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ABSTRACT 
A common criticism of database systems is that they are hard to 
query for users uncomfortable with a formal query language.  To 
address this problem, form-based interfaces and keyword search 
have been proposed; while both have benefits, both also have 
limitations.  In this paper, we investigate combining the two 
with the hopes of creating an approach that provides the best of 
both.  Specifically, we propose to take as input a target database 
and then generate and index a set of query forms offline.  At 
query time, a user with a question to be answered issues 
standard keyword search queries; but instead of returning tuples, 
the system returns forms relevant to the question.  The user may 
then build a structured query with one of these forms and submit 
it back to the system for evaluation.  In this paper, we address 
challenges that arise in form generation, keyword search over 
forms, and ranking and displaying these forms.  We explore 
techniques to tackle these challenges, and present experimental 
results suggesting that the approach of combining keyword 
search and form-based interfaces is promising. 
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1. INTRODUCTION 
As the success of Internet search engines makes abundantly 

clear, when faced with discovering documents of interest, the 
general public is successful at using keyword search to 
accomplish the task.  However, it is much more difficult to pose 
structured queries to satisfy information requests over structured 
databases, since users need to know the query language (e.g., 
SQL) and the schema.  Our goal in this paper is to explore 
techniques that assist users who do not want to use SQL in 

posing ad hoc structured queries over relational databases. 
Our basic idea is to exploit the observation that for many 

tasks, it is easier to recognize a solution when presented with 
one than it is to construct the solution from scratch.  A user with 
a question to be answered may find it easier to recognize a form 
that can be used to express a relevant query than it is for the user 
to generate that query from scratch.  This observation suggests 
the approach of, given a structured database, generating enough 
forms to cover a wide variety of potential user queries, and then 
allowing the user to browse this set of forms when he or she 
wishes to pose a query.  In non-trivial applications, there will be 
many forms to consider, and browsing this set of forms will 
itself be a non-trivial endeavour.  Therefore, we propose the use 
of keyword search to help the user find a manageably small set 
of relevant forms �– the user submits a keyword query; in 
response, the system returns a ranked list of relevant forms, from 
which the user selects and uses one to build a structured query. 

The approach of keyword search leading to a form has 
already been used in an ad hoc manner by search engines such 
as Google and Yahoo!.  For example, as shown in Figure 1, 
querying Google with "from new york to seattle" brings up a 
query interface to buy plane tickets as the first result.  However, 
on the Web, the primary task of keyword search is to lead users 
exploring the Web to documents relevant to their search.  While 
the search engine may occasionally return a form relevant to a 
query, there is no desire to support a wide range of possible 
structured queries.  By contrast, we seek to develop a 
comprehensive approach that allows users to answer a wide 
variety of questions over a single structured data set.  

Although the approach is straightforward in concept, when 
one actually attempts to implement such a facility, one is faced 
with myriad options and difficult decisions every step of the 
way.  For example, how can one automatically generate a set of 
forms to support a wide range of queries?  How specific or 
general should these forms be?  How effective is keyword 
search in exploring this set of forms?  What challenges arise in 
ranking the results of these keyword searches?  And finally, can 
users really use the result of a keyword search to identify forms 
useful in satisfying their information requests? 

Our main contributions in this paper are to 1) identify and 
elucidate these challenges, and explain how they arise, 2) give 
initial solutions to these challenges, 3) implement these 
solutions and conduct a user study to evaluate our approach of 
keyword search leading to forms leading to structured queries.  
Even with our initial solutions to the challenges inherent in this 
approach, the results are already encouraging �– given a real-life 
data set and a number of information requests, without any 
manual intervention on our part, users were able to perform 
keyword search over our automatically generated set of forms,  
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Figure 1.  For the query �“from new york to seattle,�” Google returns 
a simple form for finding flight tickets besides links to websites. 
 

Figure 2.  The relational schema of the DBLife data set.  Primary 
keys are underlined.  The total number of tuples is 801,189. 
 
and were successful in finding and filling out the right forms to 
satisfy the information requests, all done in under two minutes.  
This success with our end-to-end complete prototype suggests 
that the approach is promising and warrants further exploration. 

Throughout this paper, to provide context and specificity to 
our presentation, we refer to the DBLife [5] data set in our 
discussion.  DBLife manages information for the database 
research community.  It monitors about 1,000 data sources and 
downloads about 9,500 pages daily to track mentions and 
entities.  We use a snapshot of the data set as of June 2007.  Its 
relational schema, shown in Figure 2, comprises five entity 
tables and nine relationship tables, which reference the entity 
tables.  Figure 2 also shows the number of tuples in each table.  
The whole data set is about 40 MB. The rest of this paper is 
organized as follows.  Section 2 addresses form generation.  
Section 3 describes our approaches to map keyword queries to 
forms and eliminate forms that do not produce answers with  

 
Figure 3.  An example of a query form for the DBLife data set with 
one of the predicates specified. 
 
respect to a given keyword query.  Section 4 considers ranking 
and grouping forms.  Section 5 presents our experiments and the 
user study.  Section 6 discusses related work.  Section 7 
concludes the paper.   

2. QUERY FORMS 
A popular approach to query databases is to use forms, as 

they allow users who have no knowledge of the database query 
language or the schema to build structured queries.  Each form is 
essentially an interface for a query template �– an incomplete 
SQL query in which some components are parameters whose 
values are unknown until a user provides them when he or she 
fills out the form.  Figure 3 shows an example of a completed 
form over the person relation of DBLife.  When the form is 
empty, it maps to the template 
 

SELECT * 
FROM  person 
WHERE name op value AND homepage op value 

AND title op value AND group op value AND 
organization op value AND country op value 

 
where op and value are parameters representing an operator and 
a constant respectively.  Figure 3, then, represents the query 

 
SELECT * 
FROM  person 
WHERE organization = �‘Microsoft Research�’ 
 
In other words, a template with user-specified parameters 

corresponds to a SQL query.  Predicates for which users have 
not specified parameters, such as those for name, homepage, 
title, and country in this example, are excluded from query 
evaluation.   

To let general users build ad hoc database queries with 
forms, we want to generate forms that are easy to use and that, 
as a set, support a wide range of queries.  In this section, we 
present a systematic approach to do so, and address challenges 
that arise in the process.  Let D be a database instance and SD be 
the schema of D.  We can describe form generation as a four-
step procedure: 

1) Specify a subset of SQL as the target language to 
implement the queries supported by forms.  

2) Determine a set of �“skeleton�” templates specifying the 
main clauses and join conditions based on the chosen 
subset of SQL and SD. 

Relational Schema of DBLife 
Entity tables: # rows
person(id, name, homepage, title, group, 
organization, country) 

68459 

publication(id, name, booktitle, year, pages, cites, 
clink, link) 

108972

topic(id, name) 736 
organization(id, name) 163 
conference(id, name) 170 
 
Relationship tables: 

 
 

// records two related persons and strength of this pair 
related_people(rid, pid1, pid2, strength) 

 
115436

// records related person-topic pair and strength 
related_topic(rid, pid, tid, strength) 

 
114196

// records related person-organization pair and strength 
related_organization(rid, pid, oid, strength) 

 
2436 

// records a person giving a tutorial in a conference 
give_tutorial(rid, pid, cid) 

 
132 

// records a person giving a talk in a conference 
give_conf_talk(rid, pid, cid) 

 
131 

//records a person giving a talk at an organization 
give_org_talk(rid, pid, oid) 

 
913 

//  records a person serving in a conference and the  
// assignment 
serve_conf(rid, pid, cid, assignment) 

 
 

3591 
// records a person as an author of a publication and the 
// position of the person�’s name on the list of authors 
write_pub(rid, pid, pub_id, position) 

 
 

328410
//  records a pair of co-authors and strength 
co_author(rid, pid1, pid2, strength) 

 
56370 
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SQL�’:  

Let B = (SELECT            select-list  
              FROM                from-list  
              WHERE             qualification  
              [GROUP BY      grouping-list  
              HAVING           group-qualification])  
where  

 select-list comprises a list of column names, and, if 
applicable, a list of terms having the form 
aggop(column-name), with aggop being one of {MIN, 
MAX, COUNT, SUM, and AVG}.  

 from-list is a list of tables.   
 qualification is a conjunction of the conditions of the 

form expression op expression.  An expression is a 
column name or a constant, and op is one of the 
comparison operators {<, <=, =, <>, >=, >, LIKE}.   

