
SQAK: Doing More with Keywords

Sandeep Tata, Guy M. Lohman
IBM Almaden Research Center

San Jose, CA, U.S.A.
{stata,lohman}@us.ibm.com

ABSTRACT
Today’s enterprise databases are large and complex, often
relating hundreds of entities. Enabling ordinary users to
query such databases and derive value from them has been of
great interest in database research. Today, keyword search
over relational databases allows users to find pieces of infor-
mation without having to write complicated SQL queries.
However, in order to compute even simple aggregates, a user
is required to write a SQL statement and can no longer use
simple keywords. This not only requires the ordinary user
to learn SQL, but also to learn the schema of the complex
database in detail in order to correctly construct the re-
quired query. This greatly limits the options of the user
who wishes to examine a database in more depth.

As a solution to this problem, we propose a framework
called SQAK1 (SQL Aggregates using Keywords) that en-
ables users to pose aggregate queries using simple keywords
with little or no knowledge of the schema. SQAK provides
a novel and exciting way to trade-off some of the expressive
power of SQL in exchange for the ability to express a large
class of aggregate queries using simple keywords. SQAK
accomplishes this by taking advantage of the data in the
database and the schema (tables, attributes, keys, and ref-
erential constraints). SQAK does not require any changes
to the database engine and can be used with any existing
database. We demonstrate using several experiments that
SQAK is effective and can be an enormously powerful tool
for ordinary users.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

General Terms
Algorithms, Design, Languages

1pronounced “squawk”

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’08, June 9–12, 2008, Vancouver, BC, Canada.
Copyright 2008 ACM 978-1-60558-102-6/08/06 ...$5.00.

Keywords
keyword queries, aggregates, query tools, relational database,
SQL

1. INTRODUCTION
Designing querying mechanisms that allow ordinary users

to query large, complex databases has been one of the goals
of the database research community. Todays databases are
extremely complex, and correctly posing a structured query
in SQL (or XQuery) can be challenging and error-prone.
Firstly, the user is required to be familiar with the schema
of the database. Normalized relational databases can have
hundreds of tables with dozens of attributes in each of them.
Additionally, structured languages require the user to gen-
erate syntactically correct queries that list several join con-
ditions to relate the entities in the query along with addi-
tional constraints from the query logic. Consider the sim-
ple schema in Figure 1 of a university database that tracks
student registrations in various courses offered in different
departments. Suppose that a user wished to determine the
number of students registered for the course “Introduction
to Databases” in the Fall semester in 2007. This simple
query would require the user to 1) identify the name of table
that stored course titles (courses) and the name of the at-
tribute (name), 2) identify the name of the table that stored
registration information (enrollment), 3) identify the table
and the attribute that stored information on the courses be-
ing offered in each term (table section and attribute term),
4) identify the names of the appropriate join keys, and finally
5) construct a syntactically correct SQL statement such as:

SELECT courses.name, section.term, count(students.id)

as count

FROM students, enrollment, section, courses

WHERE students.id = enrollment.id

AND section.classid = enrollment.classid

AND courses.courseid = section.courseid AND

lower(courses.name) LIKE ’\%intro. to databases\%’

AND lower(section.term) = ’\%fall 2007\%’

GROUP BY courses.name, section.term

While this may seem easy and obvious to a database ex-
pert who has examined the schema, it is indeed a difficult
task for an ordinary user. In the case of a real world database
with hundreds of tables, the task of locating the table that
contains a particular attribute, such as a course title, can it-
self be daunting! Only after locating all the relevant schema
elements can the user proceed to the next task of actually

889

deptid
name
id
Student

location
name
deptid
Department

dept
name
id
Faculty

deptid
name
courseid
Courses

instructor
term
sectionid
courseid
Section grade

studentid
sectionid
Enrollment

Figure 1: Sample University Schema

writing the query. Ideally, the user should be able to pose
this query using simple keywords such as “Introduction to
Databases” “Fall 2007” number students. Such a querying
interface will put sophisticated querying capabilities in the
hands of non-expert users. Our system SQAK achieves ex-
actly this! By empowering end users to pose more com-
plex queries, enterprises will be able to easily derive signifi-
cantly increased value from their databases without having
to develop an application or enhance existing ones. Appli-
cations that previously only supported a predetermined set
of queries can leverage such an interface to provide a more
powerful experience to the users. While such an interface
would be limited in expressive power, the ease of use would
be vastly superior to full fledged SQL on complex databases.

1.1 Power vs. Ease of Use
The research community has proposed several different so-

lutions aimed at making it easier for users to query databases.
Each of these solutions offers a different tradeoff between
the expressive power of the query mechanism and the ease
of use. These approaches span from keyword based sys-
tems that require absolutely no knowledge of the database
schema to SQL and XQuery which are structured languages
that use detailed knowledge of the schema. Figure 2 picto-
rially describes the different trade-offs that several existing
systems make. Along the x-axis, are increasingly more pow-
erful querying mechanisms, and the y-axis are systems in
increasing order of ease of use. While the expressive powers
of the different systems are not strictly comparable (for in-
stance, a keyword query system such as in [6] can produce
results that might be extremely difficult to duplicate with
an SQL or XQuery statement), in general, systems on the
right end can precisely express many classes of queries that
systems to their left cannot.

Keyword search systems like BANKS [6], DISCOVER [13],
and DBXplorer [1] make it possible for a user to search a
database using a set of terms. Each term in the query is
mapped to a set of tuples that are subsequently joined to-
gether to form tuple trees. A tuple tree (usually) contains all
the terms in the query and is considered a potential answer.
The result of a query in these systems is a ranked list of
tuple trees, much like a web search engine. Although these
systems are easy to use and can produce interesting results,
they do not accommodate even simple aggregate queries.
The result of a query is always a list of tuple trees, and

Less Expressive More Expressive

E
as

y
to

 U
se

C
om

pl
ic

at
ed

MSQ

Keyword Search

Labeled Keyword
Search

SQAK

Ideal

FlexPath
SFX

SQL,
XQUERY

Figure 2: Comparison of Existing Ap-

proaches

this limits the expressive power of this approach. Other ap-
proaches like [8] offer some increased precision over keyword
queries, but still do not tackle aggregate queries.

