
Combining Keyword Search and Forms for Ad Hoc
Querying of Databases

Eric Chu Akanksha Baid Xiaoyong Chai AnHai Doan Jeffrey Naughton
Computer Sciences Department
University of Wisconsin-Madison

{ericc, baid, xchai, anhai, naughton} @cs.wisc.edu

ABSTRACT
A common criticism of database systems is that they are hard to
query for users uncomfortable with a formal query language. To
address this problem, form-based interfaces and keyword search
have been proposed; while both have benefits, both also have
limitations. In this paper, we investigate combining the two
with the hopes of creating an approach that provides the best of
both. Specifically, we propose to take as input a target database
and then generate and index a set of query forms offline. At
query time, a user with a question to be answered issues
standard keyword search queries; but instead of returning tuples,
the system returns forms relevant to the question. The user may
then build a structured query with one of these forms and submit
it back to the system for evaluation. In this paper, we address
challenges that arise in form generation, keyword search over
forms, and ranking and displaying these forms. We explore
techniques to tackle these challenges, and present experimental
results suggesting that the approach of combining keyword
search and form-based interfaces is promising.

Categories and Subject Descriptors
H.2.8 [DATABASE MANAGEMENT]: Database Applications

General Terms
Design, Experimentation

Keywords
Keyword search, query forms, relational databases

1. INTRODUCTION
As the success of Internet search engines makes abundantly

clear, when faced with discovering documents of interest, the
general public is successful at using keyword search to
accomplish the task. However, it is much more difficult to pose
structured queries to satisfy information requests over structured
databases, since users need to know the query language (e.g.,
SQL) and the schema. Our goal in this paper is to explore
techniques that assist users who do not want to use SQL in

posing ad hoc structured queries over relational databases.
Our basic idea is to exploit the observation that for many

tasks, it is easier to recognize a solution when presented with
one than it is to construct the solution from scratch. A user with
a question to be answered may find it easier to recognize a form
that can be used to express a relevant query than it is for the user
to generate that query from scratch. This observation suggests
the approach of, given a structured database, generating enough
forms to cover a wide variety of potential user queries, and then
allowing the user to browse this set of forms when he or she
wishes to pose a query. In non-trivial applications, there will be
many forms to consider, and browsing this set of forms will
itself be a non-trivial endeavour. Therefore, we propose the use
of keyword search to help the user find a manageably small set
of relevant forms �– the user submits a keyword query; in
response, the system returns a ranked list of relevant forms, from
which the user selects and uses one to build a structured query.

The approach of keyword search leading to a form has
already been used in an ad hoc manner by search engines such
as Google and Yahoo!. For example, as shown in Figure 1,
querying Google with "from new york to seattle" brings up a
query interface to buy plane tickets as the first result. However,
on the Web, the primary task of keyword search is to lead users
exploring the Web to documents relevant to their search. While
the search engine may occasionally return a form relevant to a
query, there is no desire to support a wide range of possible
structured queries. By contrast, we seek to develop a
comprehensive approach that allows users to answer a wide
variety of questions over a single structured data set.

Although the approach is straightforward in concept, when
one actually attempts to implement such a facility, one is faced
with myriad options and difficult decisions every step of the
way. For example, how can one automatically generate a set of
forms to support a wide range of queries? How specific or
general should these forms be? How effective is keyword
search in exploring this set of forms? What challenges arise in
ranking the results of these keyword searches? And finally, can
users really use the result of a keyword search to identify forms
useful in satisfying their information requests?

Our main contributions in this paper are to 1) identify and
elucidate these challenges, and explain how they arise, 2) give
initial solutions to these challenges, 3) implement these
solutions and conduct a user study to evaluate our approach of
keyword search leading to forms leading to structured queries.
Even with our initial solutions to the challenges inherent in this
approach, the results are already encouraging �– given a real-life
data set and a number of information requests, without any
manual intervention on our part, users were able to perform
keyword search over our automatically generated set of forms,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGMOD�’09, June 29�–July 2, 2009, Providence, RI, USA.
Copyright 2009 ACM 978-1-60558-551-2/09/06...$5.00.

349

Figure 1. For the query �“from new york to seattle,�” Google returns
a simple form for finding flight tickets besides links to websites.

Figure 2. The relational schema of the DBLife data set. Primary
keys are underlined. The total number of tuples is 801,189.

and were successful in finding and filling out the right forms to
satisfy the information requests, all done in under two minutes.
This success with our end-to-end complete prototype suggests
that the approach is promising and warrants further exploration.

Throughout this paper, to provide context and specificity to
our presentation, we refer to the DBLife [5] data set in our
discussion. DBLife manages information for the database
research community. It monitors about 1,000 data sources and
downloads about 9,500 pages daily to track mentions and
entities. We use a snapshot of the data set as of June 2007. Its
relational schema, shown in Figure 2, comprises five entity
tables and nine relationship tables, which reference the entity
tables. Figure 2 also shows the number of tuples in each table.
The whole data set is about 40 MB. The rest of this paper is
organized as follows. Section 2 addresses form generation.
Section 3 describes our approaches to map keyword queries to
forms and eliminate forms that do not produce answers with

Figure 3. An example of a query form for the DBLife data set with
one of the predicates specified.

respect to a given keyword query. Section 4 considers ranking
and grouping forms. Section 5 presents our experiments and the
user study. Section 6 discusses related work. Section 7
concludes the paper.

2. QUERY FORMS
A popular approach to query databases is to use forms, as

they allow users who have no knowledge of the database query
language or the schema to build structured queries. Each form is
essentially an interface for a query template �– an incomplete
SQL query in which some components are parameters whose
values are unknown until a user provides them when he or she
fills out the form. Figure 3 shows an example of a completed
form over the person relation of DBLife. When the form is
empty, it maps to the template

SELECT *
FROM person
WHERE name op value AND homepage op value

AND title op value AND group op value AND
organization op value AND country op value

where op and value are parameters representing an operator and
a constant respectively. Figure 3, then, represents the query

SELECT *
FROM person
WHERE organization = �‘Microsoft Research�’

In other words, a template with user-specified parameters

corresponds to a SQL query. Predicates for which users have
not specified parameters, such as those for name, homepage,
title, and country in this example, are excluded from query
evaluation.

To let general users build ad hoc database queries with
forms, we want to generate forms that are easy to use and that,
as a set, support a wide range of queries. In this section, we
present a systematic approach to do so, and address challenges
that arise in the process. Let D be a database instance and SD be
the schema of D. We can describe form generation as a four-
step procedure:

1) Specify a subset of SQL as the target language to
implement the queries supported by forms.

2) Determine a set of �“skeleton�” templates specifying the
main clauses and join conditions based on the chosen
subset of SQL and SD.

Relational Schema of DBLife
Entity tables: # rows
person(id, name, homepage, title, group,
organization, country)

68459

publication(id, name, booktitle, year, pages, cites,
clink, link)

108972

topic(id, name) 736
organization(id, name) 163
conference(id, name) 170

Relationship tables:

// records two related persons and strength of this pair
related_people(rid, pid1, pid2, strength)

115436

// records related person-topic pair and strength
related_topic(rid, pid, tid, strength)

114196

// records related person-organization pair and strength
related_organization(rid, pid, oid, strength)

2436

// records a person giving a tutorial in a conference
give_tutorial(rid, pid, cid)

132

// records a person giving a talk in a conference
give_conf_talk(rid, pid, cid)

131

//records a person giving a talk at an organization
give_org_talk(rid, pid, oid)

913

// records a person serving in a conference and the
// assignment
serve_conf(rid, pid, cid, assignment)

3591
// records a person as an author of a publication and the
// position of the person�’s name on the list of authors
write_pub(rid, pid, pub_id, position)

328410
// records a pair of co-authors and strength
co_author(rid, pid1, pid2, strength)

56370

350

SQL�’:

Let B = (SELECT select-list
 FROM from-list
 WHERE qualification
 [GROUP BY grouping-list
 HAVING group-qualification])
where

 select-list comprises a list of column names, and, if
applicable, a list of terms having the form
aggop(column-name), with aggop being one of {MIN,
MAX, COUNT, SUM, and AVG}.

 from-list is a list of tables.
 qualification is a conjunction of the conditions of the

form expression op expression. An expression is a
column name or a constant, and op is one of the
comparison operators {<, <=, =, <>, >=, >, LIKE}.

