related
work. Section 8 contains conclusions and suggests possible av-
enues for future work.

2. WHAT IS AWS?
This section presents the functionality and properties in terms

of performance and consistency of three services of the Amazon
Web Services (AWS): S3, SQS, and EC2. Recently, SimpleDB was
added to the AWS family of services; unfortunately, too late to be
studied as part of this work. AWS is currently the most prominent
provider of utility computing. AWS is used in the remainder of
this study as a basis for studying the development of Web-based
applications on utility computing. Other providers such as Adobe
Share are beginning to appear on the market place. The results
of this work are applicable to all utility services which provide a
read/write interface in order to persist data in a distributed system.

2.1 S3
S3 is Amazon’s Simple Storage System. Conceptually, it is an

infinite store for objects of variable size (minimum 1 Byte, maxi-
mum 5 GB). An object is simply a byte container which is identified
by a URI. Clients can read and update S3 objects remotely using a
SOAP or REST-based interface; e.g., get(uri) returns an object and
put(uri, bytestream) writes a new version of the object. A special
get-if-modified-since(uri, timestamp) method allows to retrieve the
new version of an object only if the object has changed since the
specified timestamp. This feature is useful in order to implement
caching based on a TTL protocol (Section 3.3). Furthermore, user-
defined metadata (maximum 4 KB) can be associated to an object
and can be read and updated independently of the rest of the object.
This feature is useful, for instance, to record a timestamp of the last
change (Section 4.5).

In S3, each object is associated to a bucket. That is, when a user
creates a new object, the user specifies into which bucket the new
object should be placed. S3 provides several ways to scan through
objects of a bucket. For instance, a user can retrieve all objects of
a bucket or only those objects whose URIs match a specified pre-
fix. Furthermore, the bucket can be the unit of security: Users can
grant read and write authorization to other users for entire buckets.
Alternatively, access privileges can be given on individual objects.

S3 is not for free. It costs USD 0.15 to store 1 GB of data for
one month. In comparison, a 160 GB disk drive from Seagate costs
USD 70 today. Assuming a two year life time of a disk drive, the
cost is about USD 0.02 per GB and month (power consumption
is not included). Given that disk drives are never operated at 100
percent capacity and considering mirroring, the storage cost of S3
is in the same ballpark as that for regular disk drives. Therefore,
using S3 as a backup device is a no-brainer. Users, however, need
to be more careful to use S3 for live data because every read and
write access to S3 comes with an additional cost of USD 0.01 per
10,000 get requests, USD 0.01 per 1,000 put requests, and USD
0.10 to USD 0.18 per GB of network bandwidth consumed (the
exact rate depends on the total monthly volume of a user). For
this reason, services like smugmug use S3 as a persistent store,
yet operate their own servers in order to cache the data and avoid
interacting with S3 as much as possible [6].

Another reason to make aggressive use of caching is latency.
Table 1 shows the response time of get requests and the overall
bandwidth of get requests, depending on the page size (defined be-
low). These experiments were executed using a Mac (2.16 GHz

252

Page Size [KB] Resp. Time [secs] Bandwidth [KB/secs]
10 0.14 71.4

100 0.45 222.2
1,000 3.87 258.4

Table 1: Resp. Time, Bandwidth of S3, Vary Page Size

Intel Core Duo with 2 GB of RAM) connected to the Internet and
S3 via a fast Internet connection. (The results of a more compre-
hensive performance study of S3 are reported in [9].) The results in
Table 1 support the need for aggressive caching of S3 data; reading
data from S3 takes at least 100 msecs (Column 2 of Table 1) which
is two to three orders of magnitudes longer than reading data from
a local disk. Writing data to S3 (not shown in Table 1) takes about
three times as long as reading data. While latency is an issue, S3
is clearly superior to ordinary disk drives in terms of throughput:
Virtually, an infinite number of clients can use S3 concurrently and
the response times shown in Table 1 are practically independent of
the number of concurrent clients.

Column 3 of Table 1 shows the bandwidth a client gets when
reading data from S3. It becomes clear that an acceptable band-
width can only be achieved if data are read in relatively large chunks
of 100 KB or more. Therefore, small objects should be clustered
into pages and a whole page of small objects should be the unit of
transfer. The same technique to cluster records into pages on disk
is common practice in all state-of-the-art database systems [11] and
we adopt this technique for this study.

Amazon has not published details on the implementation of S3
and it does not give any guarantees. Taking [7] as a reference for
Amazon’s design principles (even though [7] describes a different
system), it seems that S3 replicates all data at several data cen-
ters. Each replica can be read and updated at any time and updates
are propagated to replicas asynchronously. If a data center fails,
the data can nevertheless be read and updated using a replica at a
different data center; reconciliation happens later on a last update
wins basis. This approach guarantees full read and write availabil-
ity which is a crucial property for most Web-based applications:
No client is ever blocked by system failures or other concurrent
clients. Furthermore, this approach guarantees persistence; that is,
the result of an update can only be undone by another update. Ad-
ditional guarantees are not assumed in this paper. The purpose of
this work is to show how such additional consistency guarantees
can be provided on top of S3. In order to exploit S3’s (apparent)
last update wins policy, all protocols make sure that there is suffi-
cient time between two updates to the same S3 object (i.e., several
seconds, Section 4).

2.2 SQS
SQS stands for Simple Queueing System. SQS allows users to

manage a (virtually) infinite number of queues with (virtually) in-
finite capacity. Each queue is referenced by a URI and supports
sending and receiving messages via a HTTP or REST-based inter-
face. (We use the HTTP interface in this work.) As of November
2007, the maximum size of a message is 256 KB using the REST-
based interface and 8 KB for the HTTP interface. Any bytestream
can be put into a message; there is no pre-defined schema. Each
message is identified by a unique id. Based on that id, a message
can be read, locked, and deleted from a queue. More specifically,
SQS supports the following methods which are relevant for this
work:

• createQueue(uri): Creates a new queue.

• send(uri, msg): Sends a message to the queue identified by

Operation Time [secs]
send 0.31

receive 0.16
delete 0.16

Table 2: Response Times of SQS

the uri parameter. Returns the id of the message in that
queue. The message id becomes an integral part of the mes-
sage and is visible to clients which receive the message.

• receive(uri, number-of-msg, timeout): Receives number-of-
msg messages from the top of a queue. number-of-msg must
be 256 or smaller. If the queue has less than number-of-msg
messages or only a subset of the messages are available (e.g.,
due to node failures at Amazon), then SQS may return less
than number-of-msg messages. The returned messages are
locked for the specified timeout period; i.e., the messages
are not visible via receive calls (or other read operations) to
other clients during this timeout period. This feature makes
it possible to ensure that each message is processed at most
once, and yet, avoid that messages are lost if a client fails
while processing a message.

• delete(uri, msg-id): Deletes a message from a queue based
on its message id. Typically, this method is called after a
client has completely processed the message.

• addGrant(uri, user): Allow another user to send and receive
messages to/from a queue.

In addition to these methods, there are several other methods, but
none of these other methods are used in this study.

Like S3, SQS is not for free. The cost is USD 0.01 to send 1,000
messages. Furthermore, the network bandwidth costs at least USD
0.10 per GB of data transferred. As for S3, the cost for the con-
sumed network bandwidth decreases, the more data is transferred.
USD 0.10 per GB is the minimum for heavy users.

Table 2 lists the round trip times of the most critical SQS oper-
ations used in this study; i.e., the operations that impact the per-
formance of a Web-based application built using SQS. Each call
to SQS either returns a result (e.g., receive returns messages) or re-
turns an acknowledgment (e.g., send, delete). The round trip time is
defined as the total (wallclock) time between initiating the request
from the application and the delivery of the result or ack, respec-
tively. For these experiments, the message size was fixed to 100
Bytes, but the sensitivity to the message size is low.