                Note: we do not allow nested queries in FROM and 
WHERE clauses.  

 grouping-list and group-qualification are as defined in 
SQL-92 (i.e., no every or any in group-qualification).  

 
We consider queries of the form B [UNION|INTERSECT B].   

Figure 4.  SQL�’, the subset of SQL we consider for form generation 
in this paper. 

 
3) Finalize templates by modifying skeleton templates 

based on the desired form specificity.   
4) Map each template to a form. 

 
We elaborate on each of these steps in the following.   

2.1 SQL�’ 
We first specify a subset of SQL to be the target language 

implementing the queries supported by the query forms 
considered in this paper.  This subset, which we term SQL�’, is 
shown in Figure 4.  In principle, many different subsets of SQL 
can be considered.  Since the goal of this paper is to explore the 
challenges and the promise of the approach of using keyword 
search to identify relevant forms for posing structured queries, 
the SQL�’ we use is intended to be simple enough to allow us to 
explore the challenges in depth and build an end-to-end 
prototype solution to evaluate the approach, while being 
expressive enough to cover a useful fraction of potential user 
queries that cannot be expressed with keyword search alone. 

2.2 Schema-based Query Templates 
The next question to address is which of the infinitely many 

possible query templates we should generate as candidates to 
return to users in response to their keyword queries.  Clearly, the 
set of forms to generate depends on SQL�’ and SD, the schema 
for the data set being queried.  However, it is unclear what a 
reasonable scope for a template should be.   

A related design issue is which part of a query template 
should be made parameters on the form.  At one extreme, we 
could parameterize almost everything �– relations, attributes, 
operators, and values �– tantamount to a general graphical query-
building interface, such as QBE [17].  However, many users use 
query forms because they are unfamiliar with the data model and 
the query language; expecting them to manage the full 
generality of such an interface seems unrealistic.  Therefore, for 
each template, we parameterize only the attributes and the 

operators, and fix the SQL�’ clauses, the relations, and the join 
conditions.  To do so, we first generate a set of skeleton 
templates, a preliminary sketch that we later modify to obtain 
the final templates. 

Given SD, we first create a skeleton template for each 
relation.  Let Ri be a relation following a relation schema Si  
SD.  If Ri does not reference other relations with foreign-keys, its 
skeleton template would be 

 
Exbasic: SELECT * 

FROM   Ri 
WHERE predicate-list 

 
where predicate-list is a conjunction of the predicates �“attr op 
value,�” in which attr is a non-key attribute of Ri.  We use Exbasic 
for the entity tables in SD as they do not reference other tables.   

If Ri references other relations with foreign-keys, its skeleton 
template would support foreign-key joins as follows.  In the 
FROM clause, we include Ri and the relations it references; in 
the WHERE clause, we join all these relations, and have an �“attr 
op value�” predicate for each attribute from these relations in the 
predicate-list.  For example, consider the relation give_tutorial 
in Figure 2.  Since it references the person relation and the 
conference relation, its skeleton template looks like: 
 
ExFK: SELECT * 

FROM  give_tutorial t, person p, conference c 
WHERE t.pid = p.id AND t.cid = c.id AND p.name 

op expr AND �… AND c.name op expr 
 
In addition, we create templates that support non-foreign-

key equijoins on attributes that relations have in common.  In 
DBLife, all nine relationship tables have the attribute pid, so we 
can do equijoins on pid for any non-empty subset of the nine 
relationship tables.  These equijoins are equivalent to searching 
for people who have participated in some of the nine 
relationships.  For example, to support queries about people who 
have given a tutorial, given a talk in a conference, and given a 
talk in an organization, the following skeleton template does an 
equijoin on pid in give_tutorial, give_conf_talk, 
give_org_talk, and person, and has predicates only from 
person in the WHERE clause:  
 
ExEQ: SELECT non-key attributes from p 

FROM give_tutorial t, give_conf_talk c, 
give_org_talk o, person p 

WHERE t.pid = c.pid AND c.pid = o.oid AND o.pid 
= p.id AND p.name op expr AND �… AND 
p.name op expr 

 
In the DBLife schema, there are 502 possible equijoins over 

two or more of the nine relationship tables.  For our experiments 
involving equijoins, we generated 36 skeleton templates for all 
equijoins on two different relationship tables and the table 
person (see the set of forms F2 in Section 5.5).  We chose this 
set of equijoin templates to facilitate tracking and analyzing the 
results. We can certainly choose another set based on 
considerations for the complexity and the usability of templates, 
storage constraints, and workload information (if any).  

In practice, queries are often run against read-only views 
instead of the base tables, to keep querying separate from 
updates, and to have a more logical view of real-world entities 
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that are stored in multiple tables because of normalization.  The 
same principle �– fixing tables, join conditions, and predicates �– 
can be used to decide on the views (which are essentially 
queries) and to create templates on these views. 

2.3 Form Specificity 
As we use skeleton templates as a foundation to generate 

query templates that meet the specification of SQL�’, we need to 
determine how specific or general we want the forms to be.  
Intuitively, we say that a form that can be customized only in 
minor ways is very specific, whereas a form that is highly 
customizable is more general.  Given a fixed set of queries SQ, 
the more specific the forms are, the more forms we need to 
cover SQ; likewise, the more general the forms are, the fewer 
forms we need to cover SQ.   

It is not obvious which point in this continuum of form 
specificity is the best choice.  When there are fewer, more 
general forms, it is easier to find a form that supports the query a 
user has loosely in his or her mind.  However, the user may have 
difficulty in understanding and using this form, especially when 
he or she is not familiar with the data model and the query 
language.  Conversely, when there are a larger number of more 
specific forms, it may be harder to find a form that matches the 
user�’s specific information need, but when one is found, the 
necessary customization to express the query is minor. 

To facilitate our analysis, we consider form specificity as a 
function of two quantifiable measures:  form complexity, which 
refers to the number of parameters on a form, and data 
specificity, which refers to the number of parameters with fixed 
values on a form.  Suppose the snapshot in Figure 3 is the initial 
state of a form.  We can adjust form specificity in four ways: 

1) Increase its complexity by adding more parameters (e.g., 
allows the counting of the number of tuples that satisfy 
existing predicates)   

2) Decrease its complexity by removing existing parameters 
(e.g., the predicate on country) 

3) Increase data-specificity by binding more existing 
parameters to constants (e.g., group = �‘Databases�’) 

4) Decrease data-specificity by unbinding parameters with 
fixed values (e.g., organization can be anything). 

 
Our definition of form specificity gives us a natural 

approach to generate one or more query templates from each 
skeleton template �– we first determine the desired form 
complexity based on SQL�’ and the skeleton template itself; then, 
we consider binding certain parameters to their data values.   

