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ABSTRACT
A primary challenge to large-scale data integration is creat-
ing semantic equivalences between elements from different
data sources that correspond to the same real-world entity
or concept. Dataspaces propose a pay-as-you-go approach:
automated mechanisms such as schema matching and refer-
ence reconciliation provide initial correspondences, termed
candidate matches, and then user feedback is used to incre-
mentally confirm these matches. The key to this approach
is to determine in what order to solicit user feedback for
confirming candidate matches.

In this paper, we develop a decision-theoretic framework
for ordering candidate matches for user confirmation using
the concept of the value of perfect information (VPI ). At
the core of this concept is a utility function that quantifies
the desirability of a given state; thus, we devise a utility
function for dataspaces based on query result quality. We
show in practice how to efficiently apply VPI in concert with
this utility function to order user confirmations. A detailed
experimental evaluation on both real and synthetic datasets
shows that the ordering of user feedback produced by this
VPI-based approach yields a dataspace with a significantly
higher utility than a wide range of other ordering strategies.
Finally, we outline the design of Roomba, a system that uti-
lizes this decision-theoretic framework to guide a dataspace
in soliciting user feedback in a pay-as-you-go manner.
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1. INTRODUCTION
As the amount and complexity of structured data

increases in a variety of applications, such as enterprise
data management, large-scale scientific collaborations [32],
sensor deployments [33], and an increasingly structured
Web [19], there is a growing need to provide unified access
to these heterogeneous data sources. Dataspaces [12]
provide a powerful abstraction for accessing, understanding,
managing, and querying this wealth of data by encompass-
ing multiple data sources and organizing their data over
time in an incremental, “pay-as-you-go” fashion.

One of the primary challenges facing dataspace systems
is large-scale semantic data integration [9]. Heterogeneous
data originating from disparate sources may use different
representations of the same real-world entity or concept.
For example, two employee records in two different enter-
prise databases may refer to the same person. Similarly, on
the Web there are multiple ways of referring to the same
product or person. Typically, a dataspace system employs a
set of mechanisms for semantic integration, such as schema
matching [25] and entity resolution [7], to determine seman-
tic equivalences between elements in the dataspace. The
output of these mechanisms are a set of candidate matches
that state with some confidence that two elements in the
dataspace refer to the same real-world entity or concept.

To provide more accurate query results in a dataspace
system, candidate matches should be confirmed by solicit-
ing user feedback. Since there are far too many candidate
matches that could benefit from user feedback, a system
cannot possibly involve the user in all of them. Here is
where the pay-as-you-go principle applies: the system incre-
mentally understands and integrates the data over time by
asking users to confirm matches as the system runs. One
of the main challenges for soliciting user feedback in such a
system is to determine in what order to confirm candidate
matches. In fact, this is a common challenge in a set of
recent scenarios where the goal is to leverage mass collab-
oration, or the so-called wisdom of crowds [31], in order to
better understand sets of data [11, 22, 35].

In this paper, we consider the problem of determining the
order in which to confirm candidate matches to provide the
most benefit to a dataspace. To this end, we apply decision
theory to the context of data integration to reason about
such tasks in a principled manner.

We begin by developing a method for ordering candidate
matches for user confirmation using the decision-theoretic
concept of the value of perfect information (VPI ) [26]. VPI
provides a means of estimating the benefit to the datas-
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pace of determining the correctness of a candidate match
through soliciting user feedback. One of the key advan-
tages of our method is that it considers candidate matches
produced from multiple mechanisms in a uniform fashion.
Hence, the system can weigh, for example, the benefit of
asking to confirm a schema match versus confirming the
identity of references to two entities in the domain. In this
regard, our work is distinguished from previous research in
soliciting user feedback for data integration tasks (e.g., [27,
37, 8]) that are tightly integrated with a mechanism (i.e.,
schema matching or entity resolution).

At the core of VPI is a utility function that quantifies the
desirability of a given state of a dataspace; to make a deci-
sion, we need to compare the utility of the dataspace before
the user confirms a match and the utility of the dataspace
after. Thus, we devise a utility function for dataspaces based
on query result quality. Since the exact utility of a datas-
pace is impossible to know as the dataspace system does not
know the correctness of the candidate matches, we develop
a set of approximations that allow the system to efficiently
estimate the utility of a dataspace.

We describe a detailed experimental evaluation on both
real and synthetic datasets showing that the ordering of
user feedback produced by our VPI-based approach yields a
dataspace with a significantly higher utility than a variety of
other ordering strategies. We also illustrate experimentally
the benefit of considering multiple schema integration mech-
anisms uniformly: we show that an ordering approach that
treats each class of mechanisms separately for user-feedback
yields poor overall utility. Furthermore, our experiments
explore various characteristics of data integration environ-
ments to provide insights as to the effect of environmental
properties on the efficacy of user feedback.

Finally, we outline the design of Roomba, a system that
incorporates this decision-theoretic framework to guide a
dataspace in soliciting user feedback in a pay-as-you-go man-
ner.

This paper is organized as follows. Section 2 describes
our terminology and problem setting. Section 3 discusses
our decision-theoretic framework for ordering match con-
firmations. Section 4 presents a detailed empirical evalua-
tion of our match ordering strategy. In Section 5 we show
how to relax the query answering model to consider uncon-
firmed matches. We describe Roomba in Section 6. Section 7
presents related work. We conclude in Section 8.

2. PRELIMINARIES
We begin by describing our problem setting and defining

the terms we use throughout the paper. Our overall setup
is shown in Figure 1.

Dataspace Triples
We model a dataspace D as a collection of triples of the form
〈object, attribute, value〉 (see Table 1 for an example).

Objects and attributes are represented as strings. Val-
ues can be strings or can come from several other domains
(e.g., numbers or dates). Intuitively, an object refers to some
real-world entity and a triple describes the value of some at-
tribute of that entity. Triples can also be thought of as
representing rows in binary relations, where the attribute is
the table name, the first column is the object, and the sec-
ond column is the value. Of course, in a dataspace, we do
not know the set of relations in advance.

Figure 1: Architecture for incorporating user feed-
back in a dataspace system.

We do not assume that the data in the dataspace is stored
as triples. Instead, the triples may be a logical view over
multiple sets of data residing in independent systems.

We use the term element to refer to anything that is either
an object, attribute, or value in the dataspace. Note that
the sets of strings used for objects, attributes, and values
are not necessarily disjoint.

〈object, attribute, value〉

t0 =〈Wisconsin, SchoolColor, Cardinal〉
t1 =〈Cal, SchoolColor, Blue〉
t2 =〈Washington, SchoolColor, Purple〉
t3 =〈Berkeley, Color, Navy〉
t4 =〈UW-Madison, Color, Red〉
t5 =〈Stanford, Color, Cardinal〉

Table 1: An example dataspace

Example 2.1. The example in Table 1 shows a dataspace
with six triples, describing properties of universities. 2

Dataspace Heterogeneity and Candidate Matches
Since the data in a dataspace come from multiple disparate
sources, they display a high degree of heterogeneity. For
example, the triples in a dataspace could be collected from
a set of databases in an enterprise or from a large collec-
tion of tables on the Web. As a result, different strings in
a dataspace do not necessarily denote different entities or
attributes in the real world. In our example, the objects
“Wisconsin” and “UW-Madison” refer to the same univer-
sity, the attributes “Color” and “SchoolColor” describe the
same property of universities, and the values “cardinal” and
“red” are the same in reality.