Again, Amazon has not published any details on the implemen-
tation of SQS. It seems, however, that SQS was designed along
the same lines as S3. The messages of a queue are stored in a
distributed and replicated way, possibly on many machines in dif-
ferent data centers. Clients can initiate requests at any time; they
are never blocked by failures or other clients and will receive an an-
swer (or ack) in constant time. For instance, if one client has locked
all messages of a queue as part of a receive call, then another con-
current client which initiates another receive call will simply get
an empty set of messages as a result. Since the queues are stored
in a distributed way, SQS only makes a best-effort when returning
messages in a FIFO manner. That is, there is no guarantee that
SQS returns the first message of a queue as part of a receive call
or that SQS returns the messages in the right order. We have made
experiments and as a rule of thumb it can be expected that SQS
returns only every tenth relevant message. For instance, if a queue
contains 200 (unlocked) messages and a client asks for the top 100

253

messages, then SQS is likely to return about 20 messages as a re-
sult for that request. An important assumption made in this work is
that no messages are ever lost. In fact, this property does not hold
for SQS because SQS deletes messages after fifteen days. Fortu-
nately, in all situations where this assumptions is made, there are
work-arounds which are not reported in this paper for brevity and
ease of presentation.

2.3 EC2
EC2 stands for Elastic Computing Cloud. EC2 is a service which

allows clients to rent machines (CPU + disks) for a client-specified
period of time. Technically, the client gets a virtual machine which
is hosted on one of the Amazon servers. The cost is USD 0.10
per hour (i.e., USD 72 per month), regardless of how heavily the
machine is used. One interesting aspect of EC2 is that all requests
from EC2 to S3 and SQS are free. From a performance perspec-
tive, it is attractive to run applications on EC2 if the data is hosted
on S3 because that way the computation is moved to the data (i.e.,
query shipping and stored procedures). EC2 is also attractive to
implement a distributed infrastructure such as a global transaction
counter (Section 5.3). The experiments reported in this paper (Sec-
tion 6) were carried out using our own servers and without EC2.
Studying the trade-offs of EC2 is beyond the scope of this paper,
but definitely an important avenue for future work.

3. USING S3 AS A DISK
As mentioned in Section 2.1, utility computing with S3 promises

infinite scalability, availability, and throughput. Furthermore, S3
has a similar read / write interface as an ordinary disk drive. Thus,
S3 looks like a great candidate to implement a database. This
section shows that many textbook techniques to implement tables,
pages, B-trees, and logging can be applied to implement a database
on top of S3. So, the purpose of this section is to highlight the
commonalities between a disk-based and S3-based database sys-
tem. The reader should not be surprised by anything said in this
section. Sections 4 and 5, then, highlight the differences.

3.1 Client-Server Architecture
Figure 1 shows the proposed architecture of an S3 database. This

architecture has a great deal of commonalities with a distributed
shared-disk database system [18]. Clients retrieve pages from S3
based on the pages’ URIs, buffer the pages locally, update them,
and write them back. As mentioned in Section 2.1, the unit of
transfer is a page which contains typically several records or in-
dex entries. Following the general DB terminology, we refer to
records as a bytestream of variable size whose size is constrained
by the page size. Records can be relational tuples or XML ele-
ments and documents. Blobs can be stored directly on S3 or using
the techniques devised in [5]; all these techniques are applicable in
a straightforward way so that Blobs are not discussed further in this
paper.

Within a client, there is a stack of components that support the
application. This work focuses on the two lowest layers; i.e., the
record and page managers. All other layers (e.g., the query pro-
cessor) are not affected by the use of S3 and are, thus, considered
to be part of the application. The page manager coordinates read
and write requests to S3 and buffers pages from S3 in local main
memory or disk. The record manager provides a record-oriented
interface, organizes records on pages, and carries out free-space
management for the creation of new records. Applications interact
with the record manager only, thereby using the interface described
in the next subsection.

Throughout this work, we use the term client to refer to software

S3

Page Manager

Record Manager

Application

Client 1

Page Manager

Record Manager

Application

Client N

. . .

pages

Figure 1: Shared-disk Architecture

artifacts that retrieve pages from S3 and write pages back to S3.
Depending on the application, the software architecture of Figure
1 can be implemented by different hardware configurations. For
instance, the page manager, record manager, and parts of the ap-
plication could be executed on EC2 or on machines in a separate
data center which is the configuration used by smugmug [6] and
possibly other large-scale applications. Alternatively, it is possible
that the whole client stack is installed on, say, laptops or handheld
computers (e.g., mobile phones) in order to implement a fancy Web
2.0 application in which users share data via S3. In such a configu-
ration, no additional infrastructure is needed in addition to AWS in
order to operate the Web 2.0 application. This configuration, there-
fore, fits well the needs of providers of new services on the Web, as
described in the introduction. For ease of presentation, such a con-
figuration is assumed in the remainder of this paper. Hence, if not
stated otherwise, it is assumed that application, record, and page
manager run on a single machine and in a single process. The tech-
niques studied in this paper, however, are also applicable to other
configurations.

All protocols proposed in this work were designed to support a
large number of concurrent clients; possibly in the thousands or
even millions. It is assumed that the utility provider (i.e., S3) can
support such a large number of clients and guarantees (pretty much)
constant response times, independent of the number of concurrent
clients. Furthermore, the utility provider guarantees a high degree
of availability and durability; that is, clients can read and write
pages from/to S3 at any moment in time without being blocked and
updates are never lost by the utility provider. All these properties
must be preserved in the application stack at the client. As a result,
the protocols must be designed in such a way that any client can
fail at any time without blocking any other client. That is, clients
are never allowed to hold any locks that would block the execution
at other clients. Furthermore, clients are stateless. They may cache
data from S3, but the worst thing that can happen if a client fails is
that all the work of that client is lost. Obviously, fulfilling all these
requirements comes at a cost: eventual consistency [19]. That is, it
might take a while before the updates of one client become visible
at other clients. Furthermore, ANSI SQL-style isolation and seri-
alization [3] are impossible to achieve under these requirements.
Following [21], we believe that strict consistency and ACID trans-
actions are not needed for most Web-based applications, whereas
scalability and availability are a must. The goal of this paper is to
bring as much DB technology as possible into this environment,
to maximize consistency, and to achieve other transactional guar-

254

antees (e.g., atomicity and monotonicity). Furthermore, this paper
shows the limits and implications of implementing full DB-style
transactional support in such an architecture (Section 5.3).

In the remainder of this section, the record manager, page man-
ager, implementation of indexes, logging, and security issues are
described in more detail. Metadata management such as the man-
agement of a catalogue which registers all collections and indexes
is not discussed in this paper. It is straightforward to implement on
top of S3 in the same way as the catalogue of a relational database
is stored in the database itself.

3.2 Record Manager
The record manager manages records (e.g., relational tuples).

Each record is associated to a collection (see below). A record
is composed of a key and payload data. The key uniquely iden-
tifies the record within its collection. Both key and payload are
bytestreams of arbitrary length; the only constraint is that the size
of the whole record must be smaller than the page size. Physically,
each record is stored in exactly one page which in turn is stored as
a single object in S3. Logically, each record is part of a collection
(e.g., a table). In our implementation, a collection is implemented
as a bucket in S3 and all the pages that store records of that collec-
tion are stored as S3 objects in that bucket. A collection is iden-
tified by a URI. The record manager provides functions to create
new objects, read objects, update objects, and scan collections.

Create(key, payload, uri): Creates a new record into the col-
lection identified by uri. There are many alternative ways to im-
plement free-space management [15], and they are all applicable to
an S3 database. In our implementation, free-space management is
carried out using a B-tree; this approach is sometimes also referred
to as index-organized table. That is, the new record is inserted into
a leaf of a B-tree. The key must be defined by the application and it
must be unique. In order to implement keys which are guaranteed
to be unique in a distributed system, we used uuids generated by
the client’s hardware in our implementation.

Read(key, uri): Reads the payload information of a record given
the key of the record and the URI of the collection.

Update(key, payload, uri): Update the payload information of
a record. In this study, all keys are immutable. The only way to
change a key of a record is to delete and re-create the record.