 Note: we do not allow nested queries in FROM and
WHERE clauses.

 grouping-list and group-qualification are as defined in
SQL-92 (i.e., no every or any in group-qualification).

We consider queries of the form B [UNION|INTERSECT B].

Figure 4. SQL�’, the subset of SQL we consider for form generation
in this paper.

3) Finalize templates by modifying skeleton templates

based on the desired form specificity.
4) Map each template to a form.

We elaborate on each of these steps in the following.

2.1 SQL�’
We first specify a subset of SQL to be the target language

implementing the queries supported by the query forms
considered in this paper. This subset, which we term SQL�’, is
shown in Figure 4. In principle, many different subsets of SQL
can be considered. Since the goal of this paper is to explore the
challenges and the promise of the approach of using keyword
search to identify relevant forms for posing structured queries,
the SQL�’ we use is intended to be simple enough to allow us to
explore the challenges in depth and build an end-to-end
prototype solution to evaluate the approach, while being
expressive enough to cover a useful fraction of potential user
queries that cannot be expressed with keyword search alone.

2.2 Schema-based Query Templates
The next question to address is which of the infinitely many

possible query templates we should generate as candidates to
return to users in response to their keyword queries. Clearly, the
set of forms to generate depends on SQL�’ and SD, the schema
for the data set being queried. However, it is unclear what a
reasonable scope for a template should be.

A related design issue is which part of a query template
should be made parameters on the form. At one extreme, we
could parameterize almost everything �– relations, attributes,
operators, and values �– tantamount to a general graphical query-
building interface, such as QBE [17]. However, many users use
query forms because they are unfamiliar with the data model and
the query language; expecting them to manage the full
generality of such an interface seems unrealistic. Therefore, for
each template, we parameterize only the attributes and the

operators, and fix the SQL�’ clauses, the relations, and the join
conditions. To do so, we first generate a set of skeleton
templates, a preliminary sketch that we later modify to obtain
the final templates.

Given SD, we first create a skeleton template for each
relation. Let Ri be a relation following a relation schema Si
SD. If Ri does not reference other relations with foreign-keys, its
skeleton template would be

Exbasic: SELECT *

FROM Ri
WHERE predicate-list

where predicate-list is a conjunction of the predicates �“attr op
value,�” in which attr is a non-key attribute of Ri. We use Exbasic
for the entity tables in SD as they do not reference other tables.

If Ri references other relations with foreign-keys, its skeleton
template would support foreign-key joins as follows. In the
FROM clause, we include Ri and the relations it references; in
the WHERE clause, we join all these relations, and have an �“attr
op value�” predicate for each attribute from these relations in the
predicate-list. For example, consider the relation give_tutorial
in Figure 2. Since it references the person relation and the
conference relation, its skeleton template looks like:

ExFK: SELECT *

FROM give_tutorial t, person p, conference c
WHERE t.pid = p.id AND t.cid = c.id AND p.name

op expr AND �… AND c.name op expr

In addition, we create templates that support non-foreign-

key equijoins on attributes that relations have in common. In
DBLife, all nine relationship tables have the attribute pid, so we
can do equijoins on pid for any non-empty subset of the nine
relationship tables. These equijoins are equivalent to searching
for people who have participated in some of the nine
relationships. For example, to support queries about people who
have given a tutorial, given a talk in a conference, and given a
talk in an organization, the following skeleton template does an
equijoin on pid in give_tutorial, give_conf_talk,
give_org_talk, and person, and has predicates only from
person in the WHERE clause:

ExEQ: SELECT non-key attributes from p

FROM give_tutorial t, give_conf_talk c,
give_org_talk o, person p

WHERE t.pid = c.pid AND c.pid = o.oid AND o.pid
= p.id AND p.name op expr AND �… AND
p.name op expr

In the DBLife schema, there are 502 possible equijoins over

two or more of the nine relationship tables. For our experiments
involving equijoins, we generated 36 skeleton templates for all
equijoins on two different relationship tables and the table
person (see the set of forms F2 in Section 5.5). We chose this
set of equijoin templates to facilitate tracking and analyzing the
results. We can certainly choose another set based on
considerations for the complexity and the usability of templates,
storage constraints, and workload information (if any).

In practice, queries are often run against read-only views
instead of the base tables, to keep querying separate from
updates, and to have a more logical view of real-world entities

351

that are stored in multiple tables because of normalization. The
same principle �– fixing tables, join conditions, and predicates �–
can be used to decide on the views (which are essentially
queries) and to create templates on these views.

2.3 Form Specificity
As we use skeleton templates as a foundation to generate

query templates that meet the specification of SQL�’, we need to
determine how specific or general we want the forms to be.
Intuitively, we say that a form that can be customized only in
minor ways is very specific, whereas a form that is highly
customizable is more general. Given a fixed set of queries SQ,
the more specific the forms are, the more forms we need to
cover SQ; likewise, the more general the forms are, the fewer
forms we need to cover SQ.

It is not obvious which point in this continuum of form
specificity is the best choice. When there are fewer, more
general forms, it is easier to find a form that supports the query a
user has loosely in his or her mind. However, the user may have
difficulty in understanding and using this form, especially when
he or she is not familiar with the data model and the query
language. Conversely, when there are a larger number of more
specific forms, it may be harder to find a form that matches the
user�’s specific information need, but when one is found, the
necessary customization to express the query is minor.

To facilitate our analysis, we consider form specificity as a
function of two quantifiable measures: form complexity, which
refers to the number of parameters on a form, and data
specificity, which refers to the number of parameters with fixed
values on a form. Suppose the snapshot in Figure 3 is the initial
state of a form. We can adjust form specificity in four ways:

1) Increase its complexity by adding more parameters (e.g.,
allows the counting of the number of tuples that satisfy
existing predicates)

2) Decrease its complexity by removing existing parameters
(e.g., the predicate on country)

3) Increase data-specificity by binding more existing
parameters to constants (e.g., group = �‘Databases�’)

4) Decrease data-specificity by unbinding parameters with
fixed values (e.g., organization can be anything).

Our definition of form specificity gives us a natural

approach to generate one or more query templates from each
skeleton template �– we first determine the desired form
complexity based on SQL�’ and the skeleton template itself; then,
we consider binding certain parameters to their data values.