We assume that there is a set of mechanisms that try
to identify such equivalences between elements. In partic-
ular, there are techniques for schema matching that pre-
dict whether two attributes are the same [25], and there
are techniques for entity resolution (also referred to as ob-
ject de-duplication) that predict whether two object or value
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references are about the same real-world entity [7]. We as-
sume that the mechanisms employ techniques for dealing
with large amounts of data (e.g., [1]).

We model the output of these mechanisms as a set of
candidate matches, each of the form (e1, e2, c), where e1 and
e2 are elements in the dataspace and c is a number between
0 and 1 denoting the confidence the mechanism has in its
prediction. In this paper, we are agnostic to the details of
the mechanisms.

While in some cases the mechanisms can predict equiva-
lence between elements with complete confidence, most of
the time they cannot. Since query processing in a dataspace
system depends on the quality of these matches, query re-
sults will be better when the matches are certain. Thus,
our goal is to solicit feedback from users to confirm the
matches produced by the mechanisms. Confirming a can-
didate match involves posing a question about the match to
the user that can be answered with a “yes” or a “no”. We
assume there exists a separate component that can translate
a given candidate match into such a question.

Ideally, the system should ask users to confirm most or
even all uncertain matches. This approach, however, is not
feasible given the scale and nature of large-scale data in-
tegration. The number of candidate matches is potentially
large and users may find it inconvenient to be inundated
with confirmation requests. Hence, our approach is to con-
firm matches in a pay-as-you-go manner [12], where confir-
mations are requested incrementally. This approach takes
advantage of the fact that some matches provide more ben-
efit to the dataspace when confirmed than others: they are
involved in more queries with greater importance or are as-
sociated with more data. Similarly, some matches may never
be of interest, and therefore spending any human effort on
them is unnecessary.

Since only a fraction of the candidate matches can be con-
firmed, the challenge is to determine which matches provide
the most benefit when confirmed. Hence, the problem we
consider in this paper is ordering candidate matches for con-
firmation to provide the most benefit to the dataspace.

Clearly, the means by which the system asks for confir-
mation is important. There needs to be some way to formu-
late a natural language question given a candidate match.
Also, the system will likely have to ask multiple users the
same question in order to form a consensus in the spirit of
the ESP Game [35]. Furthermore, there may be subjective
cases where two elements may be the same to some users,
but not the same to others (e.g., red and cardinal are the
same color to most people, but are different to artists or
graphic designers). These issues are outside the scope of
this paper.

Perfect and Known Dataspace States
To model the benefit of confirming individual candidate
matches, we define the perfect dataspace DP corresponding
to D. In DP , all the correct matches have been reconciled
and two different strings necessarily represent distinct
objects, attributes, or values in the real world. In this
paper, we assume that the real world can be partitioned
as such using only strings; in some cases, however, it may
be necessary to contextualize the strings with additional
metadata to avoid linking unrelated concepts through a
common string (e.g., the strings “Cal” and “City of Berke-
ley” may be incorrectly deemed equivalent if the matches

(“Cal”,“Berkeley”, c1) and (“Berkeley”, “City of Berkeley”,
c2) are confirmed). Once the equivalence between strings
in D is known, DP can be produced by replacing all the
strings belonging to the same equivalence class by one
representative element of that class. Of course, keep in
mind that we do not actually know DP .

The known dataspace for D, on the other hand, consists
of the triples in D and the set of equivalences between el-
ements determined by confirmed matches. Whenever the
system receives a confirmation of a candidate match, it ap-
plies the match to the dataspace, updating the known datas-
pace state. That is, if a match (e1, e2, c) is confirmed, then
we replace all occurrences of e2 with e1 (or vice versa). In
practice, considering that this replacement operation may
be expensive to apply very often, or that the triples are only
a logical view of the data, we may want to model the con-
firmed matches as a separate concordance table.

At any given point, query processing is performed on
the current known dataspace state. A confirmed match
(e1, e2, c) causes the system to treat the elements e1 and
e2 as equivalent for query processing purposes (potentially
through the use of a concordance table as discussed above).
Initially, we assume that only confirmed matches are used
in query processing; we relax this requirement in Section 5
to accommodate other query answering models.

Queries and Workloads
Our discussion considers atomic queries, keyword queries
and conjunctive queries.

An atomic query is of the form (object = d), (attribute =
d), or (value = d) where d is some constant. The answer to
an atomic query Q over a dataspace D, denoted by Q(D),
is the set of triples that satisfy the equality.

A keyword query is of the form k, where k is a string.
A keyword query is shorthand for the following: ((object =
k)∨(attribute = k)∨(value = k)); i.e., a query that requests
all the triples that contain k anywhere in the triple.

Finally, a conjunctive query, a conjunction of atomic and
keyword queries, is of the form (a1 ∧ . . . ∧ an) where ai is
either an atomic query or a keyword query. The answer
returned by a conjunctive query is the intersection of the
triples returned by each of its conjuncts.

Recall that when querying the known dataspace D, the
query processor utilizes all the confirmed candidate matches,
treating the elements in each match equivalently. On the
other hand, the query Q over DP , the perfect dataspace cor-
responding to D, takes into consideration all matches that
are correct in reality. We denote the result set of Q over DP

by Q(DP ).
When determining which candidate match to confirm, the

system takes into consideration how such a confirmation
would affect the quality of query answering on a query work-
load. A query workload is a set of pairs of the form (Q, w),
where Q is a query and w is a weight attributed to the query
denoting its relative importance. Typically, the weight as-
signed to a query is proportional to its frequency in the
workload, but it can also be proportional to other measures
of importance, such as the monetary value associated with
answering it, or in relation to a particular set of queries for
which the system is to be optimized.
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Dataspace Statistics
We assume the dataspace system contains basic statistics on
occurrences of elements in triples in the dataspace. In partic-
ular, we assume the system maintains statistics on the car-
dinality of the result set of any atomic query over the datas-
pace D. For example, for the atomic query Q : (object = d)
we assume the system stores the number of triples in D that
have d in their first position, denoted |D1

d|. For conjunc-
tive queries, the system may either maintain multi-column
statistics to determine the result sizes of conjunctive queries
or use standard techniques in the literature to estimate such
cardinalities (e.g., [15, 4]).

3. ORDERING MATCH CONFIRMATIONS
This section introduces a decision-theoretic approach to

ordering candidate matches for user confirmation in a datas-
pace. The key concept from decision theory we use is the
value of perfect information (VPI ) [26]. The value of perfect
information is a means of quantifying the potential benefit
of determining the true value for some unknown. In what
follows, we explain how the concept of VPI can be applied to
the context of obtaining information about the correctness
of a given candidate match, denoted by mj .

Suppose we are given a dataspace D and a set of candi-
date matches M = {m1, . . . , ml}. Let us assume that there
is some means of measuring the utility of the dataspace w.r.t.
the candidate matches, denoted by U(D, M), which we ex-
plain shortly. Given a candidate match mj , if the system
asks the user to confirm mj , there are two possible outcomes,
each with their respective dataspace: either mj is confirmed
as correct or it is disconfirmed as false. We denote the two
possible resulting dataspaces by D+

mj
and D−

mj
.

Furthermore, let us assume that the probability of mj be-
ing correct is pj , and therefore the expected utility of con-
firming mj can be expressed as the weighted sum of the two
possible outcomes: U(D+

mj
, M \ {mj}) · pj + U(D−

mj
, M \

{mj}) · (1− pj). Note that in these terms we do not include
mj in the set of candidate matches because it has either
been confirmed or disconfirmed.