We could map each skeleton template, which has only a 
SELECT-FROM-WHERE construct, to one large template 
supporting aggregation, GROUP BY and HAVING, and 
UNION and INTERSECT, as specified in SQL�’; however, such 
a multi-purpose query template could be too complex for our 
target users.  Therefore, we reduce form complexity by dividing 
SQL�’ into subsets, each supported by a separate template.  For 
our experiments, we decided to divide SQL�’ into four query 
classes, each with a different intent: 

1) SELECT:  the basic SELECT-FROM-WHERE construct 
2) AGGR:  SELECT with aggregation 
3) GROUP:  AGGR with GROUP BY and HAVING clauses 
4) UNION-INTERSECT: a UNION or INTERSECT of two 

SELECT 
 

To adjust data specificity of a form, we bind only the 
�“value�” fields of the �“attr op value�” predicates in the WHERE 
clause to data values.  Given a template t with a set of attributes 
Z, we first determine a subset of attributes A from Z whose 
values we want to bind; then, for each combination of data 
values for the attributes in A that exists in the database, we 
create a form for t in which the attributes in A are bound to these 
data values.  We call this form-generation approach �“data-
aware�” as it uses data values in addition to SD and SQL�’. 

An important issue is to which extent we should make forms 
data-specific.  While data-specific forms may enhance usability, 
an indiscriminate application of the data-aware approach could 
lead to a huge number of templates.  Given a table with n 
columns and r rows, if we generate a �“SELECT *�” query 
template for every distinct combination of the �“attr = value�” 
predicates in the WHERE clause, we will already have 

 templates.  Making data-specific templates that 
involve equijoins is also problematic because of cross products.  
Consider ExEQ, which has equijoins for the relations 
give_tutorial, give_conf_talk, and give_org_talk.  Suppose 
that A includes the names of the tutorial, the conference, and the 
organization, and that a person p has n1 tutorials, n2 conference 
talks, and n3 organization talks.  The number of templates 
generated for ExEQ alone is already n1*n2*n3. 

Another problem is maintaining the set of forms as the data 
set changes over time.  A data-specific form could become 
invalid when the data set, after some updates, no longer has 
tuples satisfying the fixed predicates of that form.  When 
updates are frequent, many data-specific forms could become 
invalid quickly.  Keeping track of which forms have become 
invalid can be costly.  In view of these disadvantages, we think 
data-specific forms are unlikely to be useful in general, so in this 
paper we do not consider data-specific forms. 

2.4 Mapping Query Templates to Forms 
Once we have generated a set of query templates, we can 

map each of them to a form.  To build a form for each query 
template, we use the following standard form components: 

 Label: for displaying text such as description for the 
form, the name of an attribute, a database constant, etc. 

 Drop-down list: for displaying a list of parameter values 
from which users can choose one.  For example, we use 
a drop-down list to allow users to choose the target 
attribute for an aggregation. 

 Input box: for specifying a parameter value on the form. 
 Button: for functions such as submit, cancel, and reset. 

 
Form layout (i.e., where to put the labels, drop-down lists, 

input boxes, and buttons) is an interesting problem but one that 
is orthogonal to the issues we study in this paper.  Accordingly, 
we did not focus on layout in this paper, and simply chose a 
basic layout for our experiments. 

Each form has a brief English description based on its 
skeleton template.  Ideally, a form description would be a user-
intelligible summary of which queries are supported by the 
form.  Much as snippets of documents are used to label the 
documents returned by an Internet search, these descriptions 
would be used to label the forms returned by a keyword query.  

Unfortunately, generating natural-language descriptions for 
forms is a difficult challenge.   Even when it is done manually, it 
is often unclear what a good description is, especially when a 
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form supports a wide variety of queries.  Also, a manual 
approach quickly becomes inefficient when there are more 
forms, but automatically generating good form descriptions is 
yet another challenge.  For the forms for the DBLife data set, we 
first manually determined descriptions for the database relations, 
then automatically used them to label forms.  For example, the 
description for the SELECT template over the coauthor relation 
is �“Which two people are coauthors.�”  The approach is simple 
and was effective in our experiments, although finding more 
sophisticated techniques for generating form labels is certainly 
an important area for future research.  

2.5 Automating Form Generation 
We built a template generator to facilitate form generation.  

The template generator uses the aforementioned specification 
for SQL�’ and query classes.  It takes as input a data set and its 
schema.  Form designers can specify the desired form 
complexity (i.e., a fixed number or all of the parameters) and 
data specificity (i.e., which attributes have fixed values).  The 
output is a set of templates based on these configurations.  We 
wrote scripts to transform these templates into forms and to add 
a form description to each form.   

3. KEYWORD SEARCH FOR FORMS 
3.1 Overview 

The basic idea here is simple �– treat a set of forms as a set of 
documents, then let users use keyword search to find relevant 
forms (which in turn are used to pose structured queries).  
However, this task differs from the standard document search 
problem in several key ways.  In this section, we consider a 
number of approaches motivated by these differences. 

Perhaps the most important difference is that a form contains 
parameters, which are undefined until users fill out the form at 
query time.  Furthermore, possible data values for these 
parameters often do not appear on the forms.  A keyword search 
approach that ignores this difference can yield undesirable 
results.  Consider a first approach, which we call Naïve, which 
simply retrieves a form if the form contains at least one (OR 
semantics) or all (AND semantics) of the terms from a keyword 
query.  If a user specifies a data value and we use Naïve-AND, 
we will get no answers.  If we use Naïve-OR, some forms would 
be returned if the user includes in the query at least one schema 
term (i.e., a term that matches a table or attribute name).  
However, the data terms (i.e., terms that match data values), if 
any, would be completely ignored, which is not very satisfying.   

We can solve this problem by putting data values on query 
forms.  However, recall from Section 2.3 that generating data-
specific forms for all interesting combinations of data values is 
impractical because it leads to a combinatorial explosion of 
forms.  An alternative that uses a drop-down list of all possible 
values for each parameter would require many fewer forms, but 
it suffers the same problem of high storage and maintenance 
costs, and is impractical when an attribute has many possible 
values.   

Moving beyond these approaches, we transform a user�’s 
keyword query by checking to see whether the terms from the 
query appear in the database, and if so, modifying the query 
with relevant schema terms. That is, if the keyword query 
contains a data value d, and d appears in table R, we rewrite the 
original user query to contain R.  Because our forms include 

either all the attributes of a table (if the table appears on a form) 
or none (if it does not), using the table name is equivalent to 
using the name of the attribute that contains d. 

A moment�’s thought shows we need to take some care in 
doing so.  For example, what if a user-provided keyword 
appears both as a schema term and as a data term?  What if the 
keyword appears in multiple attributes, possibly of different 
tables? Should we add the schema terms to the original user 
query, or replace the user-provided data terms with the 
corresponding schema terms? 

We consider two basic approaches to resolving this issue. 
The first is to add all schema terms corresponding to the data 
terms in a keyword query from a user, and to evaluate it using 
OR semantics.  We call this approach Double-Index OR (DI-
OR), for reasons that will become clear when we describe how 
the approach is implemented.  The second approach is to use 
AND semantics, but we cannot simply add all schema terms and 
use AND semantics, because we may generate empty results if 
we add two or more schema terms such that there is no form that 
contains all of them.  Therefore, with AND semantics, we 
augment the original query by generating all possible queries 
that result from replacing user-supplied data terms with schema 
terms, use AND semantics for each query, and return the union 
of the query results to the user.  We call this approach Double-
Index AND (DI-AND). 

As a simple example, return to our DBLife example and 
suppose that some user would like to know for which 
conferences a researcher named �“Widom�” has served on the 
program committee.  The user might issue the keyword query 
�“Widom conference,�” where �“Widom�” is a data term and 
�“conference�” is a schema term.  Using Naïve-AND, we would 
get no forms, since �“Widom�” does not appear on any forms. 
Using Naïve-OR, we would ignore �“Widom�” and get all forms 
that contain �“conference.�”  Using DI-OR, we would find that 
�“Widom�” appears in the person table, so the resulting rewritten 
keyword query would be �“Widom person conference,�” evaluated 
with OR semantics.  Using DI-AND, we would generate two 
queries: �“person conference�” and �“Widom conference,�” evaluate 
each with AND semantics, and return the union of the results.  
In this case, �“Widom conference�” would lead to an empty result, 
but this would not be the case if �“Widom�” were both a database 
term and a schema term. 