On the other end of the spectrum, approaches like Schema-
Free XQuery [16] and FlexPath [3] allow the user to specify
structured queries in a loose fashion on XML data. Flex-
Path, for instance allows the user to specify a template query
tree that is subsequently converted to less restrictive trees
using a set of relaxation rules. While this is a powerful ap-
proach, the task of constructing an approximately correct
query tree is still significantly more complicated than a key-
word query. Furthermore, FlexPath focuses on retrieving
the top-k best matches to the template query, and does not
focus on supporting aggregates. The SFX approach in [16]
proposes using schema free XQuery, an extension to XQuery
that combines structure-free conditions with structured con-
ditions. [16] uses the idea of meaningful lowest common an-
cestor (MLCAS) to relate together a set of hierarchically
linked nodes in close proximity. SFX is error prone when
the entities of interest are remotely related. Furthermore, it
is not clear how the idea of an MLCAS can be adapted to
the relational world. The Meaningful Summary Query [22]
presents an elegant way to incorporate partial schema knowl-
edge (by way of a schema summary) into an XQuery like
language. The MSQ paradigm permits users to write com-
plex queries with high accuracy using only a summary of the
schema. MSQ also focuses on XML data, and it is not clear
how well it can be adapted to the relational world. More-
over, the complexity of writing an MSQ query is comparable
to XQuery and far from the ease of keyword queries.

Several systems have not been included in Figure 2 since
they are not directly comparable to the other approaches
discussed here. Query building tools, for instance have been
available for a long time. These tools can help a user nav-
igate the schema, locate the elements of interest, and visu-
ally construct the appropriate join clauses, thus making the
task of writing complicated SQL statements somewhat eas-
ier. However, they are still much more complicated to use
and focus on assisting the user exploit full power of SQL.
Natural language interfaces to databases have had various
degrees of success. These approaches provide a mechanism
to parse queries in natural languages such as English to con-
vert them into SQL queries. This is a notoriously difficult

890

problem to solve in the general case and has not gained
widespread use.

We have already observed that existing solutions do not
provide a way for non-expert users to easily express aggre-
gate queries. In this paper, we describe a prototype system
called SQAK (SQL Aggregates with Keywords) that allows
users to compute a variety of aggregate queries on a rela-
tional database with little to no knowledge of the schema
using a simple keyword based interface. As depicted in Fig-
ure 2, SQAK combines the luxury of having little to no
knowledge of the schema (such as in [22, 16]) with the ease
of use of a keyword driven interface while still allowing a
significant amount of expressive power. SQAK achieves this
powerful tradeoff by limiting the possible space of aggregate
queries to a subset of SQL, thus making is possible to reason
about the appropriate SQL statement that should be con-
structed for a given keyword query. SQAK takes advantage
of the data in the database, metadata such as the names
of tables and attributes, and referential constraints. SQAK
also discovers and uses functional dependencies in each ta-
ble along with the fact that the input query is requesting
an aggregate to aggressively prune out ambiguous interpre-
tations. As a result, SQAK is able to provide a powerful
and easy to use querying interface that fulfills a need not
addressed by any existing systems. We make the following
contributions in this paper:

1. We argue that a querying mechanism that permits
aggregate queries using simple keywords can be ex-
tremely useful for ordinary users in exploring complex
databases. We describe the problems that need to be
solved to achieve this, and present our prototype sys-
tem – SQAK.

2. We describe a formalism called a Simple Query Net-
work (SQN) to trade-off the expressive power of SQL
for the ability to construct aggregate queries from key-
words while minimizing ambiguity. We show that the
problem of computing a minimal SQN is NP-complete
and propose a greedy heuristic to solve it.

3. We describe a subset of SQL caller rSQL and show
how SQNs can be uniquely translated to rSQL state-
ments. We demonstrate using several experiments that
SQAK is effective, efficient, and useful on a range of
real databases for a variety of queries.

The rest of the paper is organized as follows – Section 2
defines the problem of supporting aggregate queries using
keywords in more detail and provides an overview of the ar-
chitecture of SQAK. Section 3 describes the algorithm used
for finding minimal SQN’s and translating them to SQL
statements. Section 4 addresses several other real world
challenges that must be solved in order to make SQAK work
well. Section 5 presents the results of several experiments
that explore various aspects of SQAK. Section 6 discusses
the relationship of SQAK with previous research work, and
finally Section 7 summarizes our findings and concludes the
paper.

2. OVERVIEW
A keyword query in SQAK is simply a set of words (terms)

with at least one of them being an aggregate function (such
as count, number, sum, min, or max). Terms in the query

User Interface

Parser and Analyzer

SQN Builder

Scorer

Database

User

Keywords

Candidate
Interpretations

SQNs

rSQL

Text Index

Database
Schema

Figure 3: Architecture of SQAK

may correspond to words in the schema (names of tables or
columns) or to data elements in the database. The SQAK
system consists of three major components – the Parser/Analyzer,
the SQN-Builder, and the Scorer (see Figure 3). A query
that enters the system is first parsed into tokens. The ana-
lyzer then produces a set of Candidate Interpretations (CI’s)
based on the tokens in the query. For each CI, the SQN
Builder builds a tree (called an SQN) which uniquely cor-
responds to a structured query. The SQN’s are scored and
ranked. Finally, the highest ranking tree is converted to
SQL and executed using a standard relational engine and
the results are displayed to the user. Figure 3 provides an
overview of SQAK’s architecture.

2.1 Definitions
Before we describe each of the components in more detail,

we introduce the terms and concepts used in this paper.

2.1.1 Candidate Interpretation
A Candidate Interpretation (CI) can be thought of as an

interpretation of the keyword query posed by the user in the
context of the schema and the data in the database. A CI is
simply a set of attributes from a database with (optionally)
a predicate associated with each attribute. In addition, one
of the elements of the CI is labeled with an aggregate func-
tion F. This aggregate function is inferred from one of the
keywords – for instance, the “average” function from key-
word query “John average grade” would be the aggregate
function F in a CI generated from it. One of the elements of
the CI may be optionally labeled as a “with” node (called a
w-node). A w-node is used in certain keyword queries where
an element with a maximum (or minimum) value for an ag-

891

gregate is the desired answer. For instance, in the query
“ student with max average grade”, the node for student is
designated as the w-node. This is discussed in more detail in
Section 2.1.3. Definition 1 formally introduces a Candidate
Interpretation.