We could map each skeleton template, which has only a
SELECT-FROM-WHERE construct, to one large template
supporting aggregation, GROUP BY and HAVING, and
UNION and INTERSECT, as specified in SQL�’; however, such
a multi-purpose query template could be too complex for our
target users. Therefore, we reduce form complexity by dividing
SQL�’ into subsets, each supported by a separate template. For
our experiments, we decided to divide SQL�’ into four query
classes, each with a different intent:

1) SELECT: the basic SELECT-FROM-WHERE construct
2) AGGR: SELECT with aggregation
3) GROUP: AGGR with GROUP BY and HAVING clauses
4) UNION-INTERSECT: a UNION or INTERSECT of two

SELECT

To adjust data specificity of a form, we bind only the
�“value�” fields of the �“attr op value�” predicates in the WHERE
clause to data values. Given a template t with a set of attributes
Z, we first determine a subset of attributes A from Z whose
values we want to bind; then, for each combination of data
values for the attributes in A that exists in the database, we
create a form for t in which the attributes in A are bound to these
data values. We call this form-generation approach �“data-
aware�” as it uses data values in addition to SD and SQL�’.

An important issue is to which extent we should make forms
data-specific. While data-specific forms may enhance usability,
an indiscriminate application of the data-aware approach could
lead to a huge number of templates. Given a table with n
columns and r rows, if we generate a �“SELECT *�” query
template for every distinct combination of the �“attr = value�”
predicates in the WHERE clause, we will already have

 templates. Making data-specific templates that
involve equijoins is also problematic because of cross products.
Consider ExEQ, which has equijoins for the relations
give_tutorial, give_conf_talk, and give_org_talk. Suppose
that A includes the names of the tutorial, the conference, and the
organization, and that a person p has n1 tutorials, n2 conference
talks, and n3 organization talks. The number of templates
generated for ExEQ alone is already n1*n2*n3.

Another problem is maintaining the set of forms as the data
set changes over time. A data-specific form could become
invalid when the data set, after some updates, no longer has
tuples satisfying the fixed predicates of that form. When
updates are frequent, many data-specific forms could become
invalid quickly. Keeping track of which forms have become
invalid can be costly. In view of these disadvantages, we think
data-specific forms are unlikely to be useful in general, so in this
paper we do not consider data-specific forms.

2.4 Mapping Query Templates to Forms
Once we have generated a set of query templates, we can

map each of them to a form. To build a form for each query
template, we use the following standard form components:

 Label: for displaying text such as description for the
form, the name of an attribute, a database constant, etc.

 Drop-down list: for displaying a list of parameter values
from which users can choose one. For example, we use
a drop-down list to allow users to choose the target
attribute for an aggregation.

 Input box: for specifying a parameter value on the form.
 Button: for functions such as submit, cancel, and reset.

Form layout (i.e., where to put the labels, drop-down lists,

input boxes, and buttons) is an interesting problem but one that
is orthogonal to the issues we study in this paper. Accordingly,
we did not focus on layout in this paper, and simply chose a
basic layout for our experiments.

Each form has a brief English description based on its
skeleton template. Ideally, a form description would be a user-
intelligible summary of which queries are supported by the
form. Much as snippets of documents are used to label the
documents returned by an Internet search, these descriptions
would be used to label the forms returned by a keyword query.

Unfortunately, generating natural-language descriptions for
forms is a difficult challenge. Even when it is done manually, it
is often unclear what a good description is, especially when a

352

form supports a wide variety of queries. Also, a manual
approach quickly becomes inefficient when there are more
forms, but automatically generating good form descriptions is
yet another challenge. For the forms for the DBLife data set, we
first manually determined descriptions for the database relations,
then automatically used them to label forms. For example, the
description for the SELECT template over the coauthor relation
is �“Which two people are coauthors.�” The approach is simple
and was effective in our experiments, although finding more
sophisticated techniques for generating form labels is certainly
an important area for future research.

2.5 Automating Form Generation
We built a template generator to facilitate form generation.

The template generator uses the aforementioned specification
for SQL�’ and query classes. It takes as input a data set and its
schema. Form designers can specify the desired form
complexity (i.e., a fixed number or all of the parameters) and
data specificity (i.e., which attributes have fixed values). The
output is a set of templates based on these configurations. We
wrote scripts to transform these templates into forms and to add
a form description to each form.

3. KEYWORD SEARCH FOR FORMS
3.1 Overview

The basic idea here is simple �– treat a set of forms as a set of
documents, then let users use keyword search to find relevant
forms (which in turn are used to pose structured queries).
However, this task differs from the standard document search
problem in several key ways. In this section, we consider a
number of approaches motivated by these differences.

Perhaps the most important difference is that a form contains
parameters, which are undefined until users fill out the form at
query time. Furthermore, possible data values for these
parameters often do not appear on the forms. A keyword search
approach that ignores this difference can yield undesirable
results. Consider a first approach, which we call Naïve, which
simply retrieves a form if the form contains at least one (OR
semantics) or all (AND semantics) of the terms from a keyword
query. If a user specifies a data value and we use Naïve-AND,
we will get no answers. If we use Naïve-OR, some forms would
be returned if the user includes in the query at least one schema
term (i.e., a term that matches a table or attribute name).
However, the data terms (i.e., terms that match data values), if
any, would be completely ignored, which is not very satisfying.

We can solve this problem by putting data values on query
forms. However, recall from Section 2.3 that generating data-
specific forms for all interesting combinations of data values is
impractical because it leads to a combinatorial explosion of
forms. An alternative that uses a drop-down list of all possible
values for each parameter would require many fewer forms, but
it suffers the same problem of high storage and maintenance
costs, and is impractical when an attribute has many possible
values.

Moving beyond these approaches, we transform a user�’s
keyword query by checking to see whether the terms from the
query appear in the database, and if so, modifying the query
with relevant schema terms. That is, if the keyword query
contains a data value d, and d appears in table R, we rewrite the
original user query to contain R. Because our forms include

either all the attributes of a table (if the table appears on a form)
or none (if it does not), using the table name is equivalent to
using the name of the attribute that contains d.

A moment�’s thought shows we need to take some care in
doing so. For example, what if a user-provided keyword
appears both as a schema term and as a data term? What if the
keyword appears in multiple attributes, possibly of different
tables? Should we add the schema terms to the original user
query, or replace the user-provided data terms with the
corresponding schema terms?

We consider two basic approaches to resolving this issue.
The first is to add all schema terms corresponding to the data
terms in a keyword query from a user, and to evaluate it using
OR semantics. We call this approach Double-Index OR (DI-
OR), for reasons that will become clear when we describe how
the approach is implemented. The second approach is to use
AND semantics, but we cannot simply add all schema terms and
use AND semantics, because we may generate empty results if
we add two or more schema terms such that there is no form that
contains all of them. Therefore, with AND semantics, we
augment the original query by generating all possible queries
that result from replacing user-supplied data terms with schema
terms, use AND semantics for each query, and return the union
of the query results to the user. We call this approach Double-
Index AND (DI-AND).

As a simple example, return to our DBLife example and
suppose that some user would like to know for which
conferences a researcher named �“Widom�” has served on the
program committee. The user might issue the keyword query
�“Widom conference,�” where �“Widom�” is a data term and
�“conference�” is a schema term. Using Naïve-AND, we would
get no forms, since �“Widom�” does not appear on any forms.
Using Naïve-OR, we would ignore �“Widom�” and get all forms
that contain �“conference.�” Using DI-OR, we would find that
�“Widom�” appears in the person table, so the resulting rewritten
keyword query would be �“Widom person conference,�” evaluated
with OR semantics. Using DI-AND, we would generate two
queries: �“person conference�” and �“Widom conference,�” evaluate
each with AND semantics, and return the union of the results.
In this case, �“Widom conference�” would lead to an empty result,
but this would not be the case if �“Widom�” were both a database
term and a schema term.