Finally, with our form-generation approach, one scenario is 
potentially problematic with DI-AND.  When a search involves 
a table referenced by many other tables, DI-AND returns all the 
forms for all these tables, even though some may return no 
answer with respect to the user query.  Returning forms that can 
never produce results with respect to the user query can be 
annoying to users.  We consider an additional optimization to 
identify and filter these �“dead�” forms from the results. 

3.2 Double-Index 
We now describe the double-index approaches in more 

detail. Given a keyword query, we augment user queries with 
form terms (i.e., terms that appear on a form, such as schema 
terms, SQL keywords, and natural-language descriptions), and 
retrieve forms containing the form terms.  To implement this 
strategy, we use two inverted indexes, one on the data set and 
the other on the set of forms.  The first index, called DataIndex, 
takes in a term and returns a set of <tuple-id, table> pairs.  Each 
pair describes a tuple in the data set that contains the term: tuple-
id is the primary key of the tuple, and table is the name of the 
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Double-Index OR (DI-OR) 
Input:       A keyword query Q = [q1 q2.... qn] 
Output:    A set of form-ids F�’ 
Algorithm:  

FormTerms = {}, F�’ = {} 
// Replace any data terms with table names 
for each qi Q  

if DataIndex(qi) returns <table, tuple-id> pairs   
Add each table to FormTerms 

Add qi to FormTerms                // qi could be a form term 
// Get form-ids based on FormTerms 
FormIndex(FormTerms) => F�’    // OR semantics  
return F�’           // Ordered by ranking scores (Section 4)

Figure 5.  DI-OR augments the query with form terms and 
evaluates the query with OR semantics. 
 
table containing the tuple.  The second index, called FormIndex, 
takes in a term and returns a set of form-ids, or identifiers of the 
forms containing the term.   

Figure 5 shows our first approach, called Double-Index OR 
(DI-OR).  DI-OR comprises two basic steps.  The first step is the 
query rewrite.  We probe DataIndex with each query term qi in a 
query Q.  If qi is a data term, DataIndex will return a set of 
<tuple-id, table> pairs, and we will add each table to the set 
FormTerms, which is initially empty.  We also add qi itself to 
FormTerms, because qi could be a form term, regardless of 
whether it is a data term.  In the second step, we simply probe 
FormIndex with the terms in FormTerms, and return any form 
that has at least one of these terms.   

Although this approach satisfies the new semantics, using 
OR produces results that are often too inclusive.  We want to use 
an approach similar to DI-OR but with AND semantics.  
However, as mentioned before, it would be wrong to simply do 
one AND-query with all the terms in FormTerms.  The reason is 
that a data term may appear in multiple unrelated tables such 
that no form would contain all these tables.  For a query �“q1 
AND q2,�” the correct interpretation after the query rewrite should 
be �“a  Sq1 AND b  Sq2,�” where Sqi is a �“bucket�” containing 
the form terms associated with qi, and a and b are two form 
terms from Sq1 and Sq2 correspondingly.  Therefore, if a bucket 
has multiple terms, we will have multiple queries. 

Figure 6 shows this bucket-based DI using AND semantics.  
In the query rewrite step, for each qi, we add each new table, 
and qi itself, to Sqi.  In the second step, we generate and add to 
SQ�’ all distinct queries, each of which taking one term from each 
Sqi; then, for each query in SQ�’, we probe FormIndex and 
retrieve forms that have all terms in the query.  Finally, we 
return these forms ordered by their ranking scores.  Notice that if 
qi is both a data term and a form term, we will have queries to 
search for both types of forms, one having a table that has qi as a 
database constant, and one in which qi appears as a schema term.  
If qi is a false term, Sqi will be empty.  Also, although we choose 
AND semantics here, the bucket-based approach does allow OR 
semantics �– for each query in SQ�’, we simply retrieve a form 
containing any term from the query. 

A concern about DI-AND is that, in the second step, the 
number of queries we generate is .  For a query with 
n terms and each query term leading to m form terms, we would 
generate m^n queries.  However, since we replace each data 
term with the name of the table containing the term, many of 
these queries will be duplicates and can be ignored (in our 
experiments, the maximum number of queries generated by this 

Double-Index AND (DI-AND) 
Input:       A keyword query Q = [q1 q2.... qn] 
Output:    A set of form-ids F�’ 
Algorithm:  

FormTerms = {}, F�’ = {} 
// Replace any data terms with table names 
for each qi Q  

Sqi = {}                                          // Bucket for qi 
if DataIndex(qi) returns <table, tuple-id> pairs   

for each table 
if table  FormTerms 

Add table to Sqi and FormTerms 
if qi FormTerms 

Add qi to Sqi  and FormTerms 
// Get form-ids based on Sqi 
SQ�’ = EnumQueries(  Sqi)  // Enumerate all unique queries,  

// each having one term from each Sqi  
for each Q�’  SQ�’ 

FormIndex(Q�’) => F�’     // AND semantics on FormIndex 
return F�’           // Ordered by ranking scores (Section 4) 

Figure 6.  DI-AND generates new queries by taking a term from 
each bucket of form terms, evaluates each new query with AND 
semantics, and then union the results. 
 
approach is 12).  To reduce the number of distinct queries, we 
record the form terms included so far in FormTerms, and only 
add a form term to Sqi if it is not already in FormTerms.   

Another issue related to query terms being a mix of data 
terms and form terms is that users may enter synonyms of 
schema elements or SQL keywords (e.g., �“people�” for �“person,�” 
�“how many�” for �“count,�” etc.) when they do keyword search.    
One solution is to add synonyms to a query based on a thesaurus 
during query evaluation, perhaps at the same stage as we replace 
data terms with form terms.  An alternative is to add a set of 
synonyms to each form during form generation, and not do any 
thesaurus lookup at query time. 

For our prototype, we chose the second approach.  We 
selected and added a set of keywords, such as synonyms of the 
schema elements and SQL keywords and other related terms, to 
what we call a form profile for each form.  The form profile is 
invisible to users since its function is to improve the chance of 
returning the form when a user enters terms that are related but 
that do not appear on the form.  We used this approach mainly 
because we want to keep our algorithms and implementations 
simple, so that we could more clearly evaluate the approach of 
using keyword search to find relevant forms.  Also, since we 
only consider schema-based related terms, the set of terms is 
quite small (i.e., about 10 additional terms per form), so 
redundancy and storage are not an issue.  However, as future 
work, it is certainly interesting to consider recognizing 
synonyms of both data terms and form terms, and more 
generally, extending our implementation to handle more 
sophisticated query expansion.  In that case, thesaurus look up at 
query time may be more suitable. 