Definition 1. Given a database D containing a set of
tables T , each with a set of columns C(ti), a Candidate In-
terpretation S = (C, a, F, w) where

• C = {(cj
i , p)|cj

i is the jth column of Tablei}, and p is

a predicate on c
j
i

• a ∈ C,

• F is an aggregate function.

• w ∈ CUφ, is the optional w-node

CI’s which do not have a w-node are defined to be simple
CI’s. A CI which satisfies any one of the following tests is
considered a trivial interpretation:

Definition 2. A Trivial CI S = (C, a, F, w) is a CI that
satisfies one of:

• There exists c ∈ C, c 6= a such that c → a (c function-
ally determines a),

• There exist two columns ci and cj in C that refer to
the same attribute,

• There exist two columns ci and cj in C such that ci

and cj are related as primary key and foreign key.

If a CI does not satisfy any of these conditions, it is con-
sidered a non-trivial CI.

An intuitive way of understanding a CI is to think of it as
supplying just the SELECT clause of the SQL statement.
In translating from the CI to the final query, SQAK “fig-
ures out” the rest of the SQL. Consider the sample schema
showed in Figure 1. An edge from one table to another
simply means that a column in the source table refers to a
column in the destination table. Now consider the aggre-
gate keyword query ”John num courses” posed by a user
trying to compute the number of courses John has taken.
One of the possible CI’s that might be generated for this is:
({Student.name[=John], Courses.courseid}, Courses.courseid,
count, w=φ). Depending on the query, there may be several
other CI’s generated for a given query. Now suppose that
a user wishes to find the course that is offered most often
in each department, a reasonable keyword query would be
department course with max num sections. A possible CI
for this query is: ({Department.id, Courses.courseid, Sec-
tion.sectionid}, Section.sectionid, max count, Courses.courseid).
The task of generating a set of CI’s from a given keyword
query is the responsibility of the Parser/Analyzer and is
described in Section 2.2.1. Trivial CI’s are detected and
eliminated in the enumeration stage – they are not scored
or used to produce the final SQL query. This is because
Trivial CI’s produce “uninteresting results”, and we assume
that the user is seeking to locate some interesting result, and
therefore weight a more interesting interpretation higher.
For instance, if it is unlikely that the user mentioned two
keywords each separately referring to the same attribute of
the same table (Condition 2). The intuition behind third

Department

Courses

Student

Courses

Student

Enrollment

Section

(a) Invalid (b) Valid

Figure 4: Example SQNs

condition is similar – the user is unlikely to mention both
the foreign key and the primary key columns by keywords
in the query. And finally, the first condition will always pro-
duce groups with identical values. Again, we discard such
interpretations in favor of more interesting interpretataions.
Pruning trivial CI’s is one of the important ways in which
SQAK reduces ambiguity while translating keyword queries
to an aggregate query in SQL.

2.1.2 Simple Query Network
A Simple Query Network is a connected subgraph of the

schema graph. Recall that a schema graph is a graph with
the nodes representing tables, and edges representing rela-
tionships between the tables such as foreign key - primary
key constraints. A Simple Query Network is said to be valid
with respect to a CI if it satisfies several conditions:

Definition 3. A Simple Query Network Q is a connected
subgraph of the schema graph D. A Simple Query Network
Q is said to be valid with respect to a CI S = (C, a, F, w) if
it also satisfies the following conditions:

Minimality (a) Deleting a node from Q will violate of one
of the remaining conditions, (b) Q is a tree,

Completeness Tables(C) ⊂ Nodes(Q),

Aggregate Equivalence One of the nodes of g ∈ Nodes(Q)
– is marked as an aggregate node and g = Table(a),

Node Clarity Q does not contain any node with multiple
incoming edges,

Figure 4 shows two SQNs (a) and (b). SQN (a) is in-
valid with respect to the CI from the previous example:
({Student.id, Courses.courseid}, Courses.courseid, count, φ).
This is because it violates node clarity – the node “Depart-
ment” has two incoming edges.

One can think of an SQN as a completely specified query
corresponding to CI. A valid SQN statement completely
specifies the query by supplying the FROM, WHERE, and
GROUP BY clauses to the SELECT clause supplied by the
CI. The task of converting a CI to valid SQN is the task of
the SQN Builder.A valid SQN can be uniquely translated
into an rSQL (reduced SQL, described below) query. These
algorithms are described in Section 3.

The principle that guides SQAK is one of choosing the
simplest model that fits the problem. The same principle

892

of making the fewest assumptions possible is the basis of
systems such as BANKS [6], DISCOVER [13], and DBX-
plorer [1]. Minimality condition requires us to use as few
nodes in a CI as possible in order to satisfy (a). Clearly, a
minimal graph that connects all the nodes in the CI will be a
tree. This is why SQAK requires the SQN to be a tree. The
completeness requirement ensures that none of the terms in
the keyword query or CI are ignored. SQAK requires the
resulting statement to display every column in the CI. This
is an important requirement because keyword querying sys-
tems such as [17] allow tuple trees that do not contain all
the keywords, much like todays web search engines. Ag-
gregate Equivalence is a simple condition that requires that
the aggregate implied in the CI is the same as the one in the
corresponding SQN.

Since SQAK queries are aggregate queries, they are likely
to contain a group-by clause. Node Clarity is one of the
principal mechanisms by which SQAK trades off power of
expression for ease of use. It is a way of requiring the nodes
in the graph to be related strongly. The strongest relation-
ship one can require between a pair of nodes is that the path
connecting them in the SQN be a directed path. Ensuring
this for every pair would lead to the strongest connection be-
tween the nodes specified in the query. However, one often
finds nodes in a schema with multiple outgoing edges. Such
nodes are a way of implementing many to many relation-
ships, and we wish to allow queries on such data. A node
with multiple incoming edges implies that a pair of nodes in
that graph are connected more weakly through an “inciden-
tal” relationship. We find that the constraint of node clarity
effectively narrows down the space of possible queries that
correspond to a CI while still allowing SQNs to represent a
large class of queries.