Finally, with our form-generation approach, one scenario is
potentially problematic with DI-AND. When a search involves
a table referenced by many other tables, DI-AND returns all the
forms for all these tables, even though some may return no
answer with respect to the user query. Returning forms that can
never produce results with respect to the user query can be
annoying to users. We consider an additional optimization to
identify and filter these �“dead�” forms from the results.

3.2 Double-Index
We now describe the double-index approaches in more

detail. Given a keyword query, we augment user queries with
form terms (i.e., terms that appear on a form, such as schema
terms, SQL keywords, and natural-language descriptions), and
retrieve forms containing the form terms. To implement this
strategy, we use two inverted indexes, one on the data set and
the other on the set of forms. The first index, called DataIndex,
takes in a term and returns a set of <tuple-id, table> pairs. Each
pair describes a tuple in the data set that contains the term: tuple-
id is the primary key of the tuple, and table is the name of the

353

Double-Index OR (DI-OR)
Input: A keyword query Q = [q1 q2.... qn]
Output: A set of form-ids F�’
Algorithm:

FormTerms = {}, F�’ = {}
// Replace any data terms with table names
for each qi Q

if DataIndex(qi) returns <table, tuple-id> pairs
Add each table to FormTerms

Add qi to FormTerms // qi could be a form term
// Get form-ids based on FormTerms
FormIndex(FormTerms) => F�’ // OR semantics
return F�’ // Ordered by ranking scores (Section 4)

Figure 5. DI-OR augments the query with form terms and
evaluates the query with OR semantics.

table containing the tuple. The second index, called FormIndex,
takes in a term and returns a set of form-ids, or identifiers of the
forms containing the term.

Figure 5 shows our first approach, called Double-Index OR
(DI-OR). DI-OR comprises two basic steps. The first step is the
query rewrite. We probe DataIndex with each query term qi in a
query Q. If qi is a data term, DataIndex will return a set of
<tuple-id, table> pairs, and we will add each table to the set
FormTerms, which is initially empty. We also add qi itself to
FormTerms, because qi could be a form term, regardless of
whether it is a data term. In the second step, we simply probe
FormIndex with the terms in FormTerms, and return any form
that has at least one of these terms.

Although this approach satisfies the new semantics, using
OR produces results that are often too inclusive. We want to use
an approach similar to DI-OR but with AND semantics.
However, as mentioned before, it would be wrong to simply do
one AND-query with all the terms in FormTerms. The reason is
that a data term may appear in multiple unrelated tables such
that no form would contain all these tables. For a query �“q1
AND q2,�” the correct interpretation after the query rewrite should
be �“a Sq1 AND b Sq2,�” where Sqi is a �“bucket�” containing
the form terms associated with qi, and a and b are two form
terms from Sq1 and Sq2 correspondingly. Therefore, if a bucket
has multiple terms, we will have multiple queries.

Figure 6 shows this bucket-based DI using AND semantics.
In the query rewrite step, for each qi, we add each new table,
and qi itself, to Sqi. In the second step, we generate and add to
SQ�’ all distinct queries, each of which taking one term from each
Sqi; then, for each query in SQ�’, we probe FormIndex and
retrieve forms that have all terms in the query. Finally, we
return these forms ordered by their ranking scores. Notice that if
qi is both a data term and a form term, we will have queries to
search for both types of forms, one having a table that has qi as a
database constant, and one in which qi appears as a schema term.
If qi is a false term, Sqi will be empty. Also, although we choose
AND semantics here, the bucket-based approach does allow OR
semantics �– for each query in SQ�’, we simply retrieve a form
containing any term from the query.

A concern about DI-AND is that, in the second step, the
number of queries we generate is . For a query with
n terms and each query term leading to m form terms, we would
generate m^n queries. However, since we replace each data
term with the name of the table containing the term, many of
these queries will be duplicates and can be ignored (in our
experiments, the maximum number of queries generated by this

Double-Index AND (DI-AND)
Input: A keyword query Q = [q1 q2.... qn]
Output: A set of form-ids F�’
Algorithm:

FormTerms = {}, F�’ = {}
// Replace any data terms with table names
for each qi Q

Sqi = {} // Bucket for qi
if DataIndex(qi) returns <table, tuple-id> pairs

for each table
if table FormTerms

Add table to Sqi and FormTerms
if qi FormTerms

Add qi to Sqi and FormTerms
// Get form-ids based on Sqi
SQ�’ = EnumQueries(Sqi) // Enumerate all unique queries,

// each having one term from each Sqi
for each Q�’ SQ�’

FormIndex(Q�’) => F�’ // AND semantics on FormIndex
return F�’ // Ordered by ranking scores (Section 4)

Figure 6. DI-AND generates new queries by taking a term from
each bucket of form terms, evaluates each new query with AND
semantics, and then union the results.

approach is 12). To reduce the number of distinct queries, we
record the form terms included so far in FormTerms, and only
add a form term to Sqi if it is not already in FormTerms.

Another issue related to query terms being a mix of data
terms and form terms is that users may enter synonyms of
schema elements or SQL keywords (e.g., �“people�” for �“person,�”
�“how many�” for �“count,�” etc.) when they do keyword search.
One solution is to add synonyms to a query based on a thesaurus
during query evaluation, perhaps at the same stage as we replace
data terms with form terms. An alternative is to add a set of
synonyms to each form during form generation, and not do any
thesaurus lookup at query time.

For our prototype, we chose the second approach. We
selected and added a set of keywords, such as synonyms of the
schema elements and SQL keywords and other related terms, to
what we call a form profile for each form. The form profile is
invisible to users since its function is to improve the chance of
returning the form when a user enters terms that are related but
that do not appear on the form. We used this approach mainly
because we want to keep our algorithms and implementations
simple, so that we could more clearly evaluate the approach of
using keyword search to find relevant forms. Also, since we
only consider schema-based related terms, the set of terms is
quite small (i.e., about 10 additional terms per form), so
redundancy and storage are not an issue. However, as future
work, it is certainly interesting to consider recognizing
synonyms of both data terms and form terms, and more
generally, extending our implementation to handle more
sophisticated query expansion. In that case, thesaurus look up at
query time may be more suitable.

3.3 Double-Index-Join (DIJ)
Recall from Section 2.2 that if a table T1 is referenced by

another table T2 in a foreign-key relationship, all of T1�’s
attributes will be in the form for T2. As a result, if a query has a
data term in T1 and we use DI to evaluate the query, we will get
T2 as the corresponding form term, and return the form for T2
(in addition to the form for T1). For example, suppose that a

354

Double-Index-Join
Input: A keyword query Q = [q1 q2.... qn]
Output: A set of form-ids F�’
Algorithm:

FormTerms = {}, F�’ = {}, X = {}
// Replace any data terms with table names
for each qi Q

Sqi = {}
if DataIndex(qi) returns <table, tuple-id> pairs

for each table T
let I be the set of tuple-ids from T
if T FormTerms

Add T to Sqi and FormTerms
// New �“join�” step
SchemaGraph(T) returns refTables
for each refTable

if DataIndex(refTable:tid) is NULL for every tid I
FormIndex(T AND refTable) => X

if qi FormTerms
Add qi to Sqi and FormTerms

// Get form-ids based on form terms
SQ�’ = EnumQueries(Sqi)
for each Q�’ SQ�’

FormIndex(Q�’) => F�’
return F�’ �– X // Filter �“dead�” forms

Figure 7. DIJ eliminates �“dead�” forms with extra probes to
DataIndex.

user wants to search for a person named �“John Doe�” from
DBLife, and that �“John Doe�” appears in the person table, but is
not involved in any relationship (i.e., the �“John Doe�” tuple
inperson is not referenced by any tuple in any relationship
table). For the query �“John Doe,�” in addition to returning forms
for the person table, we would return forms for all the
relationship tables that reference person.