3.3 Double-Index-Join (DIJ) 
Recall from Section 2.2 that if a table T1 is referenced by 

another table T2 in a foreign-key relationship, all of T1�’s 
attributes will be in the form for T2.  As a result, if a query has a 
data term in T1 and we use DI to evaluate the query, we will get 
T2 as the corresponding form term, and return the form for T2 
(in addition to the form for T1).  For example, suppose that a 
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Double-Index-Join 
Input:       A keyword query Q = [q1 q2.... qn] 
Output:    A set of form-ids F�’ 
Algorithm:  

FormTerms = {}, F�’ = {}, X = {} 
// Replace any data terms with table names 
for each qi Q  

Sqi = {} 
if DataIndex(qi) returns <table, tuple-id> pairs   

for each table T 
let I be the set of tuple-ids from T 
if T  FormTerms 

Add T to Sqi and FormTerms 
// New �“join�” step 
SchemaGraph(T) returns refTables 
for each refTable 

if DataIndex(refTable:tid) is NULL for every tid  I
FormIndex(T AND refTable) => X 

if qi FormTerms 
Add qi to Sqi  and FormTerms 

// Get form-ids based on form terms 
SQ�’ = EnumQueries(  Sqi)   
for each Q�’  SQ�’ 

FormIndex(Q�’) => F�’ 
return F�’ �– X        // Filter �“dead�” forms  

Figure 7.  DIJ eliminates �“dead�” forms with extra probes to 
DataIndex.   
 
user wants to search for a person named �“John Doe�” from 
DBLife, and that �“John Doe�” appears in the person table, but is 
not involved in any relationship (i.e., the �“John Doe�” tuple 
inperson is not referenced by any tuple in any relationship 
table).  For the query �“John Doe,�” in addition to returning forms 
for the person table, we would return forms for all the 
relationship tables that reference person. 

At first glance, returning all these forms seems reasonable 
because every form is related to person.  However, since �“John 
Doe�” appears only in person, if the user enters �“John Doe�” in 
the person.name field on any of these join forms, they will 
return empty results.  We call forms that yield no answer with 
respect to the user query �“dead�” because they are not useful to 
users.  As shown in Figure 7, we modify DI-AND to filter a 
common type of �“dead�” forms with the guarantee that no live 
forms will be eliminated.  Intuitively, before returning a form, 
we check to see if the form will return an answer if instantiated 
with the data terms in the user query. 

We perform this check as follows.  Given a keyword query 
Q, we probe DataIndex with each query term qi.  When qi is a 
data term that leads to a set of <table, tuple-id > pairs, we look 
up each table T in a schema graph for SD and find the refTables 
that reference T.  For each refTable, we check to see if it 
contains any tid, i.e., tuple-ids from T, by probing DataIndex 
again.  If no tid appears in refTable, we retrieve the forms that 
contain both T and refTable, and record these �“dead�” forms in X 
so that we can remove them later.  In the second step, we get F�’ 
the same way we do in DI-AND, but instead of returning F�’, we 
subtract X from F�’ and return the difference as the final result. 

There are other types of dead forms that DIJ does not 
eliminate.  Consider the query �“John XML.�”  Suppose John has 
published some papers and there are papers about XML, but 
John has never worked on XML.  In this case, DIJ will return a 
form joining Authors with Publications, but the form will return 

no result.  Although it does not eliminate all types of dead 
forms, in our evaluation section we found that it does eliminate a 
sizable fraction of �“dead�” forms.  

One concern about DIJ is that the extra probes to DataIndex 
with refTable:tuple-id can be slow when tuple-id appears in 
many tuples in refTable.  Fortunately, since the purpose of the 
extra probe is to see whether there exists at least one tuple with 
the given tuple-id, we do not need to return all the tuples that 
have tuple-id in refTable.  Instead, the index probe can stop as 
soon as it finds out whether tuple-id has an entry in refTable. 

4. DISPLAYING RETURNED FORMS 
4.1 Ranking Forms 

Since our keyword search approach could still return a 
significant number of forms, it is important to rank the returned 
forms so that those that are more relevant according to some 
ranking function are placed higher in the result.  Unlike keyword 
search over RDMBSs where tuple-tree results are generated on-
the-fly, we generated and indexed the forms offline, so the forms 
can be interpreted as �“documents,�” and sorting and finding top-k 
documents is very fast, as shown in our experiments (Tables 4 
and 6).  We ranked the forms based on the scoring function of a 
Lucene [15] index, which we used to implement our keyword 
search approaches.  As documents are retrieved, a Lucene index 
assigns each query-document pair a normalized TF/IDF score 
with optional boosting.  The Lucene score for a query Q and a 
document D is: 

 
score(Q,D) = coord(Q,D) * queryNorm(Q) * t in Q( tf(t in D) 

* idf(t)2 * t.getBoost() * norm(t,D) ) 
 

where coord(Q,D) is a score factor based on the number of 
query terms found in D, queryNorm(Q) is a normalizing factor, 
tf(t in D) is the term frequency of t in D, idf(t) is the inverse-
document frequency of t, t.getBoost() is a search-time boost of t, 
and norm(t,D) is an index-time boost.  In our implementations, 
we set both search-time boost and index-time boost to one.   

We noticed that although our keyword search approach was 
effective in retrieving relevant forms while pruning irrelevant 
ones, it was not always easy to spot the right form from the 
result.  The problem arises when we have very specific forms.  
As form specificity increases, the number of forms created from 
each skeleton template increases, and forms based on the same 
skeleton template �– which we call �“sister forms�” (the skeleton 
template being a �“family name�”) �– become increasingly similar.     

While usability is the motivation behind more specific forms 
in that a specific form requires less customization, having many 
sister forms per family interestingly presents a different usability 
issue.  That is, sister forms from the same family get the same 
ranking score unless a query distinguishes among them with 
terms that are unique to some of them.  We may see the first k 
forms from one family, the next k forms from another family, 
and so on.  Moreover, when a query is relatively vague, there is 
not enough information to determine the user�’s intent.  
Therefore, the �“right�” form may not be in the first couple 
families, and could get pushed low in the result when each 
family has many sister forms.   

To see these problems, consider the query �“Widom.�”  Figure 
8 shows the result of this query as a flat list of forms.  The sister 
forms have similar descriptions and the same scores.  Also, with  
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Figure 8.  The result for the query �“Widom�” displayed as a flat list. 
The form for the information need �“for which conference Widom 
has served�” is ranked 127th (not shown in the picture). 

 
Figure 9.  Displaying the result in Figure 8 with the first grouping 
approach.  The form for the same information need is in the 9th 
group and the first form within the group. 

 
Figure 10.  Displaying the result in Figure 8 with the second 
grouping approach. The advantage of this approach is that each 
family is shown only once. 
 
�“Widom�” as the only term, it is impossible to tell more 
specifically what the user is looking for.  Suppose the user 
actually wants to find out in which conference �“Widom�” has 
served.  The right form for this information need �– the basic 
form (i.e., for the SELECT class) for serve_conf �– is ranked 
127th, lower than forms from other families such as 
related_people, coauthor, and person.  However, the ranking 
makes sense for �“Widom�” as there are more tuples containing 

this term in those tables.  To address this problem, we propose to 
group sister forms and present these groups to users, so that 
users know about all the groups at a high level and can �“drill 
down�” into a group if one looks relevant. 

4.2 Grouping Forms 
We explore collapsing similar forms into groups at query 

time, so that users can expand on a promising group and drill 
down to choose among these forms.   The basic idea is similar to 
the automatic categorization of query results proposed by 
Chakrabarti et al. [4].  Given a list of forms ordered by each 
form�’s score, our first approach comprises two steps: 

1) Form first-level groups by grouping consecutive sister 
forms with the same score.   

2) In each first-level group, group forms by the four query 
classes described in Section 2.3, and display the classes in 
the order of SELECT, AGGR, GROUP, and UNION-
INTERSECT.  The order is fixed because forms in the 
same group have the same ranking scores. 

 
Figure 9 shows the result for the �“Widom�” query with this 

approach.  For the information need �“for which conference 
Widom has served,�” the right form is the first one in the 9th 
group, which we think is easier to spot than being the 127th form 
in a flat list.  Each first-level group has a description that applies 
to all the sister forms in that group.  This description is the same 
as that of the form for the SELECT class in the family.   