Consider the following example that illustrates the use of
node clarity. Assume that a user wishes to find for each
course, the number of students who have registered for it.
She types the query courses count students. A CI corre-
sponding to this would be S = ({Courses.courseid, Stu-
dents.id},Students.id, count, φ). Now, Figure 4(a) is the
smallest subgraph that covers the tables in S. On the other
hand, Figure 4(b) is larger than the graph in Figure 4(a)
(by one node and one edge). However, the tables (nodes)
in S in this graph are connected by a directed path. Even
though (a) is smaller than (b), (b) is exactly the query the
user had in mind. Using node clarity, SQAK correctly de-
duces that (b) implies a stronger relationship. Figure 4(a)
corresponds to the query “For each course, list the number
of students that are in the same department that offers the
course”. It is important to note here that in SQAK such
queries with weaker relationships cannot be expressed. The
expectation is that the non-expert user is more likely to pose
queries with stronger relationships than with such weak re-
lationships. This is one of the central trade-offs that allows
SQAK its ease of use.

2.1.3 rSQL
A key idea in this paper is that we identify a subset of

SQL that can express a wide range of queries. By carefully
choosing this subset, SQAK achieves a judicious tradeoff
that allows keyword queries to be translated to aggregate
queries in this subset while controlling the amount of am-
biguity in the system. We call this subset of SQL “reduced
SQL” or simply rSQL.

Queries in rSQL are essentially of two types – simple ag-
gregate queries and top1-queries. Aggregate queries are sim-
ply queries that compute some aggregate on one measure.
A query such as “Find the number of courses each student
has taken” is an example of an aggregate query. The key-
word query students num courses would solve this problem
in SQAK. A top1 query computes either a max or a min ag-
gregate and also produces the entity corresponding to that
value. For instance, consider the query “Find the depart-
ment with the maximum number of students”. This is an
example of a top1 query. The keyword query “department
WITH max num students” would solve this. A more com-
plex top1 query is: “In each department, find the student
with the highest average grade”. This too can be solved in
SQAK with the query “department student WITH max avg
grade”. The careful reader will observe that a top1 query
is really a combination of a group-by and a min or max
aggregate query in SQL.

Simple queries in rSQL are subject to the following limi-
tations:

• Joins in rSQL may only be equi-joins of primary key
and foreign key attributes.

• Any join path in the query may not consist of an at-
tribute in a table that is the primary key for multiple
key – foreign-key joins.

• The select clause is required to specify exactly one ag-
gregate computation

• A query may not contain self joins

• A query may not use nested subqueries with correla-
tion

top1 queries in rSQL are also subject to the same limi-
tations, however, they may use self joins indirectly through
the use of temporary views.

2.2 System Architecture

2.2.1 Parser/Analyzer
The Parser/Analyzer in SQAK parses the query and trans-

forms it into into a set of Candidate Interpretations. For
each token produced by the parser, the analyzer generates a
list of candidate matches to schema elements (table names
and column names). It does this by searching through the
names of the schema elements and matching the token to
the element name using an approximate string matching al-
gorithm. If the match score between the schema element
and the keyword is higher than a threshold, it is considered
a possible match. Each possibility is given a score based on
the quality of the approximate match. Additionally, SQAK
also uses an inverted index built on all the text columns of
the database to match keywords that might refer to a data
value. Instead of returning a document identifier, this in-
verted index returns the table name and column in which
the keyword occurs. The analyzer also locates terms that
match aggregate functions (sum, count, avg) or their syn-
onyms and associates the aggregate function with the next
term in the query. The term preceding the reserved word
“with” is labeled the w-term.

Once a list of candidate matches is generated for each
term, the list of CI’s is generated by computing the cross

893

product of each term’s list. The analyzer is also responsible
for identifying trivial interpretations using known functional
dependencies in the database and eliminating them before
invoking the SQN-Builder.

2.2.2 SQN Builder
The SQN Builder takes a CI as input and computes the

smallest valid SQN with respect to the CI. The intuition
behind this approach is that the CI must contain all the
data elements that the user is interested in. The smallest
valid SQN is the “simplest” way to connect these elements
together. This idea of using the simplest model that solves
the problem has been used in several previous works [6, 13,
1]. This is the focus of Section 3.

2.2.3 Scorer
The SQN Builder produces the best SQN for each CI.

Since each keyword query might have multiple CI’s, the set
of all SQNs for a query are sent to the Scorer which ranks
them. The score for an SQN is the sum of the weights of
its nodes and edges. The SQN with the smallest weight is
chosen as the best completion of the CI.

The weights of the nodes are determined using the match
scores from the parser/analyzer. The same match score for
each node is determined by the Analyzer – a value in [1,∞)
where 1 implies a perfect match, and ∞ implies no match.
All edges have unit weight. Additional nodes not in the CI
that may be included in the SQN are all given unit weights.

3. SIMPLE QUERY NETWORKS
We now formally state the problem of computing a valid

SQN given a CI and show that this problem is NP-Complete.
We then describe our heuristic algorithm to solve it and dis-
cuss the merits of this algorithm. We show through experi-
ments in Section 5 that this algorithm works well on many
real schemas.

Formally, the problem of finding a minimal SQN can be
stated as a graph problem : Given a directed graph G(V, E)
and a set of nodes C, we are required to find the smallest
subtree T (B,F) such that C ⊂ B and no node in B has
multiple incoming edges from F . Readers might notice the
similarity to the Steiner tree problem. In fact, if the node
clarity condition is relaxed, this problem reduces exactly to
the problem of finding a Steiner tree.

The Steiner tree problem is known to be an NP-Complete
problem [10]. We know that for a given graph and a set of
nodes, a Steiner tree always exists. The same is not true
of the minimal SQN problem. For instance, if the schema
graph contains a cut vertex that only has incoming nodes,
and the CI has two nodes each on one side of the vertex,
then any solution would include this cut vertex and therefore
violate node clarity.

The addition of the node clarity condition does not make
the minimal SQN problem any easier than the Steiner cover
problem. In fact, the minimal SQN problem is NP-Complete.
We provide a brief sketch of the proof:
The basic idea of this proof is by reduction from the Exact 3-
Cover problem [10]. The Exact 3-Cover problem (X3C) can
be stated as follows: Given a set S with |S| = 3k, and C =
{C1, C2, ..., Cn} where |Ci| = 3 and Ci ⊂ S. Is there a cover
of S in C of size k? The decision problem corresponding
to finding the minimal SQN is: Given a graph G = (V, E),
W ⊂ V , and a ∈ W is there an SQN H with at most r

a

C1

C2

C3

Cn

s1

s2

s3

s3k

s4

Figure 5: Reducing X3C to minimal SQN

edges? It is easy to see that given H , we can verify that it is
an SQN with at most r edges in polynomial time. Now, we
transform an instance of the Exact 3-Cover problem to an
instance of the minimal SQN problem as shown in Figure 5.