At first glance, returning all these forms seems reasonable
because every form is related to person. However, since �“John
Doe�” appears only in person, if the user enters �“John Doe�” in
the person.name field on any of these join forms, they will
return empty results. We call forms that yield no answer with
respect to the user query �“dead�” because they are not useful to
users. As shown in Figure 7, we modify DI-AND to filter a
common type of �“dead�” forms with the guarantee that no live
forms will be eliminated. Intuitively, before returning a form,
we check to see if the form will return an answer if instantiated
with the data terms in the user query.

We perform this check as follows. Given a keyword query
Q, we probe DataIndex with each query term qi. When qi is a
data term that leads to a set of <table, tuple-id > pairs, we look
up each table T in a schema graph for SD and find the refTables
that reference T. For each refTable, we check to see if it
contains any tid, i.e., tuple-ids from T, by probing DataIndex
again. If no tid appears in refTable, we retrieve the forms that
contain both T and refTable, and record these �“dead�” forms in X
so that we can remove them later. In the second step, we get F�’
the same way we do in DI-AND, but instead of returning F�’, we
subtract X from F�’ and return the difference as the final result.

There are other types of dead forms that DIJ does not
eliminate. Consider the query �“John XML.�” Suppose John has
published some papers and there are papers about XML, but
John has never worked on XML. In this case, DIJ will return a
form joining Authors with Publications, but the form will return

no result. Although it does not eliminate all types of dead
forms, in our evaluation section we found that it does eliminate a
sizable fraction of �“dead�” forms.

One concern about DIJ is that the extra probes to DataIndex
with refTable:tuple-id can be slow when tuple-id appears in
many tuples in refTable. Fortunately, since the purpose of the
extra probe is to see whether there exists at least one tuple with
the given tuple-id, we do not need to return all the tuples that
have tuple-id in refTable. Instead, the index probe can stop as
soon as it finds out whether tuple-id has an entry in refTable.

4. DISPLAYING RETURNED FORMS
4.1 Ranking Forms

Since our keyword search approach could still return a
significant number of forms, it is important to rank the returned
forms so that those that are more relevant according to some
ranking function are placed higher in the result. Unlike keyword
search over RDMBSs where tuple-tree results are generated on-
the-fly, we generated and indexed the forms offline, so the forms
can be interpreted as �“documents,�” and sorting and finding top-k
documents is very fast, as shown in our experiments (Tables 4
and 6). We ranked the forms based on the scoring function of a
Lucene [15] index, which we used to implement our keyword
search approaches. As documents are retrieved, a Lucene index
assigns each query-document pair a normalized TF/IDF score
with optional boosting. The Lucene score for a query Q and a
document D is:

score(Q,D) = coord(Q,D) * queryNorm(Q) * t in Q(tf(t in D)

* idf(t)2 * t.getBoost() * norm(t,D))

where coord(Q,D) is a score factor based on the number of
query terms found in D, queryNorm(Q) is a normalizing factor,
tf(t in D) is the term frequency of t in D, idf(t) is the inverse-
document frequency of t, t.getBoost() is a search-time boost of t,
and norm(t,D) is an index-time boost. In our implementations,
we set both search-time boost and index-time boost to one.

We noticed that although our keyword search approach was
effective in retrieving relevant forms while pruning irrelevant
ones, it was not always easy to spot the right form from the
result. The problem arises when we have very specific forms.
As form specificity increases, the number of forms created from
each skeleton template increases, and forms based on the same
skeleton template �– which we call �“sister forms�” (the skeleton
template being a �“family name�”) �– become increasingly similar.

While usability is the motivation behind more specific forms
in that a specific form requires less customization, having many
sister forms per family interestingly presents a different usability
issue. That is, sister forms from the same family get the same
ranking score unless a query distinguishes among them with
terms that are unique to some of them. We may see the first k
forms from one family, the next k forms from another family,
and so on. Moreover, when a query is relatively vague, there is
not enough information to determine the user�’s intent.
Therefore, the �“right�” form may not be in the first couple
families, and could get pushed low in the result when each
family has many sister forms.

To see these problems, consider the query �“Widom.�” Figure
8 shows the result of this query as a flat list of forms. The sister
forms have similar descriptions and the same scores. Also, with

355

Figure 8. The result for the query �“Widom�” displayed as a flat list.
The form for the information need �“for which conference Widom
has served�” is ranked 127th (not shown in the picture).

Figure 9. Displaying the result in Figure 8 with the first grouping
approach. The form for the same information need is in the 9th
group and the first form within the group.

Figure 10. Displaying the result in Figure 8 with the second
grouping approach. The advantage of this approach is that each
family is shown only once.

�“Widom�” as the only term, it is impossible to tell more
specifically what the user is looking for. Suppose the user
actually wants to find out in which conference �“Widom�” has
served. The right form for this information need �– the basic
form (i.e., for the SELECT class) for serve_conf �– is ranked
127th, lower than forms from other families such as
related_people, coauthor, and person. However, the ranking
makes sense for �“Widom�” as there are more tuples containing

this term in those tables. To address this problem, we propose to
group sister forms and present these groups to users, so that
users know about all the groups at a high level and can �“drill
down�” into a group if one looks relevant.

4.2 Grouping Forms
We explore collapsing similar forms into groups at query

time, so that users can expand on a promising group and drill
down to choose among these forms. The basic idea is similar to
the automatic categorization of query results proposed by
Chakrabarti et al. [4]. Given a list of forms ordered by each
form�’s score, our first approach comprises two steps:

1) Form first-level groups by grouping consecutive sister
forms with the same score.

2) In each first-level group, group forms by the four query
classes described in Section 2.3, and display the classes in
the order of SELECT, AGGR, GROUP, and UNION-
INTERSECT. The order is fixed because forms in the
same group have the same ranking scores.

Figure 9 shows the result for the �“Widom�” query with this

approach. For the information need �“for which conference
Widom has served,�” the right form is the first one in the 9th
group, which we think is easier to spot than being the 127th form
in a flat list. Each first-level group has a description that applies
to all the sister forms in that group. This description is the same
as that of the form for the SELECT class in the family.

One problem with this approach is that when two sister
forms have different ranking scores such that they are not
consecutive, they join different first-level groups. However,
these groups still have the same description and could confuse
users. For example, in Figure 9, the first and third groups have
the same description �“which two people are related�”; the second
and fourth groups also have the same description.

To tackle this problem, we consider a second approach: we
first group the returned forms by their table, then order the
groups by the sum of their scores. Figure 10 illustrates this
alternative for the same query. The advantage of this approach
is that each group of forms based on the same skeleton template
is only shown once. However, the forms within each first-level
group are always shown in the same order. Therefore, for some
queries, the right form could be last in a first-level group, even
though this first-level group is ranked high. The first approach
does not have this problem because we group the forms by the
scores first. We used the first approach in our experiments.

5. EXPERIMENTS
5.1 Experimental Setup

We built an end-to-end prototype system to evaluate the
combining of keyword search and forms for posing ad hoc
structured queries over a relational database. We implemented
the search interface with Perl CGI scripts, used MySQL as the
back-end database, and used an Apache Web Server to host the
service. We ran the experiments on a Red Hat Enterprise Linux
5 workstation with 2.33 GHz CPU and 3 GB RAM.