Delete(key, uri): Delete a record.
Scan(uri): Scan through all records of a collection. To support

scans, the record manager returns an iterator to the application.
In addition to the create, read, update, and scan methods, the

API of the record manager supports commit and abort methods.
These two methods are implemented by the page manager, de-
scribed in the next section. Furthermore, the record manager ex-
poses an interface to probe B-tree indexes (e.g., range queries); the
implementation of B-trees is described in Section 3.4.

3.3 Page Manager
The page manager implements a buffer pool for S3 pages. It

supports reading pages from S3, pinning the pages in the buffer
pool, updating the pages in the buffer pool, and marking the pages
as updated. The page manager also provides a way to create new
pages on S3. All this functionality is straightforward and can be
implemented just as in any other database system. Furthermore,
the page manager implements the commit and abort methods. We
use the term transaction for a sequence of read, update, and create
requests between two commit or abort calls. It is assumed that the
write set of a transaction (i.e., the set of updated and newly cre-
ated pages) fits into the client’s main memory or secondary storage
(flash or disk). If an application commits, all the updates are prop-

agated to S3 and all the affected pages are marked as unmodified in
the client’s buffer pool. How this propagation works is described in
Section 4. If the application aborts a transaction, all pages marked
modified or new are simply discarded from the client’s buffer pool,
without any interaction with S3. We use the term transaction lib-
erally in this work: Our protocols do not give ACID guarantees in
the DB sense, as motivated in Section 3.1. The assumption that the
write set of a transaction must fit in the client’s buffer pool can be
relaxed by allocating additional overflow pages for this purpose on
S3; discussing such protocols, however, is beyond the scope of this
paper and rarely needed in practice.

The page manager keeps copies of S3 pages in the buffer pool
across transactions. That is, no pages are evicted from the buffer
pool as part of a commit. (An abort only evicts modified and new
pages.) Pages are refreshed in the buffer pool using a time to live
(TTL) protocol: If an unmodified page is requested from the buffer
pool after its time to live has expired, the page manager issues a
get-if-modified request to S3 in order to get an up-to-date version,
if necessary (Section 2.1).

3.4 B-tree Indexes
B-trees can be implemented on top of the page manager in a

fairly straightforward manner. Again, the idea is to adopt existing
textbook database technology as much as possible. The root and
intermediate nodes of the B-tree are stored as pages on S3 (via the
page manager) and contain (key, uri) pairs: uri refers to the appro-
priate page at the next lower level. The leaf pages of a primary
index contain entries of the form (key, payload); that is, these pages
store the records of the collection in the index-organized table (Sec-
tion 3.2). The leaf pages of a secondary index contain entries of the
form (search key, record key). That is, probing a secondary index
involves navigating through the secondary index in order to retrieve
the keys of the matching records and then navigating through the
primary index in order to retrieve the records with the payload data.

As mentioned in Section 3.1, holding locks must be avoided as
much as possible in a scalable distributed architecture. Therefore,
we propose to use B-link trees [13] and their use in a distributed
system as proposed by [14] in order to allow concurrent reads and
writes (in particular splits), rather than the more mainstream lock-
coupling protocol [2]. That is, each node of the B-tree contains a
pointer (i.e., URI) to its right sibling at the same level. At the leaf
level, this chaining can naturally be exploited in order to implement
scans through the whole collection or through large key ranges.

A B-tree is identified by the URI of its root page. A collection is
identified by the URI of the root of its primary index. Both URIs
are stored persistently as metadata in the system’s catalogue on S3
(Section 3.1). Since the URI of an index is a reference to the root
page of the B-tree, it is important that the root page is always ref-
erenced by the same URI. Implementing this requirement involves
a slightly modified, yet straightforward, way to split the root node.
Another deviation to the standard B-tree protocol is that the root
node of a B-tree in S3 can be empty; it is not deleted even if the
B-tree contains no entries.

3.5 Logging
The protocols described in Sections 4 and 5 make extensive use

of redo log records. In all these protocols, it is assumed that the
log records are idempotent; that is, applying a log record twice
or more often has the same effect as applying the log record only
once. Again, there is no need to reinvent the wheel and textbook log
records as well as logging techniques are appropriate [11]. If not
stated otherwise, we used the following (simple) redo log records
in our implementation:

255

• (insert, key, payload): An insert log record describes the cre-
ation of a new record; such a log record is always associated
to a collection (more precisely to the primary index which
organizes the collection) or to a secondary index. If such an
insert log record is associated to a collection, then the key
represents the key value of the new record and the payload
contains the other data of the record. If the insert log record
is associated to a secondary index, then the key is the value of
the search key of that secondary index (possibly composite)
and the payload is the primary key value of the referenced
record.

• (delete, key): A delete log record is also associated either to
a collection (i.e., primary index) or to a secondary index.

• (update, key, afterimage): An update log record must be as-
sociated to a data page; i.e., a leaf node of a primary index
of a collection. An update log record contains the new state
(i.e., after image) of the referenced record. Diffing, logical
logging, or other optimized logging techniques are not stud-
ied in this work for simplicity; they can be applied to S3
databases in the same way as to any other database system.
Entries in a secondary index are updated by deleting and re-
inserting these entries.

By nature, all these log records are idempotent: In all three cases,
it can be deduced from the database whether the updates described
by the log record have already been applied. With such simple
update log records, however, it is possible that the same update is
applied twice if another update overwrote the first update before
the second update. This property can result in indeterminisms as
shown in Section 4.3. In order to avoid these indeterminisms, more
sophisticated logging can be used such as the log records used in
Section 5.2.

If an operation involves updates to a record and updates to one or
several secondary indexes, then separate log records are created by
the record manager to log the updates in the collection and at the
secondary indexes. Again, implementing this functionality in the
record manager is straightforward and not different to any textbook
database system.

Most protocols studied in this work involve redo logging only.
Only the protocols sketched in Sections 5.3 require undo logging.
Undo logging is also straightforward to implement by keeping the
before image in addition to the after image in update log records,
and by keeping the last version of the record in delete log records.

3.6 Security
Obviously, security is a concern in the open architecture shown

in Figure 1. Everybody has access to S3, but of course, not every-
body should have access to a client’s personal data. Fortunately, S3
gives clients control of the data. A client who owns a collection, im-
plemented as an S3 bucket, can give other clients read and/or write
privileges to the collection (i.e., bucket) or individual pages of that
collection. Unfortunately, S3 does not support fine-grained secu-
rity and flexible authorization using, e.g., SQL views. To do that,
an additional security infrastructure is needed which can (luckily)
be implemented on top of S3, too. Designing and implementing
such an infrastructure is an important avenue for future research.

One important feature of the architecture of Figure 1 is that clients
need not trust the utility provider. All data can be stored in S3 in
an encrypted form. In order to give different sets of clients access
to different sets of pages, different encryption keys can be used. In
this case, the header of the page indicates which key must be used
to decrypt and re-encrypt the page in the event of updates, and this
key must be shared by all the clients who may access that page.

S3

log rec.
log rec.
log rec.

...

PU Queue

LOCK Queue

log rec.
log rec.
log rec.

...

PU Queue

LOCK Queue

...

Client Client Client

Step 1. Commit

Step 2. Checkpoint

SQS

Figure 2: Basic Commit Protocol

Using SQS, furthermore, it is possible to implement several se-
curity scenarios. It is possible, for example, to assign a curator for
a collection. In this scenario, all updates must be approved by the
curator before they become visible to other clients. While the up-
dates wait for approval, clients continue to see the old version of
the data. Although, this paper will not come back to the implemen-
tation of such scenarios, their implementation using SQS should
become clearer after reading the next section.