We construct a vertex for each element si of S, and each
element Ci of C. If si ∈ Ci, we add an edge from Ci to si.
We add a new node a and add C edges, from a to each Ci.
We set the nodes to be covered as W = {a, s1, s2, ..., sn}. It
is easy to show that an exact 3 cover of size k exists if and
only if there exists an SQN covering S with at most r = 4k

edges.

3.1 An Approximate Algorithm
Having shown that finding the minimal SQN for a given CI

is NP complete, we outline a greedy backtracking heuristic
to solve it (Algorithm 1). The basic idea of the FindSQN
algorithm is to start with a copy of a partial solution (called
temp) initialized to contain only the aggregate node. We
then find a node in the CI whose distance to temp in the
schema graph is shortest. The path between temp and this
CI node is added to temp if node clarity is not violated. The
algorithm iteratively adds nodes from the CI nodes to temp
in order of their distance from the temp graph. If at any
point the algorithm is unable to proceed without violating
node clarity, the algorithm backtracks – the last node added
to the current solution is discarded (along with the path to
that node), and the algorithm tries to continue to add the
node at the next shortest distance. When all the CI nodes
are covered, the algorithm terminates. If the algorithm is
unable to backtrack any further and has not yet found a
solution, it terminates and reports a failure.

FindSQN is called with 4 parameters: the aggregated
node, the list of other nodes in the CI, the current graph – a
partial solution initialized to a one node graph consisting of
just the aggregated node (temp starts by making a copy of
this), and the schema graph. The procedure ExpandAllBy-
OneEdge (Algorithm 2) is used iteratively to locate the CI
node that is closest to the current solution. ExpandAllBy-
OneEdge finds edges in the schema graph that are incident

894

Algorithm 1 Algorithm for Finding SQN

FindSQN(aggNode, otherNodes, curGraph, schema-
Graph)
if otherNodes is empty then

return curGraph
end if

Let expanded = false, temp = curGraph
while true do

expanded = expandAllByOneEdge(temp, schema-
Graph, aggNode)

if expanded = false then return null
matchnodes = findNodesInGraph(othernodes,temp)
if matchnodes is empty then continue
atLeastOnePathAdded = false
for each match in matchnodes do

new curGraph = curGraph
new otherNodes = otherNodes
if match.path satisfies node clarity then

atLeastOnePathAdded = true
new curGraph.addPath(match.path)
new otherNodes.remove(match)

end if

end for

if atLeastOnePathAdded = true then

res = findSQN(aggNode, new otherNodes,
new curGraph, schemaGraph)

if res!= null then return true;
end if

else continue
end while

with the current solution and terminate at a node not in
the current solution. After each invocation to this proce-
dure, the algorithm checks to see if the expanding temp has
encountered any of the nodes in othernodes using the find-
NodesInGraph call. If it has, these nodes and the paths are
added to the curGraph, and are removed from othernodes.
The findSQN algorithm continues recursively until othern-
odes is empty.

3.2 Discussion
Algorithm FindSQN is a heuristic. If it does not encounter

any backtracking, a loose upper bound for the running time
is O(q2E2), where q is the number of nodes in the CI, and E

is the number of edges in the schema graph. (ExpandAllBy-
OneEdge runs in O(q2E) times and with no backtracking, it
can be called at most E times). In the worst case, the run-
ning time of findSQN is exponential. Since this algorithm
runs as part of the response to a keyword query, it is impor-
tant to ensure a reasonable response time. For this reason,
SQAK terminates the algorithm after a fixed amount of time
and returns no solution. For schemas with relatively low
complexity such as star and snowflake schemas, findSQN is
unlikely to encounter any backtracking. In fact, backtrack-
ing usually happens only when entities in the schema can be
connected in multiple ways, often of comparable strength
leading to significant ambiguity. We show using multiple
databases in Section 5 that findSQN completes in a reason-
able amount of time for a variety of queries.

The FindSQN algorithm may fail to return a solution for
a query. This may happen either because no valid SQN ex-
ists for the input, or because our heuristic could not locate

Algorithm 2 Procedure ExpandAllByOneEdge

procedure expandAllByOneEdge(graph, schema-
Graph, aggNode)

exp = false
for each node n in graph do

for each edge e in schemaGraph do

if e is incident with n and e.destination is not
in graph then

t = n; t.path = t.path + e
add t and e to graph
Set exp = true

end if

end for

end for

return exp
end procedure

the solution in the given amount of time. When this hap-
pens, instead of simply returning to the user with an empty
response, SQAK re-runs the algorithm by relaxing the node
clarity constraint. This is equivalent to solving the Steiner
tree problem using a greedy heuristic and we are therefore
guaranteed a solution. When SQAK returns such a solution,
it alerts the user by displaying a message that says that the
solution might not be accurate.

Having found the SQN using the above algorithm, trans-
lating it to the corresponding rSQL query is the next task.
This is outlined in Algorithm 3. The case of simple CI’s
without a w-term is straightforward. On the other hand,
top1 queries require more involved processing to produce
the corresponding SQL statement.