One problem with this approach is that when two sister 
forms have different ranking scores such that they are not 
consecutive, they join different first-level groups.  However, 
these groups still have the same description and could confuse 
users.  For example, in Figure 9, the first and third groups have 
the same description �“which two people are related�”; the second 
and fourth groups also have the same description.   

To tackle this problem, we consider a second approach: we 
first group the returned forms by their table, then order the 
groups by the sum of their scores.  Figure 10 illustrates this 
alternative for the same query.  The advantage of this approach 
is that each group of forms based on the same skeleton template 
is only shown once.  However, the forms within each first-level 
group are always shown in the same order.  Therefore, for some 
queries, the right form could be last in a first-level group, even 
though this first-level group is ranked high.  The first approach 
does not have this problem because we group the forms by the 
scores first.  We used the first approach in our experiments. 

5. EXPERIMENTS 
5.1 Experimental Setup 

We built an end-to-end prototype system to evaluate the 
combining of keyword search and forms for posing ad hoc 
structured queries over a relational database. We implemented 
the search interface with Perl CGI scripts, used MySQL as the 
back-end database, and used an Apache Web Server to host the 
service.  We ran the experiments on a Red Hat Enterprise Linux 
5 workstation with 2.33 GHz CPU and 3 GB RAM. 

We used DBLife as the data set and generated a set of forms, 
F1.  It had 14 skeleton templates, one for each of the 5 entity 
tables and the 9 relationship tables.  From each skeleton 
template, we created, based on the four query classes in Section 
2.3, 1 SELECT template, 5 AGGR templates (one for each 
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 SQL Query 
T1 SELECT p.name 

FROM give_tutorial g, conf c, person p 
WHERE g.cid = c.id AND g.pid = p.id AND c.name like 
�‘VLDB�’  

T2 SELECT t.name 
FROM related_topic t, person p 
WHERE t.pid = p.id AND p.name like �‘jeff naughton�’ 

T3 SELECT p.name 
FROM serve_conf s, person p, conf c 
WHERE s.pid = p.pid AND s.cid = c.id AND c.name = 
�‘SIGMOD�’ AND s.assignment = �“chair�” 

T4 SELECT per.name 
FROM pub, person per, write_pub w 
WHERE w.pub_id = pub.id AND w.pid = per.id and 
w.pos = 1 and pub.cites > 5 

T5 SELECT count(*) 
FROM co_author c, person p1 
WHERE c.pid1 = p1.id AND p1.name like �‘david dewitt�’ 

T6 SELECT p2.name 
FROM co_author c, person p1, person p2 
WHERE c.pid1 = p1.id AND p1.name like �‘david dewitt�’ 
UNION 
SELECT p2.name 
FROM co_author c, person p1, person p2 
WHERE c.pid1 = p1.id AND p1.name like �‘jeff naughton�’

Figure 11.  The SQL queries for the information needs. 
 
aggregate), 6 GROUP templates (one for each aggregate and one 
without aggregates), and 2 UNION-INTERSECT templates (for 
UNION and INTERSECT), so F1 had 14 * 14 = 196 forms total. 

Using F1 and the 6 information needs presented in the 
following, we conducted a real-life user study with 7 graduate 
students in the Computer Sciences Department.   
 

T1:  Find all people who have given a tutorial at VLDB 
T2: Find topics of areas related to Jeff Naughton. 
T3: Find people who have served as the SIGMOD PC chair. 
T4: Find the first author of all papers cited more than 5 

times. 
T5: Find the number of people who have co-authored a 

paper with David Dewitt. 
T6: Find people who have published with David DeWitt or 

Jeff Naughton. 
 
To find the answers, users submitted keyword queries to the 

system, browsed the results to identify the correct form (there 
was one such form for each query), and filled in values on the 
form.  All users successfully found the correct answer for each 
information need.  Figure 11 shows the equivalent SQL queries.  
We report and discuss the results in the following sections. 

5.2 Comparing Naïve, Double-Index, and 
Double-Index-Join 

We first compared Naïve-OR, Naïve-AND, DI-OR, DI-
AND, and DIJ, with respect to the difference between AND and 
OR semantics, the effect of query rewrite, the importance of 
filtering dead forms, and performance.  Because of space 
constraint and because users entered similar sets of keywords for 
the same information need, we consider the inputs of just one of 
the users.  Below, Qi is a keyword query for the information 
need Ti: 

F1 Number of Forms Returned 
Naive-OR Naive-And DI-OR DI-AND DIJ 

Q1 14 0 168 42 42 
Q2 28 0 182 28 28 
Q3 0 0 142 28 28 
Q4 28 28 142 28 28 
Q5 14 0 196 14 14 
Q6 0 0 196 182 168 

Table 1.  Number of forms each approach returns for each query. 

F1 
Average Number of Forms Returned 

T1 T2 T3 T4 T5 T6 
DI-AND 44 48 38 28 129 64 

DIJ 44 46 38 28 116 56 

Table 2.  Average number of forms returned by DI-AND and DIJ 
for the 6 information needs based on the inputs of 7 users. 

F1 Flat Rank of the Correct Form 
Naïve-OR Naïve-And DI-OR DI-AND DIJ 

Q1 1 N/A 29 1 1 
Q2 15 N/A 28 1 1 
Q3 N/A N/A 28 1 1 
Q4 1 1 29 1 1 
Q5 4 N/A 29 4 4 
Q6 N/A N/A 51 27 12 

Table 3.  Rank of correct form in a flat list of returned forms. 

F1 Response Time (in milliseconds) 
Naïve-OR Naïve-AND DI-OR DI-AND DIJ

Q1 5.0 5.0 43.3 34.5 79.8 
Q2 8.0 6.0 40.0 24.0 102.7 
Q3 10.0 6.0 52.0 52.0 60.4 
Q4 16.0 7.0 42.9 35.0 33.6 
Q5 13.0 5.0 44.6 42.0 61.8 
Q6 12.0 5.0 44.3 32.1 41.9 

Table 4.  Response time by each approach for each query. 
 
Q1:  �“tutorial vldb�” 
Q2: �“jeff naughton research area�” 
Q3: �“sigmod chair�” 
Q4: �“paper citation�” 
Q5: �“david dewitt coauthor�” 
Q6: �“dewitt naughton�” 
 

Table 1 shows the number of forms returned by each approach 
for each query.  The correct form was returned in all cases 
except when no forms were returned.  Five queries contain data 
terms (that are not on any form):  �“vldb�” in Q1,  �“jeff naughton�” 
in Q2, �“sigmod chair�” in Q3, �“david dewitt�” in Q5, and �“dewitt 
naughton�” in Q6.  Therefore, Naïve-AND returned no forms for 
these queries, and Naïve-OR returned no forms for Q3 and Q6, 
which contain only data terms.  DI-OR was ineffective as a 
means to narrow one�’s search �– it returned all 196 forms for Q5 
and Q6, and a majority of forms for the remaining queries.  
Though disappointing, it makes sense that DI-OR returned the 
most forms �– both the OR semantics and the query rewrite 
strategy add more forms to the result.  By comparison, DI-AND 
returned significantly fewer forms for most queries.  DIJ, based 
on DI-AND but eliminates �“dead�” forms, returned the same set 
of forms as DI-AND for all queries except Q6, for which DIJ 
reduced the number of returned forms from 196 to 168.    

357



F1 Flat Rank Group Rank
H M L #F H M L #G

T1 1 1 1 44 1 1 1 3.14 
T2 1 1 69 46 1 1 7 3.7 
T3 1 1 1 38 1 1 1    2.7 
T4 1 15 15 28 1 2 2 2 
T5 4 21 21 116 1 2 4 11.57
T6 1 12 12 56 1 1 6 4 

Table 5.  The highest (H), median (M), and the lowest (L) flat and 
group ranks for each queries, and the average number of forms (#F) 
and groups (#G) returned, based on the results of 7 users.   