4. BASIC COMMIT PROTOCOLS
The previous section showed that an S3 database system can

have a great deal of commonalities with a traditional textbook data-
base system. This section addresses one particular issue which
arises when concurrent clients commit updates to records stored
on the same page. If no care is taken, then the updates of one
client are overwritten by the other client, even if the two clients
update different records. The reason is that the unit of transfer be-
tween clients and S3 in the architecture of Figure 1 is a page, rather
than an individual record. This issue does not arise in a (shared-
disk) database system because the database system coordinates up-
dates to the disk(s); however, this coordination limits the scalabil-
ity (number of nodes/clients) of a shared-disk database. This issue
does not arise in the way that S3 is used conventionally because
today S3 is mostly used to store large objects so that the unit of
transfer to S3 can be the object; for small objects, clustering several
objects into pages is mandatory in order to get acceptable perfor-
mance (Section 2.1). Obviously, if two concurrent clients update
the same record, then the last updater wins. Protocols to synchro-
nize concurrent update transactions are sketched in Section 5.3.

The protocols designed in this section preserve the features of
utility computing with S3: clients can fail anytime, clients can read
and write data at constant time, clients are never blocked by con-
current clients, and distributed Web-based applications can be built
on top of AWS only, without the need to build or administrate any
additional infrastructure. Again, the price to pay for these features
is reduced consistency: In theory, it might take an undetermined
amount of time before the updates of one client become visible
at other clients. In practice, the time can be controlled, thereby
increasing the cost (in $) of running an application for increased
consistency (i.e., a reduced propagation time).

256

4.1 Overview
Figure 2 demonstrates the basic idea of how clients commit up-

dates. The protocol is carried out in two steps:

• In the first step, the client generates log records for all the up-
dates that are committed as part of the transaction and sends
them to SQS.1

• In the second step, the log records are applied to the pages
stored on S3. We call this step checkpointing.2

This protocol is extremely simple, but it serves the purpose. As-
suming that SQS is virtually always available and that sending mes-
sages to SQS never blocks, the first step can be carried out in con-
stant time (assuming a constant or bounded number of messages
which must be sent per commit). The second step, checkpointing,
involves synchronization (Section 4.3), but this step can be carried
out asynchronously and outside of the execution of a client appli-
cation. That is, end users are never blocked by the checkpointing
process. As a result, virtually 100 percent read, write, and commit
availability is achieved, independent of the activity of concurrent
clients and failures of other clients. Furthermore, no additional in-
frastructure is needed to execute this protocol; SQS and S3 are both
utility services provided by AWS, and the hope is that similar utility
services will be supported by other providers soon.

The simple protocol of Figure 2 is also resilient to failures. If a
client crashes during commit, then the client resends all log records
when it restarts. In this case, it is possible that the client sends
some log records twice and as a result these log records may be
applied twice. However, applying log records twice is not a prob-
lem because the log records are idempotent (Section 3.5). If a
client crashes during commit, it is also possible that the client never
comes back or loses uncommitted log records. In this case, some
log records of the commit have been applied (before the failure)
and some log records of the commit will never be applied, thereby
violating atomicity. Indeed, the basic commit protocol of Figure 2
does not guarantee atomicity. Atomicity, however, can be imple-
mented on top of this protocol as shown in Section 5.1.

In summary, the simple protocol of Figure 2 preserves all the
features of utility computing. Unfortunately, it does not help with
regard to consistency. That is, the time before an update of one
client becomes visible to other clients is unbounded in theory. The
only guarantee that can be given is that eventually all updates will
become visible to everybody and that all updates are durable. This
property is known as eventual consistency [19]. In practice, the
freshness of data seen by clients can be controlled by setting the
checkpoint interval (Section 4.5) and the TTL value at each client’s
cache (Section 3.1). Setting the checkpoint interval and TTL values
to lower values will increase the freshness of data, but it will also
increase the ($) cost per transaction (Section 6.5). Another way to
increase the freshness of data (at increased cost) is to allow clients
to receive log records directly from SQS, before they have been ap-
plied to S3 as part of a checkpoint. For brevity, this latter technique
is not elaborated in more detail in this paper.

The remainder of this section describes the details of the basic

1In fact, S3 itself could also be used in order to implement a queue.
We use SQS because it is cheaper for our purposes.
2We use the word checkpointing for this activity because it ap-
plies updates from one storage media (SQS) to the persistent stor-
age (S3). There are, however, important differences to traditional
DBMS checkpointing. Most importantly, checkpointing is carried
out in order to reduce the recovery time after failure in traditional
DBMSes. Here, checkpointing is carried out in order to make up-
dates visible.

commit protocol of Figure 2; i.e., committing log records to SQS
(Step 1) and checkpointing (Step 2).

4.2 PU Queues
Figure 2 shows that clients propagate their log records to so-

called PU queues (i.e., Pending Update queues). In theory, it would
be sufficient to have a single PU queue for the whole system. How-
ever, it is better to have several PU queues because that allows
multiple clients to carry out checkpoints concurrently: As shown
in Section 4.3, a PU queue can only be checkpointed by a single
client at the same time. Specifically, we propose to establish PU
queues for the following structures:

• Each B-tree (primary and secondary) has one PU queue as-
sociated to it. The PU queue of a B-tree is created when the
B-tree is created and its URI is derived from the URI of the
B-tree (i.e., the URI of the root node of the B-tree). All in-
sert and delete log records are submitted to the PU queues of
B-trees.

• One PU queue is associated to each leaf node of a primary
B-tree of a collection. We refer to these leaf nodes as data
pages because they contain all the records of a collection.
Only update log records are submitted to the PU queues of
data pages. The URIs of these PU queues are derived from
the corresponding URIs of the data pages.

4.3 Checkpoint Protocol for Data Pages
Checkpoints can be carried out at any time and by any node (or

client) of the system. A checkpoint strategy determines when and
by whom a checkpoint is carried out (Section 4.5). This section
describes how a checkpoint of update log records is executed on
data pages; i.e., leaf nodes of the primary index of a collection.
The next section describes how checkpoints of insert and delete
log records are carried out on B-trees.

The input of a checkpoint is a PU queue. The most important
challenge when carrying out a checkpoint is to make sure that no-
body else is concurrently carrying out a checkpoint on the same PU
queue. For instance, if two clients carry out a checkpoint concur-
rently using the same PU queue, some updates (i.e., log records)
might be lost because it is unlikely that both clients will read the
exactly same set of log records from the PU queue (Section 2.2).
One solution to synchronize checkpoints is to designate machines
to carry out checkpoints on particular PU queues. This approach is
referred to as watchdog or owner in Section 4.5, but it is not used
in this work because it does not degrade gracefully in the event that
one of these designated machines fail (Section 4.5). The alterna-
tive is to allow any client which has write permission to carry out
checkpoints and to implement a lock in order to guarantee that two
clients do not checkpoint the same PU queue concurrently.

As shown in Figure 2, such a lock can be implemented using
SQS. The idea is to associate a LOCK queue to each PU queue.
Both, the PU queue and the LOCK queue are created at the time a
new page is created in S3. At every point in time, a LOCK queue
contains exactly one message which can be regarded as a token.
This token message is created when the LOCK queue is created and
nobody is allowed to send messages to a LOCK queue or delete the
token message. When a client (or any other authority) attempts to
do a checkpoint on a PU queue, it tries first to receive and lock the
token message from the LOCK queue of that PU queue. If the client
receives the token message, then the client knows that nobody else
is concurrently applying a checkpoint on that PU queue and pro-
ceeds to carry out the checkpoint. As part of the receive request to
the LOCK queue, the client sets a timeout to lock the token mes-

257

sage. During this timeout period the client must have completed
the checkpoint; if the client is not finished in that timeout period,
the client aborts checkpoint processing and propagates no changes.
If the client does not receive the token message at the beginning,
the client assumes that somebody else is carrying out a checkpoint
concurrently. As a result, the client terminates the routine.

In summary, update log records are applied in the following way:

1. receive(URIofLOCKQueue, 1, timeout). If the token mes-
sage is returned, continue with Step 2; otherwise, terminate.
The timeout on the token message should be set such that
Steps 2 to 4 can be executed within the timeout period.