Consider the keyword query department with max num
courses which tries to find the department that offers the
most number of courses. The corresponding rSQL query
that is produced is:

WITH temp(DEPTID, COURSEID) AS (

SELECT DEPARTMENT.DEPTID, count(COURSES.COURSEID)

FROM COURSES, DEPARTMENT

WHERE DEPARTMENT.DEPTID = COURSES.DEPTID

GROUP BY DEPARTMENT.DEPTID),

temp2(COURSEID) AS (SELECT max(COURSEID) FROM temp)

SELECT temp.DEPTID, temp.COURSEID

FROM temp, temp2

WHERE temp.COURSEID = temp2.COURSEID

As an example for a double level aggregate query, consider
the example department student max avg grade which tries
to find the student with the highest average grade in each
department. The rSQL query produced by SQAK is:

WITH temp(DEPTID, ID, GRADE) AS (

SELECT STUDENTS.DEPTID, STUDENTS.ID,

avg(ENROLLMENT.GRADE)

FROM ENROLLMENT, STUDENTS

WHERE STUDENTS.ID = ENROLLMENT.ID

GROUP BY STUDENTS.DEPTID , STUDENTS.ID),

temp2(DEPTID, GRADE) AS (SELECT DEPTID, max(GRADE)

FROM temp GROUP BY DEPTID)

SELECT temp.DEPTID, temp.ID, temp.GRADE

FROM temp, temp2

WHERE temp.DEPTID = temp2.DEPTID

AND temp.GRADE = temp2.GRADE

895

Algorithm 3 Algorithm for Translating to rSQL

translateSQN(CI,SQN)
if SQN does not have a w-node then

Return makeSimpleStatement(CI,SQN)
end if

if SQN has a w-node and a single level aggregate then

Produce view u = makeSimpleStatement(CI,SQN)
Remove w-node from u’s SELECT clause and GROUP

BY clause
r = makeSimpleStatement(CI,SQN)
Add u to r’s FROM clause
Add join conditions joining all the columns in u to the

corresponding ones in r
return r

end if

if SQN has a w-node and a double level aggregate then

Produce view u = makeSimpleStatement (CI,SQN)
Produce view v = aggregate of u from the second level

aggregate term in the CI excluding the w-node in the SE-
LECT and GROUP BY clauses

Produce r = Join u and v, equijon on all the common
columns

Return r
end if

procedure makeSimpleStatement(CI,SQN)
Make SELECT clause from elements CI
Make FROM clause from nodes in SQN
Make WHERE clause from edges in SQN
Make GROUP BY clause from elements of CI except

aggregated node
Add predicates in CI to the WHERE clause
Return statement

end procedure

4. OTHER CHALLENGES
While making a system like SQAK work in the context of

real world databases several challenges must be overcome.
This section describes them and the approach we take in
SQAK to overcome them.

4.1 Approximate Matching
The first hurdle when using a system like SQAK is that

that the user often does not know the exact names of the en-
tities (table, attributes) she wants to query. She may either
misspell, choose an abbreviation of the word, or use a syn-
onymous term. The problem of tolerating alternate terms
can be addressed by listing synonyms for each schema ele-
ment (such as “instructor” for “faculty”). This process may
be performed by the DBA who wants to make a database
available for querying SQAK. Alternately, synonymous terms
in the query may be automatically matched using ontology-
based normalization [15]. However, this still leaves us the
problem of misspellings and abbreviations. SQAK solves
this problem by matching a term in the keyword query to
a schema element using an edit distance based measure. If
this distance is less than a threshold, then the schema el-
ement is considered a potential match for that term. This
measure is computed as follows:

d = e
f×

edit distance(x,y)
(|x|+|y|)/2 , if edit distance(x,y)

(|x|+|y|)/2
< γ, ∞ other-

wise.
If the edit distance (expressed as a fraction of the average

length of the strings) is less than a threshold γ, then the
distance measure is e raised to f times this fraction, and 0
otherwise. If this score is nonzero, then the pair of strings is
considered a potential match. A larger value of the measure
implies a weaker match. The best possible score is 1, when
the edit distance is 0. A larger value of f imposes a higher
penalty for differences between the two strings. A larger
value of γ allows more distant matches to be considered for
processing. Experiments in section 5.3 examine the impact
of these parameters on the performance of the system in
terms of accuracy and efficiency.

4.2 Missing Referential Integrity Constraints
As discussed in section 3, SQAK exploits referential in-

tegrity constraints to construct the appropriate SQL query
from the Candidate Interpretation. However, in some real
world databases these constraints are not explicitly declared!
Some DBA’s choose to save on the overheads associated with
enforcing these constraints by not declaring these as part of
the schema. Unsurprisingly, missing constraints can lead to
errors in how SQAK processes queries. In severe cases, the
schema graph might be disconnected, and keyword queries
that need to connect entities in different components of the
graph will no longer be admissible.

SQAK solves this problem by using a sampling based al-
gorithm that is a simplified version of the algorithm in [7]
to discover referential constraints. The process of discover-
ing keys exploits the system catalog as well as data samples.
This discovery process needs to be run only one time before
SQAK can start processing queries. Heuristics are used to
minimize the cost of discovery.

4.3 Tied or Close Plans
Sometimes, a given keyword query may have multiple cor-

responding rSQL queries with identical scores. This often
happens if the schema contains many entities that are re-
lated in multiple ways and the query is inherently ambigu-
ous. In such cases, SQAK arbitrarily breaks the tie and
presents the results from one of the queries. At the same
time, SQAK also presents the alternate queries that had the
same score to alert the user that it could not uniquely trans-
late the query. In some cases multiple plans may score very
highly, but not equally. If SQAK detects alternate plans
with a score very close to the best score, it alerts the user
and presents an option to examine these plans. For instance,
this may happen if there are several semantically different
schema elements that have a similar names and the query is
not sufficiently precise to distinguish between them.

Currently, SQAK simply lists the SQL and score from the
alternate interpretations. The user can select any of them
to see the results corresponding to them. Providing appro-
priate visual representations or keyword based summaries of
this information to make it easier for the user to understand
the choices available is an area of future research.

4.4 Expressiveness
Although simple keywords are a powerful way to quickly

pose aggregate queries, users soon begin to want pose queries
with non-equality constraints. For instance, a constraint
such as age > 18. SQAK supports this by simply adding
the appropriate where clause to the query it generates. This
simple addition greatly enhances the expressive power of
the keyword queries in the system. If the SQAK system

896

encounters a keyword query that does not contain an aggre-
gate term, we may simply interpret is as a regular keyword
query in the style of BANKS [6] and DISCOVER [13] and
use a similar system to execute the query. Currently, SQAK
does not admit any queries that do not contain at least one
aggregate keyword.

Queries containing phrases need to be handled carefully.
Although SQAK allows users to enter quote-delimited phrases,
it also checks to see if a set of consecutive terms in the query
might be combined into a phrase. If consecutive terms in the
keyword query correspond to the same table and column in
the database, then a CI is produced combining the elements
into one that references that column. This CI is converted
to an SQN and scored as normal.