F1 
Pose 
query 
(sec) 

Find 
the 

right 
form 
(sec) 

Fill out 
the 

form 
(sec) 

Total  
average 

time 
(sec) 

Standard 
Deviation 

(sec) 
Median 

(sec) 

T1 7.0 12.3 5.3 24.6 13.1 23.0 
T2 7.5 23.9 14.8 46.1 48.0 26.0 
T3 7.5 18.0 25.6 51.1 31.4 36.0 
T4 12.0 79.7 15.2 106.9 56.6 123.0 
T5 19.0 46.9 7.7 73.6 29.9 80.0 
T6 14.0 64.0 15.2 93.2 47.8 78.0 

Table 6.  The breakdown of the time of using DIJ by 7 users. 
 
Extending this comparison, Table 2 shows the average 

number of forms returned by the two approaches for the 6 
information needs based on the inputs of all users.  Returning an 
average of 27.9% of the 196 forms, DIJ detected and filtered 
dead forms for T2, T5, and T6.  The number of dead forms 
depends on the schema and the specific query for an information 
need.  In our study, the user queries were generally specific 
enough that there were not too many dead forms.   

Table 3 shows the rank of the correct form in a flat list of 
forms returned by each approach for each query.  This metric is 
not applicable when Naïve-OR and Naïve-AND did not return 
any forms; however, when they did, the rankings were mostly on 
par with DI-AND and DIJ.  The only exception is Q2, for which 
the correct form was ranked 15th by Naïve-OR and 1st by DI-
AND and DIJ �– with Naïve-OR, the top 14 forms are for the 
topic table, whereas the right form is for related_topic, which 
joins person and topic.  This example demonstrates how 
ranking can differ when data terms are ignored in query 
evaluation, and that when the right form is not in the first family 
of sister forms, its position in a flat list of forms could be low. 

Compared to other approaches, DI-OR consistently gave the 
correct form the worst rank.  Lastly, comparing DI-AND and 
DIJ on Q6, we see that after eliminating dead forms, not only 
did DIJ return fewer forms, but also it ranked the correct form 
significantly higher (from 27th to 12th). 

Table 4 shows the response time (in milliseconds) of each 
approach for each query.  As expected, Naïve-OR and Naïve-
AND took much less time than approaches using the query-
rewrite strategy.  Naïve-AND was faster than Naïve-OR because 
more terms tend to lead to fewer forms returned.  DI-AND was 
faster than DI-OR for the same reason.  DIJ took the most time, 
but the average of the absolute time of the six queries was still 
only 68.2 ms, hardly noticeable by humans. 

We conclude that DIJ is the best approach because it can 
handle a mix of data terms and form terms in the query, filter 
�“dead�” forms, and give the best flat rank, with minor additional 

overhead in response time.  We use DIJ in the following 
discussion.   

5.3 Ranking and Displaying Forms 
The effectiveness of keyword search largely depends on 

whether users can quickly spot the right form from the list of 
returned forms.  In general, we assume that users look at the list 
top-down, so the higher the right form appears on a list, the 
better.  In Section 4.1, we have discussed that sister forms often 
receive the same score and appear together.  Therefore, when the 
returned forms are presented as a flat list, the right form could 
appear low on the list, and users may have difficulty spotting it.  
With our prototype, we explored using the first grouping 
approach described in Section 4.2 to group together sister forms 
with the same ranking score. 

In the user study, we recorded for each information need, the 
keyword query by each user and the corresponding list of forms.  
From these results, in addition to recording the flat rank �– the 
position of the right form on the flat list, we recorded a group 
rank �– the position of the first-level group that contains the right 
form.  We do not report the position of the sub-groups within the 
first-level group that contained the right form because all the 
forms under the same first-level group have the same scores and 
the sub-groups are ordered the same by their query classes. 

Table 5 shows the highest (H), the median (M), and the 
lowest (L) flat and group ranks, along with the average number 
of forms (#F) and groups (#G) returned, for each information 
need by DIJ.  Under �“Flat Rank,�” we can see that the highest 
ranks are near or at the top, which is encouraging, especially 
when the total number of returned forms is quite large for some 
queries.  However, some of the median and the lowest ranks are 
significantly worse.  In other words, for the same information 
need, the correct form could still have very different rankings 
even with similar keyword queries.   Also, we notice that the 
rankings are worse for the last three queries.  One possible 
reason is that while the last three information needs are more 
complicated, the users did not necessarily enter more specific 
keywords.  For example, for T6, Q6 is simply �“dewitt 
naughton,�” which could be just about anything related to David 
DeWitt and Jeff Naughton. 

In contrast, we can see that the group ranks are much more 
consistent �– the correct form for each query belonged to a top-7 
group.  With the grouping approach, a user needs to expand a 
group and drill down to find the right form, so one concern is 
that the user needs to drill down many levels before finding the 
correct form.  This issue depends on how the query classes are 
organized.  In the study, there were at most three levels, 
including the first-level group, and for most queries the right 
form was right under the first-level.  Therefore, overall, we 
believe that grouping forms helps users find the right form more 
easily, especially when a keyword query for a complicated 
information need is relatively vague. 

5.4 User Interaction with Keyword Search and 
Forms 

In our user study, we measured the time (in seconds) spent 
by each user over three segments: 1) posing the initial keyword 
query after learning the information need, 2) finding the right 
form from the result of the last keyword query, and 3) filling in 
values on the right form.  Since six users used just one keyword 
query in the process, and the other one used two, the sum of 
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F2 Average Number of Forms Returned 
T1 T2 T3 T4 T5 T6 T7

DI-AND 187 174 174 127 94 462 214 
DIJ 187 174 167 127 94 427 187 

Table 7.  With respect to the user queries for these information 
needs, DIJ returned on average 27.8% of the 700 forms. 

F2 Flat Rank Group Rank
H M L #F H M L #G 

T1 1 15 15 187 1 2 2 35.9 
T2 15 15 272 174 2 2 20 15.4 
T3 1 1 1 167 1 1 1 12.3 
T4 1 1 15 127 1 1 2 8.3 
T5 4 18 18 94 1 2 2 18 
T6 13 27 27 427 1 2 2 23.4 
T7 1 1 57 187 1 1 4 1.6 

Table 8.  The flat and group ranks were still very good even though 
F2 had a lot more forms than F1. 

F2 Response Time (in milliseconds) 
Q1 Q2 Q3 Q4 Q5 Q6 Q7

DIJ 102 109.2 70.4 43.2 56.2 114.2 96.8 
Table 9.  Response times by DIJ.  Though longer than those with F1 
(see Table 4), humans probably would not notice the difference. 
 
these three segments is roughly equal to the end-to-end time.  
Table 6 shows each component, the averaged sum of the 
components, the standard deviation, and the median.   

The total time ranged from 24.6 to 106.9 seconds.  Of the 
three segments, the time to find the right form from the results 
of a keyword query is of most interest to us because it reflected 
the usability of our �“keyword search to forms�” approach.  For 
the first three information needs, this segment took about 30 
seconds or less, whereas for the last three, it took between 73 
and 107 seconds.  The reason is likely that the last three 
information needs were more complicated.  Overall, for real 
information needs on a real-world data set, real users in our 
experiment found the right form in a reasonable amount of time. 