We used DBLife as the data set and generated a set of forms,
F1. It had 14 skeleton templates, one for each of the 5 entity
tables and the 9 relationship tables. From each skeleton
template, we created, based on the four query classes in Section
2.3, 1 SELECT template, 5 AGGR templates (one for each

356

 SQL Query
T1 SELECT p.name

FROM give_tutorial g, conf c, person p
WHERE g.cid = c.id AND g.pid = p.id AND c.name like
�‘VLDB�’

T2 SELECT t.name
FROM related_topic t, person p
WHERE t.pid = p.id AND p.name like �‘jeff naughton�’

T3 SELECT p.name
FROM serve_conf s, person p, conf c
WHERE s.pid = p.pid AND s.cid = c.id AND c.name =
�‘SIGMOD�’ AND s.assignment = �“chair�”

T4 SELECT per.name
FROM pub, person per, write_pub w
WHERE w.pub_id = pub.id AND w.pid = per.id and
w.pos = 1 and pub.cites > 5

T5 SELECT count(*)
FROM co_author c, person p1
WHERE c.pid1 = p1.id AND p1.name like �‘david dewitt�’

T6 SELECT p2.name
FROM co_author c, person p1, person p2
WHERE c.pid1 = p1.id AND p1.name like �‘david dewitt�’
UNION
SELECT p2.name
FROM co_author c, person p1, person p2
WHERE c.pid1 = p1.id AND p1.name like �‘jeff naughton�’

Figure 11. The SQL queries for the information needs.

aggregate), 6 GROUP templates (one for each aggregate and one
without aggregates), and 2 UNION-INTERSECT templates (for
UNION and INTERSECT), so F1 had 14 * 14 = 196 forms total.

Using F1 and the 6 information needs presented in the
following, we conducted a real-life user study with 7 graduate
students in the Computer Sciences Department.

T1: Find all people who have given a tutorial at VLDB
T2: Find topics of areas related to Jeff Naughton.
T3: Find people who have served as the SIGMOD PC chair.
T4: Find the first author of all papers cited more than 5

times.
T5: Find the number of people who have co-authored a

paper with David Dewitt.
T6: Find people who have published with David DeWitt or

Jeff Naughton.

To find the answers, users submitted keyword queries to the

system, browsed the results to identify the correct form (there
was one such form for each query), and filled in values on the
form. All users successfully found the correct answer for each
information need. Figure 11 shows the equivalent SQL queries.
We report and discuss the results in the following sections.

5.2 Comparing Naïve, Double-Index, and
Double-Index-Join

We first compared Naïve-OR, Naïve-AND, DI-OR, DI-
AND, and DIJ, with respect to the difference between AND and
OR semantics, the effect of query rewrite, the importance of
filtering dead forms, and performance. Because of space
constraint and because users entered similar sets of keywords for
the same information need, we consider the inputs of just one of
the users. Below, Qi is a keyword query for the information
need Ti:

F1 Number of Forms Returned
Naive-OR Naive-And DI-OR DI-AND DIJ

Q1 14 0 168 42 42
Q2 28 0 182 28 28
Q3 0 0 142 28 28
Q4 28 28 142 28 28
Q5 14 0 196 14 14
Q6 0 0 196 182 168

Table 1. Number of forms each approach returns for each query.

F1
Average Number of Forms Returned

T1 T2 T3 T4 T5 T6
DI-AND 44 48 38 28 129 64

DIJ 44 46 38 28 116 56

Table 2. Average number of forms returned by DI-AND and DIJ
for the 6 information needs based on the inputs of 7 users.

F1 Flat Rank of the Correct Form
Naïve-OR Naïve-And DI-OR DI-AND DIJ

Q1 1 N/A 29 1 1
Q2 15 N/A 28 1 1
Q3 N/A N/A 28 1 1
Q4 1 1 29 1 1
Q5 4 N/A 29 4 4
Q6 N/A N/A 51 27 12

Table 3. Rank of correct form in a flat list of returned forms.

F1 Response Time (in milliseconds)
Naïve-OR Naïve-AND DI-OR DI-AND DIJ

Q1 5.0 5.0 43.3 34.5 79.8
Q2 8.0 6.0 40.0 24.0 102.7
Q3 10.0 6.0 52.0 52.0 60.4
Q4 16.0 7.0 42.9 35.0 33.6
Q5 13.0 5.0 44.6 42.0 61.8
Q6 12.0 5.0 44.3 32.1 41.9

Table 4. Response time by each approach for each query.

Q1: �“tutorial vldb�”
Q2: �“jeff naughton research area�”
Q3: �“sigmod chair�”
Q4: �“paper citation�”
Q5: �“david dewitt coauthor�”
Q6: �“dewitt naughton�”

Table 1 shows the number of forms returned by each approach
for each query. The correct form was returned in all cases
except when no forms were returned. Five queries contain data
terms (that are not on any form): �“vldb�” in Q1, �“jeff naughton�”
in Q2, �“sigmod chair�” in Q3, �“david dewitt�” in Q5, and �“dewitt
naughton�” in Q6. Therefore, Naïve-AND returned no forms for
these queries, and Naïve-OR returned no forms for Q3 and Q6,
which contain only data terms. DI-OR was ineffective as a
means to narrow one�’s search �– it returned all 196 forms for Q5
and Q6, and a majority of forms for the remaining queries.
Though disappointing, it makes sense that DI-OR returned the
most forms �– both the OR semantics and the query rewrite
strategy add more forms to the result. By comparison, DI-AND
returned significantly fewer forms for most queries. DIJ, based
on DI-AND but eliminates �“dead�” forms, returned the same set
of forms as DI-AND for all queries except Q6, for which DIJ
reduced the number of returned forms from 196 to 168.

357

F1 Flat Rank Group Rank
H M L #F H M L #G

T1 1 1 1 44 1 1 1 3.14
T2 1 1 69 46 1 1 7 3.7
T3 1 1 1 38 1 1 1 2.7
T4 1 15 15 28 1 2 2 2
T5 4 21 21 116 1 2 4 11.57
T6 1 12 12 56 1 1 6 4

Table 5. The highest (H), median (M), and the lowest (L) flat and
group ranks for each queries, and the average number of forms (#F)
and groups (#G) returned, based on the results of 7 users.

F1
Pose
query
(sec)

Find
the

right
form
(sec)

Fill out
the

form
(sec)

Total
average

time
(sec)

Standard
Deviation

(sec)
Median

(sec)

T1 7.0 12.3 5.3 24.6 13.1 23.0
T2 7.5 23.9 14.8 46.1 48.0 26.0
T3 7.5 18.0 25.6 51.1 31.4 36.0
T4 12.0 79.7 15.2 106.9 56.6 123.0
T5 19.0 46.9 7.7 73.6 29.9 80.0
T6 14.0 64.0 15.2 93.2 47.8 78.0

Table 6. The breakdown of the time of using DIJ by 7 users.

Extending this comparison, Table 2 shows the average

number of forms returned by the two approaches for the 6
information needs based on the inputs of all users. Returning an
average of 27.9% of the 196 forms, DIJ detected and filtered
dead forms for T2, T5, and T6. The number of dead forms
depends on the schema and the specific query for an information
need. In our study, the user queries were generally specific
enough that there were not too many dead forms.

Table 3 shows the rank of the correct form in a flat list of
forms returned by each approach for each query. This metric is
not applicable when Naïve-OR and Naïve-AND did not return
any forms; however, when they did, the rankings were mostly on
par with DI-AND and DIJ. The only exception is Q2, for which
the correct form was ranked 15th by Naïve-OR and 1st by DI-
AND and DIJ �– with Naïve-OR, the top 14 forms are for the
topic table, whereas the right form is for related_topic, which
joins person and topic. This example demonstrates how
ranking can differ when data terms are ignored in query
evaluation, and that when the right form is not in the first family
of sister forms, its position in a flat list of forms could be low.