2. If the leaf page is cached at the client, refresh the cached
copy with a get-if-modified call to S3. If it is not cached, get
a copy of the page from S3.

3. receive(URIofPUQueue, 256, 0). Receive as many log records
from the PU queue as possible. (256 is the upper bound for
the number of messages that can be received within one SQS
call.) The timeout can be set to 0 because the log records in
the PU queues need not be locked.

4. Apply the log records to the local copy of the page.

5. If Steps 2 to 4 were carried out within the timeout specified
in Step 1 (plus some padding for the put), put the new version
of the page to S3. If not, terminate.

6. If Step 5 was successful and completed within the timeout,
delete all the log records which were received in Step 3 from
the PU queue using the delete method of SQS.

In Step 4, it is possible that the data page must be split because
the records grew. For brevity, this paper does not describe all the
details of splitting nodes. In our implementation, splitting pages
is carried out along the lines of [14] so that clients which read a
page are not blocked while the page is split. In Step 5, the put
method to S3 is considered to be atomic. The token from the LOCK
queue received in Step 1 need not be unlocked explicitly; the token
becomes automatically visible again, after the timeout expires.

This protocol to propagate updates from an SQS queue to S3 is
safe because the client can fail at any point in time without causing
any damage. If the client fails before Step 5, then no damage is
made because neither the state on SQS nor on S3 have changed. If
the client fails after Step 5 and before the deletion of all log records
from SQS in Step 6, then it is possible that some log records are ap-
plied twice. Again, no damage is caused in this case because the log
records are idempotent (Section 3.5). In this case, indeterminisms
can appear if the PU queue contains several update log records that
affect the same key. At part of a subsequent checkpoint, these log
records may be applied in a different order so that two different
versions of the page may become visible to clients, even though
no other updates were initiated in the meantime. These indeter-
minisms can be avoided by using the extended logging mechanism
for monotonic writes described in Section 5.2 as opposed to the
simple log records described in Section 3.5.

Setting the timeout in Step 1 is critical. Setting the value too
low might result in starvation because no checkpoint will ever be
completed if the PU queue has exceeded a certain length. On the
other hand, a short timeout enables frequent checkpoints and, thus,
fresher data. For the experiments reported in Section 6, a timeout
of 2 seconds was used.

4.4 Checkpoint Protocol for B-trees
As mentioned in Section 4.2, there is one PU queue associated

to each B-tree for inserts and deletes to that B-tree. Primary and
secondary indexes are checkpointed in the same way; only the leaf
nodes of a primary index (i.e., data pages) are treated specially.
Checkpointing a B-tree is more complicated than checkpointing a
data page because several (B-tree) pages are involved in a check-
point and because splitting and deleting pages are frequent. Never-
theless, the basic ideas are the same and can be summarized in the
following protocol sketch:

1. Obtain the token from the LOCK queue (same as Step 1,
Section 4.3).

2. Receive log records from the PU queue (Step 2, Section 4.3).

3. Sort the log records by key.

4. Take the first (unprocessed) log record and navigate through
the B-tree to the leaf node which is affected by this log record.
Reread that leaf node from S3 using S3’s get-if-modified method.

5. Apply all log records that are relevant to that leaf node.

6. If the timeout of the token received in Step 1 has not ex-
pired (with some padding for the put), put the new version
of the node to S3; otherwise terminate (same as Step 5, Sec-
tion 4.3).

7. If the timeout has not expired, delete the log records which
were applied in Step 5, from the PU queue.

8. If not all log records have been processed yet, goto Step 4.
Otherwise, terminate.

As part of Step 5, nodes might become empty or be split. Again, we
cannot describe all the details in this paper due to space constraints
and refer the interested reader to the technical report. As mentioned
in Section 3.4, our implementation adopts the techniques of [14] to
make sure that concurrent readers are not blocked by splits and
deletions carried out by a checkpoint.

4.5 Checkpoint Strategies
The purpose of the previous two sections was to show how check-

points are implemented. The protocols were designed in such a
way that anybody can apply a checkpoint at any time. This section
discusses alternative checkpoint strategies. A checkpoint strategy
determines when and by whom a checkpoint is carried out. Along
both dimensions, there are several alternatives.

A checkpoint on a Page (or Index) X can be carried out by the
following authorities:

• Reader: A reader of X .

• Writer: A client who just committed updates to X .

• Watchdog: A process which periodically checks PU queues.

• Owner: X is assigned to a specific client which periodically
checks the PU queue of X .

In this work, we propose to have checkpoints carried out by read-
ers and writers while they work on the page (or index) anyway. Es-
tablishing watchdogs to periodically check PU queues is a waste of
resources and requires an additional infrastructure to run the watch-
dogs. Likewise, assigning owners to PU queues involves wasting
resources because the owners must poll the state of their PU queues.
Furthermore, owners may be offline for an undetermined amount of

258

time in which case the updates might never be propagated from the
PU queue to S3. The advantage of using watchdogs and assigning
owners to PU queues is that the protocols of Sections 4.3 and 4.4
are simplified (no LOCK queues are needed) because no synchro-
nization between potentially concurrent clients is required. Never-
theless, we believe that the disadvantages outweigh this advantage.

The discussion of whether checkpoints should be carried out by
readers or writers is more subtle and depends on the second ques-
tion of when checkpoints should be carried out. In this work, we
propose to use writers in general and readers only in exceptional
cases (see below). A writer initiates a checkpoint using the follow-
ing condition:

• Each data page records the timestamp of the last checkpoint
in its header. For B-trees, the timestamp is recorded in the
metadata (Section 2.1) associated to the root page of the B-
tree. For B-trees, the S3 maintained metadata, rather than the
root page, is used to store this information because check-
pointing a B-tree typically does not involve modifying the
root and rewriting the whole root in this event would be waste-
ful. The timestamp is taken from the machine that carries
out the checkpoint. It is not important to have synchronized
clocks at all machines; out-of-sync clocks will result in more
or less frequent checkpoints, but they will not affect the cor-
rectness of the protocol (i.e., eventual consistency at full avail-
ability).

• When a client commits a log record to a data page or B-tree,
the client computes the difference between its current wall-
clock time and the timestamp recorded for the last checkpoint
in the data page / B-tree. If the absolute value of this differ-
ence is bigger than a certain threshold (checkpoint interval),
then the writer carries out a checkpoint asynchronously (not
blocking any other activity at the client). The absolute value
of the difference is used because out-of-sync clocks might re-
turn outrageous timestamps that lie in the future; in this case,
the difference is negative.

The checkpoint interval is an application-dependent configuration
parameter; the lower it is set, the faster updates become visible,
yet the higher the cost (in USD) in order to carry out many check-
points. The trade-offs of this parameter are studied in Section 6.5.
Obviously, the checkpoint interval must be set to a significantly
larger value than the timeout on the LOCK queue for checkpoint
processing used in the protocols of Sections 4.3 and 4.4. For a typ-
ical Web-based application, the checkpoint interval should be set
to, say, 10-15 seconds whereas timeouts on LOCK queues should
be set to 1-2 seconds. Clearly, none of the protocols devised in this
work are appropriate to execute transactions on hot-spot objects
which are updated thousands of times per second.

Unfortunately, the writer-only strategy has a flaw. It is possible
that a page which is updated once and then never again is never
checkpointed. As a result, the update never becomes visible. In
order to remedy this situation, it is important that readers also initi-
ate checkpoints if they see a page whose last checkpoint was a long
time ago: A reader initiates a checkpoint randomly with a probabil-
ity proportional to 1/x if x is the time period since the last check-
point; x must be larger than the checkpoint interval. (The longer
the page has not been checkpointed after the checkpoint interval
expired, the less likely a checkpoint is needed in this approach.)
Initiating a checkpoint does no block the reader; again, all check-
pointers are carried out asynchronously outside of any transaction.
Of course, it is still possible that an update from a PU queue is
never checkpointed in the event that the data page or index is nei-

ther read nor updated; we need not worry about this case, however,
because the page or index is garbage in this case.