Hence, the benefit of confirming mj can be expressed as
the following difference:

Benefit(mj) =U(D+
mj

, M \ {mj}) · pj+

U(D−
mj

, M \ {mj}) · (1− pj)−
U(D, M). (1)

Broadly speaking, the utility of a dataspace D is measured
by the quality of the results obtained for the queries in the
workload W on D compared to what the dataspace system
would have obtained if it knew the perfect dataspace DP .
To define U(D, M), we first need to define the result quality
of the query Q over a dataspace D, which we denote by
r(Q, D, M).

Recall that Q is evaluated over the dataspace D with the
current known set of confirmed matches. Since our queries
do not involve negation, all the results the system returns
will be correct w.r.t. DP , but there may be missing results
because some correct matches are not confirmed. Hence, we
define

r(Q, D, M) =
|Q(D)|
|Q(DP )|

and the utility of the dataspace is defined as the weighted
sum of the qualities for each the queries in the workload:

U(D, M) =
X

(Qi,wi)∈W

r(Qi, D, M) · wi. (2)

Our goal is to order matches to confirm by the benefit out-
lined in Equation 1: the matches that potentially produce
the most benefit when confirmed are presented to the user
first. However, in order to put this formula to use, we still
face two challenges. First, we do not know the probability pj

of the candidate match mj being correct. Second, since we
do not know the perfect dataspace DP , we cannot actually
compute the utility of a dataspace as defined in Equation 2.

We address the first challenge by approximating the prob-
ability pj by cj , the confidence measure associated with can-
didate match mj . In practice, the confidence numbers asso-
ciated with the candidate matches are not probabilities, but
for our purposes it is a reasonable approximation to interpret
them as such. In Section 4, we show how to handle cases
where such an approximation does not hold. The second
challenge is the topic of the next subsection.

3.1 Estimated Utility of a Dataspace
In what follows, we show how to estimate the utility of a

dataspace using expected utility . Note that the set M repre-
sents the uncertainty about how D differs from the perfect
dataspace DP ; any subset of the candidate matches in M
may be correct. We denote the expected utility of D w.r.t.
the matches M by EU(D, M) and the expected quality for
a query Q w.r.t. D and M as Er(Q, D, M).

Once we have EU(D, M), the value of perfect information
w.r.t. a particular match mj is expressed by the following
equation, obtained by reformulating Equation 1 to use cj

instead of pj and to refer to expected utility rather than
utility:

V PI(mj) =EU(D+
mj

, M \ {mj}) · cj+

EU(D−
mj

, M \ {mj}) · (1− cj)−
EU(D, M). (3)

The key to computing EU(D, M) is to estimate the size
of the result of a query Q over the perfect dataspace DP .
We illustrate our method for computing Er(Q, D, M) for
atomic queries of the form Q : (object = d), where d is some
constant. The reasoning for other atomic, keyword, and con-
junctive queries is similar. Once we have Er(Q, D, M), the
formula for EU(D, M) can be obtained by applying Equa-
tion 2.

Let us assume that the confidences of the matches in M
being correct are independent of each other and that M is a
complete set of candidates; i.e., if e1 and e2 are two elements
in D and are the same in DP , then there will be a candi-
date match (e1, e2, c) in M for some value of c. Given the
dataspace D, there are multiple possible perfect dataspaces
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that are consistent with D and M . Each such dataspace is
obtained by selecting a subset M1 ⊆ M as correct matches,
and M \ M1 as incorrect matches. We denote the perfect
dataspace obtained from D and M1 by DM1 .

We compute Er(Q, D, M) by the weighted result quality
of Q on each of these candidate perfect dataspaces. Since we
assume that the confidences of matches in M are indepen-
dent of each other, we can compute Er(Q, D, M) as follows:

Er(Q, D, M) =
X

M1⊆M

|Q(D)|
|Q(DM1)|Pr(DM1) (4)

where

Pr(DM1) =
Y

mi∈M1

ci ·
Y

mi 6∈M1

(1− ci).

Finally, to compute Equation 4 we need to show how to
evaluate |Q(DM1)|, the estimated size of Q on one of the
possible candidate perfect dataspaces.

Recall that the size of Q over D, |Q(D)|, is the number
of triples in D where d occurs in the first position of the
triple. Hence, |Q(D)| = |D1

d|, which can be found using the
statistics available on the dataspace. In DM1 , the constant d
is deemed equal to a set of other constants in its equivalence
class, d1, . . . , dm. Hence, the result of Q over DM1 also
includes the triples with d1, . . . , dm in their first position
and therefore |Q(DM1)| = |D1

d|+ |D1
d1 |+ . . . + |D1

dm
|, which

can also be computed using the dataspace statistics.

3.2 Approximating Expected Utility
In practice, we do not want to compute Equation 4

exactly as written because it requires iterating over all
possible candidate perfect dataspaces, the number of which
is exponential in |M |, the size of the set of candidate
matches. Hence, in this subsection we show how we
approximate EU(D, M) with several simplifying assump-
tions. Our experimental evaluation shows that despite our
approximations, our approach produces a good ordering of
candidate matches.

Two approximations are already built into our develop-
ment of Equation 4. First, the confidences of the matches
in M are not necessarily independent of each other. There
may, for instance, be one-to-one mappings between two data
sources such that a disconfirmed match between two ele-
ments would increase the confidence of all other matches in
which those elements participate; such considerations can be
layered on top of the techniques presented here. Second, the
set M may not include all possible correct matches, though
we can always assume there is a candidate match for every
pair of elements in D.

The main approximation we make when we compute the
VPI w.r.t. a candidate match mj of the form (e1, e2, cj) is to
assume that M = {mj}. That is, we assume that M includes
only the candidate match for which we are computing the
VPI. The effect of this assumption is that we consider only
two candidate perfect dataspaces, one in which mj holds
and the other in which mj does not hold. We denote these
two perfect dataspaces by De1=e2

mj
and De1 6=e2

mj
, respectively.

Given this approximation, we can rewrite Equation 4
where {mj} is substituted for M :

Er′(Q, D, {mj}) =
|Q(D)|

|Q(De1=e2
mj )| cj+

|Q(D)|
|Q(De1 6=e2

mj )|
(1− cj) (5)

and therefore the expected utility of D w.r.t. M = {mj} can
be written as

EU(D, {mj}) =
X

(Qi,wi)∈W

wi · (
|Qi(D)|

|Qi(D
e1=e2
mj )| cj+

|Qi(D)|
|Qi(D

e1 6=e2
mj )|

(1− cj))

=
X

(Qi,wi)∈W

wi ·
|Qi(D)|

|Qi(D
e1=e2
mj )| cj+

X
(Qi,wi)∈W

wi ·
|Qi(D)|

|Qi(D
e1 6=e2
mj )|

(1− cj). (6)

3.3 The Value Of Perfect Information
Now let us return to Equation 3. By substituting {mj}

for M , we obtain the following:

V PI(mj) =EU(D+
mj

, {}) · cj+

EU(D−
mj

, {}) · (1− cj)−
EU(D, {mj}). (7)

Now note that once we employ the assumption that
M = {mj}, Er′(Q, D+

mj
, {}) and Er′(Q, D−

mj
, {}) are both

1 because they evaluate the utility of a dataspace that is
the same as its corresponding perfect dataspace. Thus,
using these values with Equation 6, EU(D+

mj
, {}) · cj and

EU(D−
mj

, {}) · (1 − cj) become
P

(Qi,wi)∈W wi · cj andP
(Qi,wi)∈W wi · (1 − cj), respectively. Furthermore, note

that the last term of Equation 6 also evaluates the utility
of a dataspace that is the same as its corresponding perfect
dataspace and thus simplifies to

P
(Qi,wi)∈W wi · (1 − cj).