Compared to other approaches, DI-OR consistently gave the
correct form the worst rank. Lastly, comparing DI-AND and
DIJ on Q6, we see that after eliminating dead forms, not only
did DIJ return fewer forms, but also it ranked the correct form
significantly higher (from 27th to 12th).

Table 4 shows the response time (in milliseconds) of each
approach for each query. As expected, Naïve-OR and Naïve-
AND took much less time than approaches using the query-
rewrite strategy. Naïve-AND was faster than Naïve-OR because
more terms tend to lead to fewer forms returned. DI-AND was
faster than DI-OR for the same reason. DIJ took the most time,
but the average of the absolute time of the six queries was still
only 68.2 ms, hardly noticeable by humans.

We conclude that DIJ is the best approach because it can
handle a mix of data terms and form terms in the query, filter
�“dead�” forms, and give the best flat rank, with minor additional

overhead in response time. We use DIJ in the following
discussion.

5.3 Ranking and Displaying Forms
The effectiveness of keyword search largely depends on

whether users can quickly spot the right form from the list of
returned forms. In general, we assume that users look at the list
top-down, so the higher the right form appears on a list, the
better. In Section 4.1, we have discussed that sister forms often
receive the same score and appear together. Therefore, when the
returned forms are presented as a flat list, the right form could
appear low on the list, and users may have difficulty spotting it.
With our prototype, we explored using the first grouping
approach described in Section 4.2 to group together sister forms
with the same ranking score.

In the user study, we recorded for each information need, the
keyword query by each user and the corresponding list of forms.
From these results, in addition to recording the flat rank �– the
position of the right form on the flat list, we recorded a group
rank �– the position of the first-level group that contains the right
form. We do not report the position of the sub-groups within the
first-level group that contained the right form because all the
forms under the same first-level group have the same scores and
the sub-groups are ordered the same by their query classes.

Table 5 shows the highest (H), the median (M), and the
lowest (L) flat and group ranks, along with the average number
of forms (#F) and groups (#G) returned, for each information
need by DIJ. Under �“Flat Rank,�” we can see that the highest
ranks are near or at the top, which is encouraging, especially
when the total number of returned forms is quite large for some
queries. However, some of the median and the lowest ranks are
significantly worse. In other words, for the same information
need, the correct form could still have very different rankings
even with similar keyword queries. Also, we notice that the
rankings are worse for the last three queries. One possible
reason is that while the last three information needs are more
complicated, the users did not necessarily enter more specific
keywords. For example, for T6, Q6 is simply �“dewitt
naughton,�” which could be just about anything related to David
DeWitt and Jeff Naughton.

In contrast, we can see that the group ranks are much more
consistent �– the correct form for each query belonged to a top-7
group. With the grouping approach, a user needs to expand a
group and drill down to find the right form, so one concern is
that the user needs to drill down many levels before finding the
correct form. This issue depends on how the query classes are
organized. In the study, there were at most three levels,
including the first-level group, and for most queries the right
form was right under the first-level. Therefore, overall, we
believe that grouping forms helps users find the right form more
easily, especially when a keyword query for a complicated
information need is relatively vague.

5.4 User Interaction with Keyword Search and
Forms

In our user study, we measured the time (in seconds) spent
by each user over three segments: 1) posing the initial keyword
query after learning the information need, 2) finding the right
form from the result of the last keyword query, and 3) filling in
values on the right form. Since six users used just one keyword
query in the process, and the other one used two, the sum of

358

F2 Average Number of Forms Returned
T1 T2 T3 T4 T5 T6 T7

DI-AND 187 174 174 127 94 462 214
DIJ 187 174 167 127 94 427 187

Table 7. With respect to the user queries for these information
needs, DIJ returned on average 27.8% of the 700 forms.

F2 Flat Rank Group Rank
H M L #F H M L #G

T1 1 15 15 187 1 2 2 35.9
T2 15 15 272 174 2 2 20 15.4
T3 1 1 1 167 1 1 1 12.3
T4 1 1 15 127 1 1 2 8.3
T5 4 18 18 94 1 2 2 18
T6 13 27 27 427 1 2 2 23.4
T7 1 1 57 187 1 1 4 1.6

Table 8. The flat and group ranks were still very good even though
F2 had a lot more forms than F1.

F2 Response Time (in milliseconds)
Q1 Q2 Q3 Q4 Q5 Q6 Q7

DIJ 102 109.2 70.4 43.2 56.2 114.2 96.8
Table 9. Response times by DIJ. Though longer than those with F1
(see Table 4), humans probably would not notice the difference.

these three segments is roughly equal to the end-to-end time.
Table 6 shows each component, the averaged sum of the
components, the standard deviation, and the median.

The total time ranged from 24.6 to 106.9 seconds. Of the
three segments, the time to find the right form from the results
of a keyword query is of most interest to us because it reflected
the usability of our �“keyword search to forms�” approach. For
the first three information needs, this segment took about 30
seconds or less, whereas for the last three, it took between 73
and 107 seconds. The reason is likely that the last three
information needs were more complicated. Overall, for real
information needs on a real-world data set, real users in our
experiment found the right form in a reasonable amount of time.

5.5 Impact of Adding Forms
Although the results of the queries against F1, which has

196 forms, are encouraging, they beg the question: how good is
the keyword search approach when there are a lot more forms?
To gain insight to this question, we created a new set of forms,
F2, which comprised F1 and forms for all combinations of
equijoins involving 2 different relationship tables and the
person table on the attribute pid. There were 9 choose 2, or 36
skeleton templates for these equijoins (which were similar to
ExEQ except here we used only 2 relationship tables), leading to
36*14 = 504 forms. As a result, F2 had 196 + 504 = 700 forms
total. Using F2, we re-evaluated the keyword queries of the 7
users, and considered a new information need.

T7: Find people who have given a conference talk and
given a tutorial.

T7 corresponds to a SQL query doing an equijoin on

give_conf_talk, give_tutorial, and person:

SELECT p.name
FROM give_conf_talk c, give_tutorial t, give_org_talk

o, person p
WHERE c.pid = t.pid AND t.pid = o.pid and o.pid = p.id

Table 7 shows the average number of forms returned by DI-
AND and DIJ with respect to our user queries against F2.
Compared to Table 2, we can see that, as expected, a lot more
forms were returned with F2. However, DIJ returned essentially
the same fraction of the total number of forms with F1 (27.9%)
and F2 (27.8%). Also, comparing DI-AND and DIJ, we can see
that DIJ filtered more dead forms from F2. This result shows
that filtering dead forms is even more important when the set of
forms being considered is large.

The counterpart of Table 5, Table 8 shows the flat and group
ranks when DIJ was used to evaluate the user queries against F2.
Comparing the two tables, we can see that even though F2 has a
lot more forms, the flat and group ranks with respect to these
queries were still very good. While the flat ranks may be
outside top 10 for some queries, the median group ranks were
consistently in the top 2. The result demonstrates the advantage
of grouping sister forms when a large set of forms is used.

Finally, Table 9 shows the response time by DIJ for the
queries Q1 to Q6, and Q7, which is �“conference tutorial,�”
against F2. The times were significantly longer than those for
Q1 to Q6 against F1 (see DIJ column in Table 4), since more
forms were retrieved and returned. However, with the longest of
those being 114.2 ms, users most likely would not notice a
difference.