The proposed checkpointing strategy makes decisions for each
data page and each index individually. There are no concerted
checkpointing decisions. This design simplifies the implementa-
tion, but it can be the source for additional inconsistencies. If a new
record is inserted, for instance, it is possible that the new record be-
comes visible in a secondary index on S3 before it becomes visible
in the primary index. Likewise, the query select count(*) from col-
lection can return different results, depending on the index used to
process this query. How to avoid such phantoms and achieve seri-
alizability is discussed in Section 5.3; unfortunately, serializability
cannot be achieved without sacrificing scalability and full availabil-
ity of the system.

5. TRANSACTIONAL PROPERTIES
The previous section showed how durability can be implemented

on top of S3 with the help of SQS. No update is ever lost, updates
are guaranteed to become visible to other clients (eventual consis-
tency [19]), and the state of records and indexes persist until they
are overwritten by other transactions. This section describes how
additional transactional properties can be implemented. Again, the
goal is to provide these additional properties at as low as possible
additional cost (monetary and latency), but without sacrificing the
basic principles of utility computing: scalability, availability, and
no need to operate an additional infrastructure. It is shown that
atomicity and all client-side consistency levels described in [19]
can be achieved under these constraints whereas isolation and strict
consistency cannot. The protocols described in this section are lay-
ered on top of the basic protocols described in the previous section.

5.1 Atomicity
Atomicity involves that all or none of the updates of a transaction

become visible. Atomicity is not guaranteed using the Basic Com-
mit Protocol depicted in Figure 2. If a client fails while processing
a commit of a transaction, it is possible that the client already sub-
mitted some updates to the corresponding PU queues whereas other
updates of the transaction are lost due to the failure.

Fortunately, atomicity can be implemented using additional
ATOMIC queues which are associated to each client. Each client
maintains one or several of such ATOMIC queues on SQS; for ease
of presentation, we assume that each client has a single ATOMIC
queue. Rather than committing log records directly to the PU queues,
the client commits the log records to its ATOMIC queue first. For
this purpose, every log record is annotated with an additional field
which carries an id of that commit: This id must uniquely identify
a transaction on that client; different clients can use the same id for
different transactions. For efficiency, the client packs as many log
records as possible into a single message to the ATOMIC queue; it
is not necessary to send the log records to the ATOMIC queue in-
dividually. Once the client has written all log records of the trans-
action to its ATOMIC queue, the client sends a special commit(id)
record to the ATOMIC queue, thereby using the same id as in the
log records. In that commit record, the client also indicates the
number of log records that were committed so that they can all be
recovered more safely from the ATOMIC queue. After that, the
client starts submitting all log records to the PU queues just as in
the basic commit protocol. If there are no failures, then the client
deletes all log records from the ATOMIC queue. That is, the com-
mit operates in three steps which must be carried out in this order:

• Send all log records to the ATOMIC queue. The commit
record is sent last.

259

• Send all log records to the corresponding PU queues. Delete
a message with log records from the ATOMIC queue after
all the log records packed into that message have been sent
to the corresponding PU queues.

• Delete the commit record from the ATOMIC queue.

After the first step, the commit is complete. The second and third
steps can be carried out asynchronously; the application can con-
tinue and does not need to wait until these steps are completed.

When a client fails, the client checks its ATOMIC queue at restart.
Winners are all log records which carry the same id as one of the
commit records found in the ATOMIC queue; all other log records
are losers. Losers are deleted immediately from the ATOMIC queue
and never propagated to a PU queue. Winners are propagated to the
corresponding PU queue and deleted after they have been propa-
gated to the PU queue. A commit record may only be deleted from
the ATOMIC queue after all the log records of the corresponding
transaction have been propagated to PU queues. Of course, clients
can fail after restart and while scanning the ATOMIC queue. Such
failures cause no damage. It is possible that log records are prop-
agated to PU queues twice or even more often, but that is not an
issue because the application of log records is idempotent.

5.2 Consistency Levels
Tanenbaum and van Steen describe different levels of consis-

tency in their book [19]. The highest level of consistency is Strict
Consistency. Strict consistency mandates that “every read on a data
item x returns a value corresponding to the result of the most recent
write on x” [19]. Strict consistency can only be achieved by syn-
chronizing the operations of concurrent clients; isolation protocols
are discussed in the next section (Section 5.3). As stated in [21],
strict consistency is never needed in practice and even considered
harmful. This section discusses how the other (weaker) levels of
consistency described in [19] can be achieved. The focus is on
so-called client-side consistency models [19] because they are the
basis for the design of most Web-based services [21]:

Monotonic Reads:. “If a client [process]3 reads the value of a
data item x, any successive read operation on x by that client will
always return the same value or a more recent value” [19]. This
property can be enforced by keeping a record of the highest commit
timestamp for each page which a client has cached in the past. If
a client receives an old version of a page from S3 (older than a
version the client has seen before), the client can detect that and
reread the page from S3.

Monotonic Writes:. “A write operation by a client on data item
x is completed before any successive write operation on x by the
same client” [19]. This level of consistency can be implemented
by establishing a counter for each page (or index) at a client (as
for monotonic reads) and incrementing the counter whenever the
client commits an update to that page (or index). The pairs (client
id, counter value) of the latest updates of each client are stored in
the header of each page and in the log records. As a result, the log
records can be ordered during checkpointing and out of order log
records can be detected in the event that SQS does not return all
relevant records of a PU queue (Section 2.2). If an out-of-order log
record is found during checkpointing, that log record is not applied
and its application is deferred to the next checkpoint.

3[19] uses the term process. We interpret that term as client in our
architecture. If we would interpret this term as transaction, then all
the consistency levels would be fulfilled trivially.

Read your writes:. “The effect of a write operation by a client on
data item x will always be seen by a successive read operation on
x by the same client” [19]. This property is automatically fulfilled
in the architecture of Figure 1 if monotonic reads are supported.

Write follows read:. “A write operation by a client on data item
x following a previous read operation on x by the same client, is
guaranteed to take place on the same or a more recent value of x
that was read” [19]. This property is fulfilled because writes are
not directly applied to data items; in particular, the posting a re-
sponse problem described in [19] cannot occur using the protocols
of Section 4.

In similar ways, several data-centric consistency levels defined
in [19] can be implemented on S3 (e.g., FIFO consistency). Going
through the details is beyond the scope of this work.

5.3 Isolation: The Limits
Multi-version (e.g., snapshot isolation [3]) and optimistic con-

currency control (e.g., BOCC [22]) appear to be good candidates to
implement isolation and, thus, strict consistency in an S3 database
system. Indeed, many aspects of these protocols can be imple-
mented without sacrificing scalability and availability. In the fol-
lowing, we will sketch our implementation of snapshot isolation
and BOCC on S3 and show their limitations.

Snapshot Isolation: The idea of snapshot isolation is to serial-
ize transactions in the order of the time they started [3]. When a
transaction reads a record, it initiates a time travel and retrieves the
version of the object as of the moment when the transaction started.
When a transaction commits, it compares its write set to the write
sets of all transactions that committed earlier and started later; the
intersection must be empty. To the best of our knowledge, snapshot
isolation has not been implemented in a distributed system yet. The
time travel can be implemented in the same way using S3 as in a
traditional database system. The commit involves synchronization;
essentially, a strict 2PL protocol must be applied on the PU queues
in the commit phase. The real problem of implementing snapshot
isolation in a distributed system is establishing a global counter in
order to put a global order on all transactions. Whenever a transac-
tion begins or commits, the transaction must increment this global
counter. Such a counter can be implemented on top of S3 (and
EC2), but it may become a bottleneck and is a single point of fail-
ure in the system.