Therefore, this term cancels with the second term of
Equation 7. Hence we are left with the following:

V PI(mj) =
X

(Qi,wi)∈W

wi · cj−

X
(Qi,wi)∈W

wi · cj
|Qi(D)|

|Qi(D
e1=e2
mj )|

=
X

(Qi,wi)∈W

wi · cj

„
1− |Qi(D)|

|Qi(D
e1=e2
mj )|

«
.

Finally, we observe that only queries in W that refer to
either e1 or e2 can contribute to the above sum; otherwise,
the numerator and denominator are the same. Hence, if
we denote by Wmj the set of queries that refer to either e1

or e2, then we can restrict the above formula to yield the
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following, which is the one we use in our VPI-based user
feedback ordering approach:

V PI(mj) =
X

(Qi,wi)∈Wmj

wi · cj

„
1− |Qi(D)|

|Qi(D
e1=e2
mj )|

«
. (8)

By calculating the VPI value for each candidate match
using this equation, we can produce a list of matches ordered
by the potential benefit of confirming the match.

Example 3.1. Consider an example unconfirmed candi-
date match mj = (“red”,“cardinal”, 0.8) in the dataspace
from Example 2.1. We compute the value of perfect infor-
mation for mj as follows.

Assume that the dataspace workload W contains two
queries relevant to mj, Q1 : (value = “red”) with a weight
w1 = 0.9 and Q2 : (value = “cardinal”) with a weight
w2 = 0.5, and thus Wmj = {(Q1, 0.9), (Q2, 0.5)}. In
our example dataspace D, the cardinalities of the two
relevant values in the third position is |D3

“red” | = 1 and
|D3

“cardinal” | = 2. Therefore, the query cardinalities in
the known dataspace D are |Q1(D)| = |D3

“red” | = 1
and |Q2(D)| = |D3

“cardinal” | = 2. In the perfect
dataspace where the values “cardinal” and “red” refer
to the same color, the cardinality for both queries is
|Q(D“red”=“cardinal”

mj
)| = |D3

“red” |+ |D3
“cardinal” | = 3.

Applying Equation 8 to compute the VPI for mj, we have:

V PI(mj) =w1 · cj

 
1− |Q1(D)|

|Q1(D“red”=“cardinal”
mj

)|

!
+

w2 · cj

 
1− |Q2(D)|

|Q2(D“red”=“cardinal”
mj

)|

!

=0.9 · 0.8

„
1− 1

3

«
+ 0.5 · 0.8

„
1− 2

3

«
= 0.61.

This value represents the expected increase in utility of the
dataspace after confirming candidate match mj. 2

4. EVALUATION
In this section we present a detailed experimental evalua-

tion on both real-world and synthetic datasets of the VPI-
based approach presented in the previous section.

4.1 Google Base Experiments
The first set of experiments we present use real-world

datasets derived from Google Base [13].

Experimental Setup

Google Base. Google Base is an online repository of semi-
structured, user-provided data. The primary unit of data
in Google Base is an item. Items consist of one or more
attribute/value pairs (e.g., 〈“make”= “Toyota”, “model” =
“Prius”〉). Items are organized into item types, which are
essentially domains or verticals, such as vehicles or recipes.
For each item type, Google Base provides a set of recom-
mended attributes (i.e., schema) and popular values for each
attribute. Users can, however, make up their own attributes
and values for their items. Since each user is free to use
their own terminology when uploading items, there are many

Characteristic Restricted Full

Total items 8000 16000
Total triples 60716 148050
Unique triples 52773 113489
Total attributes 333 708
Total values 6900 16924
Total elements 7233 17632
Candidate matches 839 4853
Percent correct matches 0.33 0.23
Avg matches per element 2.8 4.9

Table 2: Statistics for the Google Base datasets. To-
tal items denotes the total number of Google Base
items in each dataset. Each of these items may con-
tain multiple triples and thus total triples is the total
number of triples contained in those items. Many
of these triples are identical: unique triples is the
number of unique triples in each dataset. In these
datasets, the elements of interest are attributes and
values; this table shows the counts for each of these
types of elements and the total number of elements.
Additionally, we show statistics for the matches: the
total number of matches produced by the mecha-
nisms (Candidate matches), the fraction of correct
matches (Percent correct matches), and the average
number of matches in which each element partici-
pates (Avg matches per element).

cases where different strings for attributes or values in two
different items refer to the same concept in reality. Exam-
ples of such correspondences are: (“address” ↔ “location”),
(“door count”↔ “doors”), and (“tan”↔ “beige”).

Google Base datasets. To collect the data used for our
experiments, we sampled Google Base to get 1000 elements
from each of the 16 standard item types recommended by
Google Base. These item types encompass most of the
data in Google Base across a wide range of domains. The
item types we sample from are as follows: business locations,
course schedules, events and activities, housing, jobs, mobile,
news and articles, personals, products, recipes, reference arti-
cles, reviews, services, travel packages, vehicles, wanted ads.

We partition this sample into two datasets (characteristics
for these datasets are shown in Table 2):
• Full : This dataset contains all 16 item types, and thus rep-
resents the full range of semantic heterogeneity that exists in
Google Base. Due to this heterogeneity, correct correspon-
dences are challenging for the mechanisms to determine and
thus many of the matches are incorrect; only 23% of the
matches in this dataset are correct matches.
• Restricted : This dataset contains a relatively small amount
of semantic heterogeneity: there are fewer cases where two
strings refer to the same entity. Thus, the mechanisms pro-
duce a smaller number of matches and a higher percentage
of correct matches (see Table 2). This dataset was created
by selecting items from item types with less heterogeneity as
follows: business locations, housing, news and articles, prod-
ucts, recipes, reference articles, reviews, wanted ads.

Ground truth. In order to evaluate our techniques against
ground-truth, we manually annotated the dataset with cor-
respondences between attributes and values in each of the
datasets.
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Mechanisms. We employ two different types of mecha-
nisms, each applied to both attribute and value matching.

For the first mechanism, we use Google Base’s internal at-
tribute and value matching, termed adjustments, designed to
convert attributes and values to canonical strings. For ex-
ample, the attribute“Address” is converted to“location”and
the value“F”is converted to“female”. The Google Base data
we collected includes for each adjustment both the original
string and the adjusted string. Each original and adjusted
string pair represents a candidate match. Note that matches
produced by this mechanism are particularly challenging to
use in VPI calculations as the matches do not have an asso-
ciated confidence. We discuss how to address this challenge
below.

The second mechanism we use is the SecondString library
for approximate string matching [29]. This mechanism also
operates on both attributes and values. From this library,
we use the SoftTFIDF approach [7], a hybrid approach com-
bining the Jaro-Winkler metric [36] (a measure based on how
many characters the strings have in common and their or-
dering) with TF-IDF similarity. This mechanism was shown
to have the best string matching accuracy in a variety of ex-
periments [7]. For a match’s confidence, this mechanism
produces a “score”, a number between 0 and 1, with 1 indi-
cating the highest degree of similarity. While this score is
loosely correlated with the probability the match is correct,
it is inaccurate. To limit the number of candidate matches,
we only consider matches with a score greater than 0.5 for
confirmation.

Candidate matches. Using these two mechanisms, we
produce a set of candidate matches for each dataset. We
annotate these matches as correct or incorrect as determined
by the manual annotation.1

Converting confidences to probabilities. Since our
VPI-based approach uses the confidence numbers produced
by mechanisms as probabilities to drive its VPI calculations,
a major challenge presented by these candidate matches is
to convert the match confidences into probabilities.