To summarize, when we evaluated the same queries against
a much larger set of forms, DIJ returned roughly the same
fraction of the total number of forms. More importantly, the
rankings of the correct forms remained very good, and response
times were still relatively insignificant for humans to notice.

6. RELATED WORK
QBE (Query-By-Example) [17] and NFQL (Natural Forms

Query Language) [6] are languages for non-programmers to
query and update a relational database. Skeleton tables of a
database or customized forms are presented to users, who can
fill in the blanks with �“examples�” to specify query constraints.
Though much simpler than SQL, they still require an
understanding of the relational model, and could give users
trouble when the schema is complicated. These works do not
consider the problem of choosing from a set of forms, probably
because only a few (but very general) forms are used.

Jayapandian et al. described an approach that automatically
generates forms for a database based on a sample query
workload [11], and more recently, an approach to automatically
create a form-based interface, with the goal of maximizing
expressivity while respecting specified bounds on interface
complexity [10]. Since their goal is to create a small set of
forms, they also do not consider the problem of choosing from a
set of forms. Instead, when the forms do not support a user
query, they allow users to modify an existing form [12].

An alternative to writing structured queries is keyword
search over databases [e.g., 1, 3, 8, 9, 14]; however, it has
limited ability to exploit structured data. For example,
aggregations, projections, range queries, and queries that specify
which attribute must contain a desired constant, are all outside
the scope of �“basic�” keyword search. Liu et al. [14] proposed to
automatically distinguish between schema terms and value terms
in a keyword query, and adopted a new ranking strategy for
handling keyword queries with schema terms. Compared to
using forms, this approach has little support for structured
queries. Indeed, a major motivation for our approach is to allow

359

users who do not want to use SQL to still be able to leverage the
advantage of querying structured data.

To extend basic keyword search over databases to be more
expressive, BANKS [3] proposed supporting the �“attribute =
value�” construct in keyword queries. For this approach to be
effective, users either need to know the schema elements, or the
system needs to be able to map user-specified attributes to
system attributes. By contrast, with our approach, users do not
use any operators in keyword search, and the schema elements
are already presented on the forms.

The idea of incorporating simple support for structured
querying in keyword search falls under the more general
question: just how structured users prefer a query language to
be? To gain some insight, Bernstein et al. [2] introduced four
query interfaces, each representing a different degree of
�“structuredness,�” and conducted a user study to evaluate which
one the users prefer and how they perform. The results showed
that while the users disliked the constraints of a fully structured
formal query language, they also seemed lost with the freedom
of a full Natural Language Processing (NLP) approach. The
authors suggested that a restricted query language is better than
natural language because of its �“guidance effect.�”

AVATAR [13] supports precision-oriented search tasks, in
which users are looking for specific information buried within a
few documents in a large collection (e.g., a certain phone
number in emails). Its approach �– extracting concepts from text,
and given a keyword query, generating structured queries over
the concepts �– is similar to our approach; however, there are two
major differences. First, its motivation is to exploit structured
data to improve search over unstructured data, whereas ours is to
help users query a structured database. Second, at query time,
Avatar generates structured queries dynamically, whereas we
simply identify relevant forms from existing ones.

A nuisance in query processing is waiting for a long time
before realizing the query result is empty. Luo proposed to
efficiently detect empty-result queries by �“remembering�” results
from previously executed, empty-result queries [16]. While this
work is in the same spirit as DIJ, the two are very different. DIJ
filters forms that lead to empty results based on users�’ keyword
queries, whereas Luo�’s work identifies an empty-result
structured query when one arrives at the database.

Noting that unstructured data is easier to create, query,
share, and less sensitive to change than structured data, and that
structured data supports much richer queries, Halevy et al. [7]
wanted to �“import�” the advantages of unstructured data to
structured data management. The bulk of this work described
mechanisms to facilitate the creation and sharing of structured
data, but not querying structured data.

7. CONCLUSION
In this paper, we investigate the approach of using keyword

search to lead users to forms for ad hoc querying of databases.
We consider a number of issues that arise in the implementation
for this approach: designing and generating forms in a
systematic fashion, handling keyword queries that are a mix of
data terms and schema terms, filtering out forms that would
produce no results with respect to a user�’s query, and ranking
and displaying forms in a way that help users find useful forms
more quickly. Our experience suggests several conclusions.
One is that a query rewrite by mapping data values to schema
values during keyword search, coupled with filtering forms that

would lead to empty results, is an attractive approach. Another
conclusion is that simply displaying the returned forms as a flat
list may not be desirable �– some way of grouping and presenting
similar forms to users is necessary.

Substantial scope for further work remains. In particular,
developing automated techniques for generating better form
descriptions, especially in the presence of grouping of forms,
appears to be a challenging and important problem. Also,
exploring the tradeoffs between keyword search directly over
the relational database and our approach is an intriguing topic.
Certainly forms can express queries not expressible in basic
keyword search; however, it is possible to ameliorate this
somewhat by augmenting basic keyword search with some
structured constructs. Discovering which approach is most
useful to users is an open question. Even on queries that are
expressible by both approaches, there is a basic philosophical
difference: our approach returns a ranked list of relevant queries
(expressed in what are hopefully user-friendly forms), whereas
the traditional keyword search approach returns ranked lists of
relevant answers. Determining under which circumstances each
is most appropriate is an important task.

8. REFERENCES
[1] S. Agrawal, S. Chaudhuri, and G. Das. DBXplorer: A System

for Keyword-Based Search over Relational Databases. ICDE,
2002.

[2] A. Bernstein and E. Kaufmann. Making the semantic web
accessible to the casual user: Empirical evidence on the
usefulness of semiformal query languages. IEEE Transactions
on Knowledge and Data Engineering, under review.

[3] G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti, and S.
Sudarshan. Keyword Searching and Browsing in Databases
using BANKS. ICDE, 2002.

[4] K. Chakrabarti, S. Chaudhuri, S. Hwang. Automatic
Categorization of Query Results. SIGMOD 2004.

[5] P. DeRose et al. DBLife: A Community Information
Management Platform for the Database Research Community.
CIDR 2007 Demo.

[6] D. W. Embley. NFQL: The Natural Forms Query Language.
ACM Transaction Database System, 1989.

[7] A. Halevy et al. Crossing the Structure Chasm. CIDR 2003.
[8] V. Hristidis, L. Gravano, Y. Papakonstantinou. Efficient IR-

Style Keyword Search over Relational Databases. VLDB 2003.
[9] V. Hristidis, Y. Papakonstantinou. DISCOVER: Keyword

Search in Relational Databases. VLDB, 2002.
[10] M. Jayapandian, H. V. Jagadish. Automated Creation of a

Form-based Database Query Interface. VLDB 2008.
[11] M. Jayapandian, H. V. Jagadish. Automating the Design and

Construction of Query Forms. ICDE 2006.
[12] M. Jayapandian, H. V. Jagadish. Expressive Query

Specification through Form Customization. EDBT 2008.
[13] R. Krishnamurthy, S. Raghavan, S. Vaithyanathan, H. Zhu.

Using Structured Queries for Keyword Information Retrieval.
IBM Technical Report RJ 10413.

[14] F. Liu, C. Yu, W. Meng, A. Chowdhury. Effective Keyword
Search in Relational Databases. SIGMOD 2006.

[15] Lucene. http://lucene.apache.org/
[16] G. Luo. Efficient Detection of Empty-Result Queries. VLDB

2006.
[17] M.M. Zloof. Query-by-Example: the Invocation and

Definition of Tables and Forms. VLDB 1975.

360