BOCC: Like snapshot isolation, backward-oriented concurrency
control [22] can be implemented in an S3-based database. Since
BOCC makes stronger guarantees (it supports serializability), how-
ever, the limitations of implementing BOCC in a distributed system
are even higher. Like snapshot isolation, the implementation of
BOCC involves the use of a global counter to mark the beginning
and commit of all transactions. Furthermore, BOCC requires that
only one transaction commits at the same time. This requirement
can be prohibitive with thousands of concurrent clients so that only
relaxed versions of BOCC are conceivable.

6. EXPERIMENTS AND RESULTS

6.1 Software and Hardware Used
We implemented the protocols presented in Sections 4 and 5 and

conducted experiments in order to study their trade-offs in terms of
latency and cost ($). These are the two critical metrics when using
S3 as compared to an ordinary disk drive: In all other metrics, S3

260

beats conventional technology. This section reports on experiments
carried out with the following configurations of increasing levels of
consistency:

• Basic: The basic protocol depicted in Figure 2. As stated in
Section 4, this protocol only supports eventual consistency.

• Monotonicity: The protocols described in Section 5.2 on top
of the basic protocol. These protocols support full client-
side consistency (i.e., monotonic reads and writes, read your
writes, and write follows read).

• Atomicity: The atomicity protocol of Section 5.1 in addition
to the Monotonicity protocols on top of the Basic protocol.
This is the highest level of consistency supported by the pro-
tocols presented in this work.

We do not study snapshot isolation and BOCC because they re-
quire additional infrastructure and do not have the same properties
in terms of scalability and availability.

As a baseline, we implemented a “naı̈ve” way to use S3 as a
store. In this Naı̈ve approach, the commit operation writes all dirty
pages directly back to S3, rather than carrying out the basic two
step protocol of Figure 2. This Naı̈ve way to use S3 is subject to
lost updates; so, it will not even implement the eventual consistency
level achieved in the basic protocol.

All four variants studied (Naı̈ve, Basic, Monotonicity, and Atom-
icity) support the same interface at the record manager as described
in Section 3.2. As a result, the benchmark application code is iden-
tical for all four variants. Furthermore, the implementation of read,
write, create, index probe, and abort operations in the record man-
ager, page manager, and B-tree index are identical. The variants
only differ in their implementation of commits and checkpoints.

This section only reports on results carried out with a single
client that ran on a Mac with a 2.16 MHz Intel processor (Sec-
tion 2). We also carried out experiments with varying numbers of
clients. The results (cost per transaction, latency) are the same as
the results with a single client, so the multi-client results are not
discussed here for brevity. In all experiments reported here, the
page size of data pages was fixed to 100 KB and the size of B-tree
nodes was 57 KB. The TTL parameter of the client’s cache was set
to 100 seconds, and the cache size was limited to 5 MB. In Exper-
iments 1 and 2, the checkpoint interval was set to 15 seconds. In
Experiment 3, this parameter was varied. Since we are not AWS
premium customers, the cost per GB of network traffic was USD
0.18 in all experiments.

6.2 TPC-W Benchmark
To study the trade-offs of the alternative protocols, we used a

sub-set of the TPC-W benchmark [20]. The TPC-W benchmark
models an online bookstore with queries asking for the availability
of products and an update workload that involves the placement
of orders. In all experiments reported here, we used a complex
customer transaction that involves the following steps: (a) retrieve
the customer record from the database; (b) search for six specific
products; (c) place orders for three of the six products. In all cases,
customers and products were chosen randomly.

The purpose of the experiments was to study the running times
and cost ($) of transactions for different consistency levels. Ex-
periments 1 and 2, consequently, report on running times and cost.
Furthermore, the benchmark was used in order to study the impact
of the checkpoint interval parameter on the cost.

Avg. Max.
Naı̈ve 11.3 12.1
Basic 4.0 5.9

Monotonicity 4.0 6.8
Atomicity 2.8 4.6

Table 3: Running Time per Transaction [secs]

6.3 Experiment 1: Running Time [secs]
Table 3 shows the average and maximum execution times in sec-

onds per transaction. The absolute numbers are high. These high
execution times, however, were expected: As mentioned in Sec-
tion 2.1, S3 has about two to three orders of magnitude higher la-
tency than an ordinary local disk drive and interaction with S3 and
SQS dominated the overall running times in all our experiments.
Despite these high execution times, we believe that the results are
acceptable in an interactive environment such as a Web 2.0 applica-
tion. Each transaction simulates about twelve clicks of a user (e.g.,
searching for products, adding a product to the shopping cart) and
none of these clicks (except for the commit) takes longer than a
second.

Somewhat surprisingly, the higher the level of consistency, the
lower the overall running times. The reason lies in details of the
various commit protocols. Naı̈ve has the highest running time be-
cause it writes all affected pages of the transactions directly to
S3. The commit (and, thus, the transaction) is complete once this
process has been carried out. The other approaches are faster be-
cause they propagate log records only to SQS; these log records, of
course, are much smaller than the pages. Atomicity has the fastest
commit because it sends less messages to SQS as part of a com-
mit because the log records can be batched as described in Section
5.1. In all approaches, the latency of the commit can be reduced by
sending several messages in parallel to S3 and SQS; in the current
implementation, the messages are sent one by one.

Table 3 also shows the maximum running times. The variances
are fairly low. In all our experiments over the last weeks, the vari-
ance of S3 and SQS was negligible. Significant variance in running
times were only caused by caching effects. Furthermore, Mono-
tonicity has a higher overall running time if pages must be re-read
from S3 due to a consistency violation (e.g., monotonic read).

6.4 Experiment 2: Cost [$]
Table 4 shows the overall cost per 1000 transactions. This cost

was computed by running a large number of transactions (several
thousands), taking the cost measurements of AWS, and dividing the
total cost by the number of transactions. Comparing Tables 3 and 4,
a somewhat inverse effect can be seen. While the latency decreases
with an increasing level of consistency (due to peculiarities of the
protocols), the cost in $ clearly increases. For the highest level of
consistency (Atomicity), the cost per transaction is almost twenty
times as high as for the Naı̈ve approach which is used as a base-
line. In particular, the interaction with SQS can become expensive.
A great deal of the cost is spent to carry out checkpoints and/or to
process the ATOMIC queue for the Atomicity approach (Column 3
of Table 4). This cost can be reduced by setting the checkpoint in-
terval to a larger value (Experiment 3); thereby reducing the fresh-
ness of data. The cost to process transactions cannot be tuned and
depends fully on the protocol used and the (application and/or user-
defined) activity of the transaction.

Again, the absolute values in Table 4 are less significant than the
differences between the various variants. For a bookstore, a trans-
actional cost of about 3 milli-dollars (i.e., 0.3 cents) is probably af-
fordable because transactional costs in this order of magnitude are

261

Total Chckp. + Atomic Q. Transaction
Naı̈ve 0.15 0 0.15
Basic 1.8 1.1 0.7

Monotonicity 2.1 1.4 0.7
Atomicity 2.9 2.6 0.3

Table 4: Cost per 1000 Transactions [$]

 1

 1.5

 2

 2.5

 3

 3.5

 4

 5 10 15 20 25

$
/ 1

00
0

Tr
an

sa
ct

io
ns

Checkpoint Interval [secs]

Atomicity
Basic

Figure 3: Cost per 1000 Transacts., Vary Checkpoint Interval

only incurred if the client carries out complex updates (i.e., orders
books). For many Web 2.0 applications, such costs are too high
so that they need to move to lower levels of consistency. Overall,
however, we expect the transactional costs to decrease in the future,
following Moore’s law and with competitors to AWS appearing on
the market place.

6.5 Experiment 3: Vary Checkpoint Interval
Figure 3 shows the (total) cost in $ per 1000 transactions as a

function of the checkpoint interval for Basic and Atomicity. Mono-
tonicity (not shown) is somewhere in between Basic and Atomicity;
Naı̈ve (not shown) is independent of the checkpoint interval. The
running times of transactions are also independent of this parameter
because checkpoints are carried out outside of transactions.