To address this challenge, we use a histogram-based learn-
ing approach. As the system confirms matches, it compiles
how many times each mechanism produces correct or in-
correct matches and the corresponding input confidence (or
lack thereof) for each match. Using these observed probabil-
ities, the system maintains a histogram for each mechanism
that maps the confidence value for matches produced by
that mechanism to a probability: each bucket corresponds
to an input confidence range and the bucket contains the
computed probability for that input confidence. Upon each
confirmed match (or after a batch of confirmed matches), the
system recomputes the probabilities for each mechanism and
then applies the computed probabilities to the remaining
candidate matches based on their confidences. Note that for
mechanisms without any confidence value (e.g., the Google
Base adjustments in this scenario), this approach assigns a
single confidence value based on the percentage of correct
matches produced (and confirmed as correct) by that mech-
anism (i.e., the histogram only has one bucket).

Queries. We use a query generator to generate a set of
queries. Each generated query refers to a single element

1All identified correspondences are captured in the candi-
date matches.

and is representative of the set of queries that refer that el-
ement. For simplicity, the generator only produces keyword
queries. The generator assigns to each query a weight w
using a distribution to represent the frequency of queries on
this element. Since the distribution of query-term frequen-
cies on Web search engines typically follows a long-tailed
distribution [30], for w in our experiments we use values
selected from a Pareto distribution [2]. We evaluate other
query workloads below.

Match ordering strategies. We compare a variety of can-
didate match ordering strategies. Each strategy implements
a score(mj) function, which returns a numerical score for a
given candidate match mj = (e1, e2, cj). A higher score in-
dicates that a candidate match should be confirmed sooner.
• V PI: score(mj) = V PI(mj). Each candidate match is
scored with the value of perfect information as defined in
Equation 8.
• QueryWeight: score(mj) =

P
(Qi,wi)∈Wmj

wi. Each can-

didate match is scored with the sum of query weights for that
match’s relevant queries. The intuition behind this strategy
is that important queries should have their relevant matches
confirmed earlier.
• NumTriples: score(mj) = |De1 | + |De2 |. This strategy
scores each candidate match by number of triples in which
the two elements in the match appear. The rationale behind
this strategy is that matches containing elements appearing
in many triples are more important since queries involving
the elements in these matches will miss more data if the
match is correct but not confirmed.
• GreedyOracle: For each unconfirmed candidate match,
this strategy runs the entire query workload W and measures
the actual increase in utility resulting from confirming that
match. To calculate the actual utility, this strategy uses
the manual annotation for all matches to determine if they
are correct or not in reality. The match with the highest
resulting utility is chosen as the next confirmation. Note
that this strategy is not a realistic ordering approach as
it relies on knowing the correctness of all matches as well
as running the entire workload for all unconfirmed matches
for each match confirmation. It is an upper-bound on any
myopic strategy.
• Random: Finally, the naive strategy for ordering confirma-
tions is to treat each candidate match as equally important.
Thus, the next match to confirm in this strategy is chosen
randomly. This strategy provides a baseline to which the
above strategies can be compared

Using each of the above strategies, we score all candidate
matches and choose the match with the highest score to
confirm next.

Confirming candidate matches. Given the next can-
didate match to confirm, we confirm it using the correct
answer as determined by the manual annotation. After
each confirmed match, the we update the set of equivalence
classes and recompute the next best match for each strategy.

Measurement. After confirming some percentage of can-
didate matches using each of the orderings produced by each
strategy, we run the query workload W over the dataspace
and measure the utility using the utility function defined in
Equation 2. We report the percent of improvement in utility
over a dataspace with no confirmed matches.
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Figure 2: Basic test comparing a VPI-based ap-
proach for ordering user feedback to other ap-
proaches run over the Full dataset.
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Figure 3: Basic test comparing a VPI-based ap-
proach for ordering user feedback to other ap-
proaches run over the Restricted dataset.

Basic Tests
To study the basic efficacy of our VPI-based approach, the
first experiments we present investigate the performance of
different ordering strategies on both of the Google Base
datasets. We use the basic setup as described above with
each dataset.

The resulting utility produced by confirming matches or-
dered by each strategy for the Full dataset is shown in Fig-
ure 2. The results in this graph can be interpreted as follows.
Since only a small fraction of candidate matches can be con-
firmed in a large-scale dataspace, the goal is to provide the
highest utility with as few confirmations as possible. Thus,
the slope of the curve at lower percentages of confirmations
is the key component to the curve: the steeper the slope,
the better the ordering.

First observe the curve for the GreedyOracle strategy.
This approach selects the most beneficial candidate matches
to confirm first and thus the curve is very steep for the early
confirmations. As it confirms more matches, the curve flat-
tens out as these matches provide less benefit to the datas-

pace. Finally, it converges to the utility of the perfect datas-
pace, i.e., the dataspace where all element equivalences are
known.

As can be seen, the V PI strategy performs compara-
tively well: it tracks the GreedyOracle strategy much more
closely than any of the other strategies. The V PI strategy
performs well despite the fact that this dataset is particu-
larly challenging for any non-oracle strategy as there is a
large degree of semantic heterogeneity. First, this dataset
contains many incorrect matches, which provide no bene-
fit to the dataspace’s utility when confirmed. More chal-
lenging, however, is that many of the incorrect matches are
given similar confidences. As an example of the challenges
in this dataset, consider the following matches created by
the SecondString mechanism in the vehicles item type: the
candidate match (“AM/FM Stereo Cassette/Cd”, “AM/FM
Stereo Cassette & CD Player”) is correct in reality with a
confidence of 0.91 while the match (“AM/FM Stereo Cas-
sette/Cd”, “AM/FM Stereo Cassette”) is incorrect in real-
ity with a similar confidence of 0.92. The V PI strategy
is unable to discern between these two matches and thus
occasionally incorrectly orders them. Despite these chal-
lenges, however, the V PI strategy substantially outperforms
all other non-oracle strategies.

In contrast, the slopes of the curves for the other strate-
gies are much shallower; it takes many more confirmations to
produce a dataspace with a high utility. The NumTriples
strategy does particularly poorly. These results emphasize
the importance of considering the query workload when se-
lecting candidate matches for confirmation: NumTriples
performs poorly because it fails to consider the workload.
The utility of the dataspace increases roughly linearly as
the percent of confirmations increase for the Random curve
since it treats each candidate match as equally important.

The results for the basic tests on the Restricted dataset are
shown in Figure 3. Here, the V PI-strategy does particularly
well; it tracks the GreedyOracle curve closely. Since this
dataset contains less semantic heterogeneity than the Full
dataset, the V PI strategy is able to easily discern the best
matches to confirm.

While these graphs provide a holistic view of how each
strategy performs, we present in Table 3 two alternative
views of this data (for the Restricted dataset) to better
illustrate the effect of match ordering strategy on datas-
pace utility. First, since a large-scale dataspace system can
only request feedback for a very small number of candidate
matches, we report the improvement after a small fraction
of confirmed matches (here, 10%). Second, since the goal of
user feedback is to move the known dataspace state towards
the perfect dataspace, we report how many confirmations are
required from each strategy until the utility of the dataspace
reaches some fraction of the utility of the perfect dataspace
(here, 0.95).