5. EXPERIMENTS
Evaluating a novel system such as SQAK is a challenging

task in itself. Traditional IR metrics like precision and recall
are not entirely relevant. The objective in SQAK is to allow
users to represent some SQL queries using keywords. Unlike
the IR world where the objective is to return relevant docu-
ments, once translated, an rSQL query has precise semantics
and the precision and recall are always 100%.

In this section, we explore many aspects of the SQAK sys-
tem. Using many queries on multiple datasets, we show that
SQAK is very effective in accurately interpreting keyword
queries. We also quantify the savings SQAK provides in
cost of query construction using the metric followed in [22].
We examine the impact of the parameters of approximate
matching on the cost and accuracy of translating misspelled
and abbreviated queries and show that SQAK requires vir-
tually no tuning and performs well on even large databases.
Setup: The experiments designed in this section were per-
formed on a system with a dual-core 2.16GHz Intel pro-
cessor with 2GB of memory running Windows XP. SQAK
algorithms were implemented in Java and were run using
JVM 1.6.0 02. The inverted index was constructed using
Lucene [18]. A popular commercial database was used to
store the relational data and execute the rSQL queries.

5.1 Effectiveness
We first present a sample workload of keyword queries

on two different databases. We examine the query pro-
duced by SQAK in each case manually to check if the rSQL
produced accurately reflects the keyword query. For com-
parison, we present the results from using a simple Steiner
tree. We use two databases, one with the university schema
from Figure 1, and second is the TPCH database with the
schema showed in Figure 6. The workloads for these schemas
are shown in Tables 1, and 2. In each table, the query is
listed in plain English along with the corresponding key-
word. Mostly the keywords are just picked from the English
query, and occasionally abbreviated. The table also lists if
SQAK and Steiner were accurate on that query. As can
be seen from able 1, SQAK correctly interprets 14 out of
15 queries. Query 8, “the average grade William obtained
in the courses offered by the EECS department”, (William
EECS avg grade) gets translated as:

SELECT STUDENTS.NAME, DEPARTMENT.NAME,

avg(ENROLLMENT.GRADE)

FROM ENROLLMENT, STUDENTS, DEPARTMENT

WHERE STUDENTS.ID = ENROLLMENT.ID AND

comment

name

regionkey

Region

name

comment

regionkey

nationkey

Nation

phone

address

nationkey

name

comment

acctbal

suppkey

Supplier

container

retailprice

type

mfgr

brand

name

comment

size

partkey

Part

availqty

suppkey

comment

supplycost

partkey

PartSupp

mktsegment

comment

phone

address

nationkey

name

acctbal

custkey

Customer

…

discount

comment

quantity

suppkey

linenumber

partkey

extendedprice

orderkey

LineItem

comment

clerk

orderstatus

orderpriority

custkey

ship-priority

orderkey

Orders

Figure 6: TPCH Schema

DEPARTMENT.DEPTID = STUDENTS.DEPTID AND

lower(STUDENTS.NAME) LIKE ’\%william\%’ AND

lower(DEPARTMENT.NAME) LIKE ’\%eecs\%’

GROUP BY STUDENTS.NAME , DEPARTMENT.NAME

This really is the result for the query “average grade ob-
tained by the student William registered in the EECS de-
partment”. Although this is a reasonable interpretation, the
original query the user had in mind was different. Note that
the Steiner algorithm also gets this query wrong. In fact,
SQAK is 93% accurate while Steiner is only 60% accurate.
SQAK correctly interprets the attributes corresponding to
each field. However, the required query is not the minimal
SQN, but a larger SQN that connects the Department table
to Courses directly instead of the Students table.

As Section 4 points out, whenever SQAK finds multi-
ple plans with scores close to the highest score, the user
is alerted to the possibility that what she was looking for
might be an alternate plan. As is the case with any query-
ing mechanism that takes as input an incompletely specified
query (e.g. [16, 22]), SQAK too must deal with some inher-
ent possibility of interpreting the query incorrectly.

5.2 Savings
Clearly, constructing a query such as EECS num students

is easier and quicker than writing the corresponding SQL
query:

SELECT DEPARTMENT.NAME, count(STUDENTS.ID)

FROM STUDENTS, DEPARTMENT

WHERE DEPARTMENT.DEPTID = STUDENTS.DEPTID AND

lower(DEPARTMENT.NAME) LIKE ’%eecs%’

GROUP BY DEPARTMENT.NAME

One of the ways to quantify the benefits of using a sys-
tem such as SQAK is to measure the savings in the cost of
query construction.[22] proposes quantifying the savings in
the human cost of query construction by counting the num-
ber of schema elements that a human trying to construct
the query need not use/visit when using a keyword query.
Schema elements in the relational world refer to tables and
attributes. However, this does not take into account the

897

Number Query Keywords SQAK Steiner
1 number of students in EECS EECS num students X X

2 number of courses in the biology department Biology num courses X X

3 number of courses taken by each student student num courses X NO
4 avg grade earned by Michael Michael avg grade X X

5 number of courses offered in the Fall 2007 term in
EECS

EECS ”Fall 2007” num courses X X

6 number of courses taught by Prof Shakespeare Shakespeare num courses X X

7 average grade awarded by each faculty member faculty avg grade X X

8 average grade William got in the courses offered by
the eecs department

William EECS avg grade NO NO

9 number of courses Shaun has taken with Prof. Jack
Sparrow

“Jack Sparrow” Shaun num courses X NO

10 number of students that have taken databases databases num students X NO
11 highest grade awarded in databases databases max grade X X

12 department that has the most number of courses dept with max num courses X X

13 student with the highest grade in the database course databases student with max grade X NO
14 the most popular course course with max num students X NO
15 the professor who awards the highest grades in his

courses
faculty with max avg grade X X

Table 1: Queries for the School Database

Number Query Keywords SQAK Steiner
1 number of orders placed by each customer customer num orders X X

2 number of blue parts num blue X X

3 number of suppliers in asia num supplier asia X X

4 total price of orders from each customer customer sum totalprice X X

5 number of customers in each market segment marketsegment num customer X NO
6 number of orders on each date orderdate num orders X X

7 number of suppliers for each part part num supplier X X

8 number of parts supplied by each supplier supplier num part X X

9 number of parts in each order order num parts X X

10 number of orders from america america num orders X X

11 total sales in each region region sum totalprice X NO
12 number of suppliers of brushed tin in asia “Brushed tin” asia num suppliers X X