5.5 Impact of Adding Forms 
Although the results of the queries against F1, which has 

196 forms, are encouraging, they beg the question: how good is 
the keyword search approach when there are a lot more forms?  
To gain insight to this question, we created a new set of forms, 
F2, which comprised F1 and forms for all combinations of 
equijoins involving 2 different relationship tables and the 
person table on the attribute pid.  There were 9 choose 2, or 36 
skeleton templates for these equijoins (which were similar to 
ExEQ except here we used only 2 relationship tables), leading to 
36*14 = 504 forms.  As a result, F2 had 196 + 504 = 700 forms 
total.  Using F2, we re-evaluated the keyword queries of the 7 
users, and considered a new information need.  

T7: Find people who have given a conference talk and 
given a tutorial.   

 
T7 corresponds to a SQL query doing an equijoin on 

give_conf_talk, give_tutorial, and person: 
 
SELECT p.name 
FROM  give_conf_talk c, give_tutorial t, give_org_talk 

o, person p 
WHERE  c.pid = t.pid AND t.pid = o.pid and o.pid = p.id 

Table 7 shows the average number of forms returned by DI-
AND and DIJ with respect to our user queries against F2.  
Compared to Table 2, we can see that, as expected, a lot more 
forms were returned with F2.  However, DIJ returned essentially 
the same fraction of the total number of forms with F1 (27.9%) 
and F2 (27.8%).  Also, comparing DI-AND and DIJ, we can see 
that DIJ filtered more dead forms from F2.  This result shows 
that filtering dead forms is even more important when the set of 
forms being considered is large. 

The counterpart of Table 5, Table 8 shows the flat and group 
ranks when DIJ was used to evaluate the user queries against F2.  
Comparing the two tables, we can see that even though F2 has a 
lot more forms, the flat and group ranks with respect to these 
queries were still very good.  While the flat ranks may be 
outside top 10 for some queries, the median group ranks were 
consistently in the top 2.  The result demonstrates the advantage 
of grouping sister forms when a large set of forms is used. 

Finally, Table 9 shows the response time by DIJ for the 
queries Q1 to Q6, and Q7, which is �“conference tutorial,�” 
against F2.  The times were significantly longer than those for 
Q1 to Q6 against F1 (see DIJ column in Table 4), since more 
forms were retrieved and returned.  However, with the longest of 
those being 114.2 ms, users most likely would not notice a 
difference. 

To summarize, when we evaluated the same queries against 
a much larger set of forms, DIJ returned roughly the same 
fraction of the total number of forms.  More importantly, the 
rankings of the correct forms remained very good, and response 
times were still relatively insignificant for humans to notice. 

6. RELATED WORK 
QBE (Query-By-Example) [17] and NFQL (Natural Forms 

Query Language) [6] are languages for non-programmers to 
query and update a relational database.  Skeleton tables of a 
database or customized forms are presented to users, who can 
fill in the blanks with �“examples�” to specify query constraints.  
Though much simpler than SQL, they still require an 
understanding of the relational model, and could give users 
trouble when the schema is complicated.  These works do not 
consider the problem of choosing from a set of forms, probably 
because only a few (but very general) forms are used. 

Jayapandian et al. described an approach that automatically 
generates forms for a database based on a sample query 
workload [11], and more recently, an approach to automatically 
create a form-based interface, with the goal of maximizing 
expressivity while respecting specified bounds on interface 
complexity [10].  Since their goal is to create a small set of 
forms, they also do not consider the problem of choosing from a 
set of forms.  Instead, when the forms do not support a user 
query, they allow users to modify an existing form [12].   

An alternative to writing structured queries is keyword 
search over databases [e.g., 1, 3, 8, 9, 14]; however, it has 
limited ability to exploit structured data.  For example, 
aggregations, projections, range queries, and queries that specify 
which attribute must contain a desired constant, are all outside 
the scope of �“basic�” keyword search.  Liu et al. [14] proposed to 
automatically distinguish between schema terms and value terms 
in a keyword query, and adopted a new ranking strategy for 
handling keyword queries with schema terms.  Compared to 
using forms, this approach has little support for structured 
queries.  Indeed, a major motivation for our approach is to allow 
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users who do not want to use SQL to still be able to leverage the 
advantage of querying structured data.   

To extend basic keyword search over databases to be more 
expressive, BANKS [3] proposed supporting the �“attribute = 
value�” construct in keyword queries.  For this approach to be 
effective, users either need to know the schema elements, or the 
system needs to be able to map user-specified attributes to 
system attributes.  By contrast, with our approach, users do not 
use any operators in keyword search, and the schema elements 
are already presented on the forms. 

The idea of incorporating simple support for structured 
querying in keyword search falls under the more general 
question: just how structured users prefer a query language to 
be?  To gain some insight, Bernstein et al. [2] introduced four 
query interfaces, each representing a different degree of 
�“structuredness,�” and conducted a user study to evaluate which 
one the users prefer and how they perform.  The results showed 
that while the users disliked the constraints of a fully structured 
formal query language, they also seemed lost with the freedom 
of a full Natural Language Processing (NLP) approach.  The 
authors suggested that a restricted query language is better than 
natural language because of its �“guidance effect.�” 

AVATAR [13] supports precision-oriented search tasks, in 
which users are looking for specific information buried within a 
few documents in a large collection (e.g., a certain phone 
number in emails).  Its approach �– extracting concepts from text, 
and given a keyword query, generating structured queries over 
the concepts �– is similar to our approach; however, there are two 
major differences.  First, its motivation is to exploit structured 
data to improve search over unstructured data, whereas ours is to 
help users query a structured database.  Second, at query time, 
Avatar generates structured queries dynamically, whereas we 
simply identify relevant forms from existing ones.   

A nuisance in query processing is waiting for a long time 
before realizing the query result is empty.  Luo proposed to 
efficiently detect empty-result queries by �“remembering�” results 
from previously executed, empty-result queries [16].  While this 
work is in the same spirit as DIJ, the two are very different.  DIJ 
filters forms that lead to empty results based on users�’ keyword 
queries, whereas Luo�’s work identifies an empty-result 
structured query when one arrives at the database. 

Noting that unstructured data is easier to create, query, 
share, and less sensitive to change than structured data, and that 
structured data supports much richer queries, Halevy et al. [7] 
wanted to �“import�” the advantages of unstructured data to 
structured data management.  The bulk of this work described 
mechanisms to facilitate the creation and sharing of structured 
data, but not querying structured data. 

7. CONCLUSION 
In this paper, we investigate the approach of using keyword 

search to lead users to forms for ad hoc querying of databases.  
We consider a number of issues that arise in the implementation 
for this approach:  designing and generating forms in a 
systematic fashion, handling keyword queries that are a mix of 
data terms and schema terms, filtering out forms that would 
produce no results with respect to a user�’s query, and ranking 
and displaying forms in a way that help users find useful forms 
more quickly.  Our experience suggests several conclusions.  
One is that a query rewrite by mapping data values to schema 
values during keyword search, coupled with filtering forms that 

would lead to empty results, is an attractive approach.  Another 
conclusion is that simply displaying the returned forms as a flat 
list may not be desirable �– some way of grouping and presenting 
similar forms to users is necessary.   

Substantial scope for further work remains. In particular, 
developing automated techniques for generating better form 
descriptions, especially in the presence of grouping of forms, 
appears to be a challenging and important problem. Also, 
exploring the tradeoffs between keyword search directly over 
the relational database and our approach is an intriguing topic. 
Certainly forms can express queries not expressible in basic 
keyword search; however, it is possible to ameliorate this 
somewhat by augmenting basic keyword search with some 
structured constructs. Discovering which approach is most 
useful to users is an open question.  Even on queries that are 
expressible by both approaches, there is a basic philosophical 
difference: our approach returns a ranked list of relevant queries 
(expressed in what are hopefully user-friendly forms), whereas 
the traditional keyword search approach returns ranked lists of 
relevant answers. Determining under which circumstances each 
is most appropriate is an important task.  
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