These numbers further emphasize the effectiveness of a
VPI-based ordering approach. With only a small percentage
of confirmations using the V PI strategy, the utility of the
dataspace closely approaches the utility of the perfect datas-
pace. For instance, with only 20% of the confirmations, the
V PI strategy is able to produce a dataspace that is 95% of
the perfect dataspace, equivalent to the oracle strategy and
over twice as fast as the next-best strategy.
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Strategy 10% matches con-
firmed

0.95 of perfect
dataspace

V PI 17.2 0.20
QueryWeight 7.0 0.55
NumTriples 3.9 0.75
Random 3.2 0.80
GreedyOracle 18.7 0.20

Table 3: Two measures of candidate match ordering
effectiveness (shown for the Restricted dataset). The
first column shows the resulting percent of improve-
ment after confirming 10% percent of the matches.
The second column shows the fraction of confirmed
matches required to reach a dataspace whose utility
is 0.95 of the utility of the perfect dataspace.

Partitioned Ordering
To study the need for a single unifying means of reasoning
about user feedback in a dataspace, we compare the V PI
approach to an ordering algorithm that treats candidate
matches produced by different mechanisms separately.
The general idea with this strategy is that the output of
each mechanism is ordered separately in a partition for
each mechanism’s matches, and then these partitions are
ordered. We term this ordering strategy Partitioned, where
score(mj) is calculated as follows. The algorithm separates
its matches into partitions corresponding to the output
of the two mechanisms (GoogleBase adjustments and
SecondString). These partitions are roughly ordered based
on the relative performance of each mechanism. For this
experiment, Partitioned orders Google Base adjustments
first, followed by SecondString matches. To provide a fair
comparison, within each partition the matches are ordered
by their VPI score. This strategy represents the case where
individual mechanisms each perform their own ordering;
there is no global ordering beyond deciding how to order
the partitions.

For this experiment, we compare the Partitioned strategy
to the V PI strategy using the experimental setup as in the
basic tests using the Restricted dataset. We also include the
curve for the Random strategy for reference. The results
are shown in Figure 4.

Here we can see the distinct phases of match confirmations
in the Partitioned curve: in the early confirmations (prior
to point A), the algorithm confirms matches from Google
Base adjustments, after which (after point B) it confirms
SecondString matches.

Of note in this figure is the tail end of the Google Base
confirmation phase (point A) and the start of the Second-
String confirmation phase (point B). The highly-ranked
SecondString confirmations provide more benefit than the
lower-ranked Google Base confirmations, but since the two
types of candidate matches are ordered separately, these
non-beneficial Google Base matches are confirmed first and
thus the overall utility of the dataspace suffers: at 10%
confirmations, the percent improvement for Partitioned is
9.4%, whereas with the V PI strategy it is 17.2%.

This problem is not just a result of our particular setup
or due to the details of the Partitioned strategy. Rather,
any strategy that treats the output from different mecha-
nisms separately will suffer from the same issues we see here.
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Figure 4: Experiment comparing a strategy that
separately orders candidate matches from disparate
mechanisms to the V PI strategy, run on the Re-
stricted dataset.

The problem is a result of multiple independent mechanisms
using different, incomparable means of ordering candidate
matches and thus there is no way to balance between the
output of multiple mechanisms.

The key to solving this problem is that candidate matches
from different mechanisms need to be globally ordered based
on the overall benefit to the dataspace and not based on their
ranking relative to matches produced within each mech-
anism. The V PI strategy scores matches from different
mechanisms in a uniform manner based on the expected in-
crease in utility of the dataspace on confirmation; thus it is
able to interleave match confirmations from multiple mech-
anisms in a principled manner to produce a dataspace with
a higher utility using less user feedback.

Different Query Workloads
Here, we explore the effect of different query workloads
on the V PI strategy. We generate workloads for the Full
dataset containing query weights using different types
of distributions: Pareto (modified to produce values
between 0 and 1) as was used above, a Normal distribution
with a mean of 0.5 and a standard deviation of 0.25
(Normal(0.5, 0.25)), a Uniform distribution between 0 to
1 (Uniform(0, 1)), and a Uniform distribution between
0.5 to 1 (Uniform(0.5, 1)). We generate a curve for each
query weight distribution using the V PI ordering strategy.
Additionally, we show the curve for the Random strategy
to provide a baseline. Changing the query weights used
to generate the workload affects the overall utility of the
dataspace; thus, in order to present all curves on the same
graph, we report the percent of potential improvement in
utility: i.e., the ratio of improvement between a dataspace
with no confirmations and the perfect dataspace. The
results are shown in Figure 5.

Observe that while the V PI strategy performs best with
the highly-skewed Pareto query workload, its effectiveness
on all other workloads is close to that of the Pareto work-
load. Thus, across a range of query workloads in this sce-
nario, the V PI strategy effectively orders candidate matches
for confirmation.
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Figure 5: The effect of different query workloads on
the performance of the V PI strategy run over the
Full dataset.

Different Means of Assigning Confidence
Recall that Google Base does not assign confidences to its
adjustments and the confidences for the matches produced
by SecondString are not accurate as probabilities. In the
experiments above, we used the histogram-based approach
for converting confidences to probabilities as discussed in
Section 4.1. Here, we investigate the effectiveness of this
approach on the V PI-based strategy’s performance.

We compare the histogram-based technique as used in
the previous experiments (labeled here as VPI with full
histogram) to three other VPI-based approaches and the
Random strategy (shown in Figure 6). In VPI with 0.5 for
GB, the confidences for the matches produced by Google
Base set to 0.5, while the confidences for the SecondString
matches are left as is. This strategy is the baseline strategy.
In VPI with GB histogram, the Google Base matches are
converted to probabilities using the histogram technique
while the SecondString matches are left as is. In VPI with
SStr histogram, the SecondString matches are converted
using the histogram technique while the confidence for the
Google Base matches are left at 0.5. We also experimented
with different bucket sizes for the histogram technique.
As expected, the effectiveness is higher at smaller bucket
sizes, though there was not a marked difference. For all
experiments with the histogram approach, we use a bucket
size of 0.01.

The results of this experiment are presented in Figure 6.
First, observe that the curve for VPI with 0.5 for GB pro-
vides the least benefit for ordering confirmations. This per-
formance is due to the inaccurate confidences produced by
SecondString and the lack of confidences for Google Base
matches. A slight improvement occurs when using the his-
togram approach to convert the confidence for the Google
Base matches (VPI with GB histogram). The improvement
is small because the conversion is very coarse-grained: all
Google Base matches have no input confidence and thus
get assigned to the same histogram bucket resulting in all
Google Base matches getting the same output probability.
When the SecondString match confidences are converted to
probabilities, we see a large jump in the V PI strategy’s ef-
fectiveness (VPI with SStr histogram). Here, the histogram
approach is able to map input confidences to probabilities
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Figure 6: The performance of the V PI strategy
using different means of assigning probabilities to
matches, run over the Full dataset.

at a very fine resolution. Finally, when confidences for both
SecondString and Google Base matches are converted (VPI
with full histogram), the V PI strategy has the best perfor-
mance, though its performance is only slightly better than
just converting the SecondString matches due to the issues
with the Google Base matches mentioned above. This ex-
periment shows that the histogram-based technique for con-
verting confidences to probabilities can provide a substantial
increase in effectiveness for the V PI strategy, but in order to
realize its full potential it is better to have initial confidences
assigned per match.

4.2 Synthetic Data Experiments
The experiments above show that the VPI-based strat-

egy is effective in two real-world dataspace scenarios derived
from Google Base data. In order to validate our VPI-based
strategy in an even wider range of scenarios, we built a datas-
pace generator capable of creating dataspaces with different
characteristics.