Increasing the checkpoint interval is a good way to control cost.
In the workload of our experiments, a checkpoint interval below 10
seconds effectively involved initiating a checkpoint for every up-
date that was committed; so, setting the checkpoint interval below
10 seconds does not make much sense. With a checkpoint interval
above 10 seconds, the cost is quickly reduced. The curve flattens
after about 20 secs; for a checkpoint interval of∞, the curve would
converge to about $ 7 per 1,000 transactions which is the base cost
to execute a transaction in our workload (Table 4). While the over-
all shape of the curve is similar independent of the workload, the
exact cut-off points and the best setting of the checkpoint interval
depends on the workload and in particular on the skew in the update
pattern. Of course, the right setting of this parameter also depends
on the freshness of the data that the application requires.

7. RELATED WORK
In the distributed systems and database literature, many alterna-

tive protocols to coordinate reads and writes to (replicated) data
stored in a distributed way have been devised. The authoritative
references in the DB literature are [4] and, more recently, [22]. For
distributed systems, [19] is the standard textbook which describes
the alternative approaches and their trade-offs in terms of consis-
tency and availability. This work is based on [19] and applies dis-

tributed systems techniques to data management with utility com-
puting and more specifically S3. To our best knowledge, this is the
first attempt to do so for S3. The only other work on S3 databases
that we are aware of makes S3 the storage module of a centralized
MySQL database [1]. As mentioned in Section 5, we do not even
try to provide strict consistency and DB-style transactions because
these techniques do not scale at the Internet level and because they
are simply not needed for most modern Web-based applications.

Utility computing has been studied since the nineties; e.g., the
OceanStore project at UC Berkeley. Probably, its biggest success
has come in the Scientific community where it is known as grid
computing [8]. Grid computing was designed for very specific pur-
poses; mostly, to run a large number of analysis processes on Sci-
entific data. Amazon has brought the idea to the masses. Even
S3, however, is only used for specific purposes today: large multi-
media objects and backups. The goal of this paper is to broaden the
scope and the applicability of utility computing to general-purpose
Web-based applications.

Supporting scalability and churn (i.e., the possibility of failures
of nodes at any time) are core design principles of peer-to-peer sys-
tems [12]. Peer-to-peer systems also enjoy similar consistency vs.
availability trade-offs. We believe that building databases on util-
ity computing such as S3 is more attractive for many applications
because it is easier to control security (Section 3.6), to control dif-
ferent levels of consistency (e.g., atomicity and monotonic writes),
and provide latency guarantees (e.g., an upper bound for all read
and write requests). As shown in Figure 1, S3 serves as a central-
ized component which makes it possible to provide all these guar-
antees. Having a centralized component like S3 is considered to
be a “no-no” in the P2P community, but in fact, S3 is a distributed
(P2P) system itself and has none of the technical drawbacks of a
centralized component. In some sense, this work proposes to es-
tablish data management overlays on top of S3 in a similar way as
the P2P community proposes to create network overlays on top of
the Internet.

8. CONCLUSION
Web-based applications need high scalability and availability at

low and predictable cost. No client must ever be blocked by other
clients accessing the same data or due to hardware failures at the
service provider. Instead, clients expect constant and predictable
response times when interacting with a Web-based service. Utility
computing has the potential to meet all these requirements. Util-
ity computing was initially designed for specific workloads. This
paper showed the opportunities and limitations to apply utility com-
puting to general-purpose workloads, using AWS and in particular
S3 for storage as an example. As of today, utility computing is not
attractive for high-performance transaction processing; such appli-
cation scenarios are best supported by conventional database sys-
tems. Utility computing, however, is a viable candidate for many
Web 2.0 and interactive applications.

From our point of view, this work is just the beginning towards
the long-term vision to implement full-fledged database systems
on top of utility services. This work only scratched the surface and
provided low-level protocols to read and write data from and to a
storage services like S3. Clearly, there are many database-specific
issues that still need to be addressed. We are aware that our ap-
proach to abandon strict consistency and DB-style transactions for
the sake of scalability and availability is controversial and requires
further discussion and evaluation. There might be scenarios for
which ACID properties are more important than scalability and
availability. Furthermore, query processing techniques (e.g., join
algorithms and query optimization techniques) and new algorithms

262

to, say, bulkload a database, create indexes, and drop a whole col-
lection need to be devised. For instance, there is no way to carry out
chained I/O in order to scan through several pages on S3; this ob-
servation should impact the design of new database algorithms for
S3. Furthermore, building the right security infrastructure will be
crucial for the success of an S3-based information system. Finally,
EC2 and SimpleDB deserve further investigation. EC2 might be a
way to reduce latency and cost for certain workloads; SimpleDB
might be an attractive way to implement an index for S3 data. Un-
fortunately, both EC2 and SimpleDB are quite expensive.

9. ADDITIONAL AUTHORS

10. REFERENCES
[1] M. Atwood. A storage engine for Amazon S3. MySQL Conference

and Expo, 2007. http://fallenpegasus.com/code/mysql-awss3.
[2] R. Bayer and M. Schkolnick. Concurrency of operations on B-trees.

Acta Inf., 9(1):1–21, 1977.
[3] H. Berenson et al. A critique of ANSI SQL isolation levels. In Proc.

of ACM SIGMOD, pages 1–10, Jun 1995.
[4] P. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control

and Recovery in Database Systems. Addison Wesley, Reading, MA,
1987.

[5] A. Biliris. The performance of three database storage structures for
managing large objects. In Proc. of ACM SIGMOD, pages 276–285,
Jun 1992.

[6] D. Brunner. Scalability: Set Amazon’s servers on fire, not yours. Talk
at ETech Conf., 2007. http://blogs.smugmug.com/don/files/ETech-
SmugMug-Amazon-2007.pdf.

[7] G. DeCandia et al. Dynamo: Amazon’s highly available key-value
store. In Proc. of SOSP, pages 205–220, Oct 2007.

[8] I. Foster and C. Kesselman, editors. The Grid 2: Blueprint for a new
computing infrastructure. Elsevier, Amsterdam, 2004.

[9] S. Garfinkel. An evaluation of Amazon’s grid computing services:
EC2, S3, and SQS. Technical Report TR-08-07, Harvard University,
2007.

[10] S. Gilbert and N. Lynch. Brewer’s conjecture and the feasibility of
consistent, available, partition-tolerant Web services. SIGACT News,
33(2):51–59, 2002.

[11] J. Gray and A. Reuter. Transaction Processing: Concepts and
Techniques. Morgan Kaufmann, San Mateo, CA, 1994.

[12] J. Hellerstein. Architectures and algorithms for interent-scale (P2P)
data management. In Proc. of VLDB, page 1244, Aug 2004.

[13] P. Lehman and B. Yao. Efficient locking for concurrent operations on
B-trees. ACM TODS, 6(4):650–670, 1981.

[14] D. Lomet. Replicated indexes for distributed data. In Proc. of PDIS,
pages 108–119, Dec 1996.

[15] M. McAuliffe, M. Carey, and M. Solomon. Towards effective and
efficient free space management. In Proc. of ACM SIGMOD, pages
389–400, Jun 1996.

[16] RightScale LLC. Redundant MySQL set-up for Amazon EC2,
November 2007.
http://info.rightscale.com/2007/8/20/redundant-mysql.

[17] W. Ross and G. Westerman. Preparing for utility computing: The role
of IT architecture and relationship management. IBM Systems
Journal, 43(1):5–19, 2004.

[18] M. Stonebraker. The case for shared nothing. IEEE Data Eng.
Bulletin, 9(1):4–9, 1986.

[19] A. Tanenbaum and M. van Steen. Distributed Systems: Principles
and Paradigms. Prentice Hall, Upper Saddle River, NJ, 2002.

[20] TPC. TPC Benchmark W. Specification Version 1.8 of TPC Council,
2002.

[21] W. Vogels. Data access patterns in the Amazon.com technology
platform. In Proc. of VLDB, page 1, Sep 2007.

[22] G. Weikum and G. Vossen. Transactional Information Systems.
Morgan Kaufmann, San Mateo, CA, 2002.

263