Results on Synthetic Datasets
Using the dataspace generator, we ran a series of tests that
evaluated the V PI strategy under a variety of dataspace
environments. We highlight some of the findings from these
experiments here.

Basic tests. We generated a dataspace that recreates a
realistic large-scale data integration environment using re-
alistic values or distributions for different characteristics:
e.g., 100000 elements and a zipfian distribution for the query
weights and items per element. In this dataspace, the V PI
strategy is able to produce a dataspace whose utility remains
within 5% of the utility produced by the oracle strategy.

Robustness tests. The V PI strategy is robust to vari-
ations in the dataspace characteristics: manipulating one
characteristic of the dataspace (e.g., matches per element,
items per element) while leaving the others at the realis-
tic values used in the basic tests above has very little effect
on the efficacy of the V PI strategy. For instance, to test
the effect of differing degrees of heterogeneity, we gener-
ate dataspaces with different distributions for the number
of matches in which an element participates. Regardless of
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the distribution used in this experiment, the utilities pro-
duced by the V PI strategy are within 10% of the percent of
potential improvement in utility (as described in the query
workload experiment in the previous section). We varied
other parameters of the dataspace and ran similar experi-
ments; all experiments produced results similar to the first
experiment. In particular, we varied the distributions for the
number items in which each element appears, introduced er-
rors into element cardinality statistics, used different mech-
anism accuracies, and used different distributions for the
query weights (as investigated above with the Google Base
datasets).

Parameter exploration tests. By setting all parameters
but one to trivial constants (e.g., 1 item per element, 0.5
query weight), we can study the effect that one parameter
has on the V PI strategy’s effectiveness. We can then deter-
mine in what environments it is particularly important to
employ an intelligent ordering mechanism for user feedback.

Our experiments reveal that in cases where there is a wide
range or high skew in the values for a particular parameter,
the benefit provided by the V PI strategy is greater: it is
able to effectively determine the matches that provide the
most benefit and confirm them first.

For instance, when we manipulate the query weight dis-
tribution (and set all other parameters to trivial constants),
the percent of potential improvement in the dataspace by
the V PI strategy after confirming 10% of the matches in a
dataspace with a zipfian query weight distribution is 0.35,
whereas with a uniform distribution between 0 and 1 for
the query weights, the percent of potential improvement is
only 0.19. With smaller ranges in the query weights, the
improvement is even less. Note that these results illustrate
the potential benefit of employing an intelligent ordering
strategy in environments such as Web search where some
queries are orders of magnitude more frequent than others.
On the other hand, in environments with more homogeneous
queries, the selection method is less important.

5. QUERY ANSWERING USING THRESH-
OLDING

Until this point, our query answering model considered
only confirmed matches. Since the goal of a dataspace sys-
tem is to provide query access to its underlying data sources
even when they have not been fully integrated, it is likely
that the system will want to also provide results that are
based on matches that are not confirmed, but whose confi-
dence is above a threshold. In this approach, the elements
e1 and e2 in match m = (e1, e2, c) are considered equivalent
if the confidence c is greater than a threshold T .

Here, we analyze the impact of such a query answering
model on our match scoring mechanism and show that our
decision-theoretic framework can be applied with only minor
changes to the utility function. We follow a similar process
as in Section 3 to derive an equation for the value of per-
fect information for confirming match mj when the query
answering module uses thresholding.

We first need to redefine result quality when thresholding
is used for query answering. Here, the query answering mod-
ule may use an incorrect match if its confidence is above the
threshold; thus, some answers in Q(D) may not be correct
w.r.t. Q(DP ). To account for these incorrect results as well
as the missed results due to correct but unused matches as

before, we alter the equation for result quality to consider
both precision and recall using F-measure [34]2, defined as

2 · precision · recall

precision + recall
.

Precision and recall are defined in our context as follows:

precision(Q, D, M) =
|Q(D) ∩ Q(DP )|

|Q(D)|

recall(Q, D, M) =
|Q(D) ∩ Q(DP )|

|Q(DP )| .

We redefine the result quality of query Q using F-measure
as follows:

r(Q, D, M) =
2 |Q(D)∩Q(DP )|

|Q(D)| · |Q(D)∩Q(DP )|
|Q(DP )|

|Q(D)∩Q(DP )|
|Q(D)| + |Q(D)∩Q(DP )|

|Q(DP )|

=
2(|Q(D) ∩ Q(DP )|)
|Q(D)|+ |Q(DP )| .

Substituting this formula into Equation 4, we can ex-
press the expected result quality, Er(Q, D, M), when using
thresholding:

Er(Q, D, M) =
X

M1⊆M

2(|Q(D) ∩ Q(DM1)|)
|Q(D)|+ |Q(DM1)| Pr(DM1). (9)

From Section 3.1, we already know how to compute
|Q(D)| and |Q(DM1)| in this equation. To compute
|Q(D) ∩ Q(DM1)|, first recall that in DM1 , the constant
d is deemed equal by the matches in M1 to a set of other
constants in its equivalence class, {d1, . . . , dm}, which we

denote here as EM1
d . Similarly, the matches in M that are

above the threshold T determine a set of constants in D
that are assumed to be equal to d when computing Q(D),
denoted as EM

d . The set Q(D) ∩ Q(DM1) includes the
triples that have an element from the intersection of these
two equivalence classes in the first position. Therefore,
|Q(D) ∩ Q(DM1)| = |D1

d|+
P

di∈(EM
d
∩E

M1
d

)
|D1

di
|.

Since computing Equation 9 is prohibitively expensive, we
approximate Er(Q, D, M) by employing the same assump-
tion made in Section 3.2 where M = {mj}. Thus, we rewrite
Equation 9 with {mj} substituted for M :

Er′(Q, D, {mj}) =
2(|Q(D) ∩ Q(De1=e2

mj
)|)

|Q(D)|+ |Q(De1=e2
mj )| cj+

2(|Q(D) ∩ Q(De1 6=e2
mj

)|)
|Q(D)|+ |Q(De1 6=e2

mj )|
(1− cj). (10)

2Here, we use F-measure with precision and recall as equally
important, sometimes referred to as F1-measure.
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Figure 7: Roomba architecture

Finally, following the same logic used to derive Equation 8,
we have:

V PI(mj) =X
(Qi,wi)∈Wmj

cj · wi

„
1−

2(|Qi(D) ∩ Qi(D
e1=e2
mj

)|)
|Qi(D)|+ |Qi(D

e1=e2
mj )|

«
.

(11)

We implemented this VPI scoring method and experimen-
tally evaluated the ordering it produced when the query
answering module uses thresholding. These experiments
yielded results very similar to those presented in the pre-
vious section, verifying the fact that our framework can be
applied to query answering using thresholding. We omit
the details due to their similarity with the previous sections
results.

6. ROOMBA
In this section, we outline the architecture of Roomba3,

a component of a dataspace system that incorporates the
decision-theoretic framework presented in the previous sec-
tions to provide efficient, pay-as-you-go match ordering us-
ing VPI. The architecture of Roomba is shown in Figure 7.

To facilitate a pay-as-you-go mode of interaction, a datas-
pace system contains a user interaction module that deter-
mines the appropriate time to interrupt the user with confir-
mation request, such as in [14]. At such a time, this module
calls the method getNextMatch() exposed by Roomba that
returns the next best match to confirm. The naive approach
to supporting such a method call is to order all matches once
and then return the next best match from the list on each
call to getNextMatch().

3The name“Roomba” alludes to the vacuuming robot of the
same name [16]. Just as the robot discovers what needs to
be cleaned in your room, the Roomba system aids a datas-
pace system in determining what needs to be cleaned in the
dataspace.

In a pay-as-you-go dataspace, however, getNextMatch()
is called over time as the system runs; thus, a particular
ordering of matches derived at one point of time using one
state of the dataspace may become invalid as the characteris-
tics of the dataspace change. A match’s VPI score depends
on the queries for which it is relevant, the cardinalities of
the elements involved in the match, and the confidence of
the match. Furthermore, over time confirmed matches may
be fed back to the data integration mechanisms which, as a
result, may alter some match’s scores.

The key to efficiently supporting getNextMatch() under
changing conditions is to limit the number of VPI scores that
need to be recomputed when some aspect of the dataspace
changes. Here we briefly outline the techniques employed by
Roomba to efficiently compute the next best match as the
characteristics of the dataspace change.

Roomba operates in three phases: initialization, update
monitoring, and getNextMatch().

Initialization: The initialization phase creates all the data
structures used by Roomba and produces an initial order-
ing of matches. At this point, Roomba also calculates the
element cardinality statistics over the dataspace. In order
to facilitate efficient VPI recomputation, Roomba builds in-
dexes that map from each aspect of the data that factors
into the VPI calculation to matches that would be affected
by a change in that data. Finally, Roomba calculates the
initial VPI score for each match as defined in Equation 3
and stores them in an ordered list. Note that these VPI
computations can be done in parallel.

Update Monitoring: While the system runs, the datas-
pace’s conditions will continuously change, potentially caus-
ing an invalidation of the ordering derived during initializa-
tion. When such a change occurs, a ChangeMonitor notes
the type of change (i.e., element cardinality, query workload,
or match confidence) and utilizes the indexes built during
the initialization phase to find the matches that are affected
by the particular change. Only these matches are flagged
for recomputation in a recalculation list to be processed on
the next call to getNextMatch().

getNextMatch(): On a call to getNextMatch(), Roomba
sends the recalculation list to the VPI calculator to recom-
pute and reorder any matches whose VPI score may have
changed. Note that here, too, the VPI calculations can be
done in parallel. Roomba then returns the top match off the
list for user confirmation.

7. RELATED WORK
Decision theory. While we have based our decision-
theoretic framework on formalisms used in the AI com-
munity [26], decision theory and the value of perfect
information are well-known concepts in many fields such
as economics [23, 21] and health care [3]. Within the data
management community, there has been work on applying
expected utility to query optimization [5].

Solicitng user feedback. Previous work on soliciting user
feedback in data integration systems has focused on the out-
put of a single mechanism. The work in [8] and [37] ad-
dresses incorporating user feedback into schema matching
tasks. Similarly, [27] introduces an active-learning based
approach to entity resolution that requests user feedback
to help train classifiers. Selective supervision [18] combines
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decision theory with active learning. It uses a value of infor-
mation approach for selecting unclassified cases for labeling.
These approaches are closely tied to a single type of data
integration task and select candidate matches for feedback
based closely on the type of classifier it is using. Further-
more, their overall goal is to reduce the uncertainty in the
produced matches without regard to how important those
matches are to queries in the dataspace. Rather than rea-
soning about user feedback for each mechanism separately,
a primary benefit of our framework is that it treats multi-
ple mechanisms uniformly and judiciously balances between
them with the goal of providing better query results for the
dataspace.

The MOBS [22] approach to building data integration sys-
tems outlines a framework for learning the correctness of
matches by soliciting feedback from many users and combin-
ing the responses to converge to the correct answer. While
MOBS does unify multiple mechanisms in one framework, it
do not address how to select which question to ask the user.
Our approach naturally fits within this framework: when
the MOBS system decides to solicit user feedback, Roomba
can provide the best match to confirm, the results of which
can be fed back into the MOBS system for learning.

Data integration platforms. Recent research has pro-
posed new architectures for dealing with large-scale hetero-
geneous data integration. The work presented here falls
under the dataspaces vision [12], a new data integration
paradigm for managing complex information spaces. As
part of the dataspaces agenda, previous work has proposed
the PAYGO [20] architecture for integrating structured and
unstructured data at Web-scale. Similarly, the CIMPLE
project [10] is developing a software architecture for inte-
grating data from online communities. Roomba is designed
to be a component within these systems to provide guidance
for user feedback. In [28] the authors show how to bootstrap
a dataspace system by completely automating the creation
of a mediated schema and the semantic mappings to the
mediated schema. Our work dovetails with [28] by showing
how to subsequently resolve any additional semantic hetero-
geneity in a dataspace.

8. CONCLUSIONS AND FUTURE WORK
This paper proposed a decision-theoretic approach to or-

dering user feedback in a dataspace. As part of this frame-
work, we developed a utility function that captures the use-
fulness of a given dataspace state in terms of query re-
sult quality. Importantly, our framework enables reason-
ing about the benefit of confirming matches from multiple
data integration mechanisms in a uniform fashion. While
we mostly considered entity resolution and schema match-
ing, other data integration mechanisms to which we can ap-
ply these techniques are information extraction, relationship
and entity extraction, and schema clustering. We then pre-
sented a means of selecting matches for confirmation based
on their value of perfect information: the expected increase
in dataspace utility upon requesting user feedback for the
match. We described a set of experiments on real and syn-
thetic datasets that validated the benefits of our framework.

Here, we outline some future research directions. The
first direction is to extend our techniques beyond the
myopic value of perfect information. Currently, our ap-
proach computes the expected benefit of confirming the

next match and greedily selects the best one for which to
request user feedback. There may, however, be a series
of multiple matches that, when confirmed, would produce
a dataspace with higher utility than with the myopic
approach. Conceptually, we can apply non-myopic decision
making to our setting to look ahead to multiple possible
confirmations to find such sets of matches. The challenge is
to balance the distance of the look-ahead with its cost and
with the fact that as the dataspace changes, some of the
characteristics on which the VPI calculations were based
may change.

A second direction is to deal with imperfect user feed-
back. Here, we assumed that users answered correctly every
time: a confirmation meant that the match was correct in
reality. Users, however, are human and may not always be
correct: matches may be ambiguous or challenging to answer
correctly, or users may be malicious. To cope with uncer-
tainty in user feedback, the dataspace could ask the same
confirmation of multiple users and employ a majority voting
scheme. More advanced approaches involve modeling user
responses as probabilistically related to the true answer of
the match and then adjusting the confidence of a match on
confirmation [26].

Another area of future work is to explore other types of
user feedback. In this paper, we explored how to efficiently
involve users in resolving uncertainty through explicit user
feedback. The dataspace system can also leverage the wealth
of research on implicit feedback (e.g., [17, 6, 24]) to improve
the certainty of candidate matches. For instance, the click-
through rate of query results supply an indicator of the cor-
rectness of the matches employed during query answering:
a click on a particular result may indicate that the matches
used to compute that result are correct, causing the datas-
pace system to increase the confidence of those matches. A
system can also use information from subsequent queries, or
query chains [24], to reason about the correctness of matches
not employed during query processing. If, for instance, a
user searches for “red” and then subsequently searches for
“cardinal”, then the system can increase the confidence of
the candidate match (“red”, “cardinal”, c).

Another promising area of future work is exploring the
interaction of decision theory and query answering using
unconfirmed matches. Rather than use a static threshold
for query answering, a dataspace system can utilize our
decision-theoretic framework to determine what uncertain
matches to use for a query based on the principle of max-
imum expected utility (MEU ) [26]. Intuitively, employing
MEU for the decision to utilize or disregard a match for a
query involves choosing the action with the highest expected
utility.
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