13 region with most suppliers region with max num suppliers X X

14 supplier who supplies for the most number of orders supplier with max num orders X X

15 market segment with maximum total sales marketsegment max sum totalprice X X

Table 2: Queries for the TPCH Database

cost of writing down the query logic. In order to account
for some of the cost of query construction, we augment this
measure and also count the number of join conditions that
the user does not have to write. That is, we assume that
the cost of a structured query is the sum of the number of
schema elements mentioned in the query and the number
of join conditions. The cost of a keyword query is simply
the number of schema elements in the keyword query. For
instance, keyword query EECS num students mentions only
one schema element – the students table. Therefore its cost
is 1. The corresponding SQL query mentions the tables De-
partment and Students. It also mentions the attributes De-
partment.Name and Students.ID. Additionally, it uses one
join. The total cost of this query is 5. The total savings
that SQAK provides for this query is 5 – 1 = 4. Note that
this estimate is essentially a lower bound on the true sav-
ings in the human cost of query construction. SQL requires
additional effort to be syntactically correct. Furthermore,
complex queries in rSQL such as top1 queries with w-terms
have more involved query logic, and this measure should be

interpreted as a lower bound on the amount of savings for
that query.

We averaged the savings in the cost of query construction
for the queries in Tables 1 and 2. This is summarized in
Table 3. While the actual values varied between as little as
1 and as much as 11, the average savings in each case was
6.0 and 4.7 units. To the best of our knowledge the kinds of
keyword queries supported by SQAK are not supported by
any other system, therefore, we are unable to compare the
savings provided by SQAK with an alternate approach.

Schema Construction Savings
University 6.0

TPCH 4.7

Table 3: Query Construction Cost Savings

5.3 Parameters
SQAK has relatively few parameters. In fact, the only as-

pect one needs to tune is the “looseness” of the approximate

898

Gamma
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

A
cc

ur
ac

y

0.2

0.4

0.6

0.8

1

f=1.5
f=2
f=3
f=6

Figure 7: Mismatch Sensitivity

match between a schema element name (or its synonyms)
and the keyword. As described in Section 4.1, we use an
edit distance based method to match the keywords with the
schema elements. The two parameters we explore here are
a) the mismatch tolerance threshold γ and b)the mismatch
penalty f .

For each of the keyword queries from the Tables 1 and 2,
we generated 3 other queries that used mis-spelled or short-
ened versions of the keywords. For instance, “department”
might be shortened to “dept”. “Students” might be spelled
as “Stuents”. These were generated manually. In some of
the cases, the spelling error caused the algorithm to map
the term to a different schema element, and therefore the
resulting query was different. We varied γ from 0.2 to 0.8.
We repeat the experiment for f = 1.5, 2, 3, and 6. (Re-
call that a higher value of f imposes a greater penalty for a
mismatch.) The results are shown in Figure 7.

As is evident from the figure, the accuracy of SQAK is
not highly sensitive to γ. In fact, the accuracy is nearly
stable between the values of 0.4 and 0.8. This simply means
that for simple spelling errors and shortenings, the distance
measure is robust enough that tolerating a small amount of
mismatch is enough to ensure that the right schema element
is picked for that keyword. Interestingly, we see that when
f = 1.5, the accuracy is lower than then f=2.0. That is,
imposing a low penalty might make SQAK pick the wrong
query. Further, for the case of f=3.0, the accuracy improves
even more. This tops off at f=6.0 here, and no further
improvements are observed. We expect that f = 2 or 3 and
γ between 0.4 and 0.8 are good choices in general.

5.4 Cost
In a system like SQAK where the user poses keyword

queries, response time is important. The overhead of trans-
lating the keyword query should be small compared to the
cost of actually executing the SQL query. We measured
the time taken by SQAK to perform this computation for
the same sets of values of f and γ as above. In each of
the cases, SQAK was allowed to run to completion. The
resulting times are plotted in Figure 8. As is evident choos-

Gamma
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Ti
m

e
(m

ill
is

ec
on

ds
)

0

20

40

60

80

100

120

f=1.5
f=2
f=3
f=6

Figure 8: Query Translation Time

ing a value of gamma between 0.4 and 0.6 along with an
appropriate f should provide good accuracy for very little
overhead.

5.5 Other Schemas
We also performed some preliminary tests of the SQAK

system on a large database that stores all the configuration
information about all the IT assets of a large enterprise.
This includes computer systems and their hardware config-
uration, the operating system, the various database servers,
application servers, applications, and services running on
this system. This database contains over 600 tables, each
with several columns. Sample queries on this database per-
form with an accuracy comparable to that reported earlier in
the section. While the performance of the queries is variable,
the translation step always took less than a second even for
complex queries. We also performed tests on a data ware-
house of retail sales data with a star schema containing 14
tables. A regular schema such as a star schema tends to be
an easy case for SQAK since queries have little ambiguity
and they perform with close to 100% accuracy. Errors usu-
ally happen only when the keywords are heavily misspelt.
In the interest of space, we do not present the results from
these studies here.

6. DISCUSSION AND RELATED WORK
The SQAK system leverages and combines several exist-

ing ideas from database research to achieve the balance of
expressive power and ease of use. SQAK’s algorithm for dis-
covering functional dependencies and join key constraints is
based on work like TANE [14], BHUNT [7], and [4].

The problem of keyword search in relational databases has
received much attention in recent years. Early systems like
BANKS [6], DISCOVER [13], and DBXplorer [1] designed
efficient ways to retrieve tuple trees that contained all the
keywords in the query. [12] and [17] proposed using tech-
niques from the IR world to rank these tuple trees better.
While these systems provide a way for users to employ key-
word based search over structured data, they do not allow

899

the users to take advantage of the structure to compute ag-
gregates. SQAK attempts to build on this work by providing
a system where powerful aggregates can be computed with
simple keywords.

Regular keyword search has been extended to provide
some basic aggregates that are either predefined or dynami-
cally determined. Such a capability, called faceted keyword
search [9, 20] has been described in literature and can be seen
on many commercial shopping websites. While faceted key-
word search does not really permit the user to pose queries
like in SQAK, these systems allow the user to get some ag-
gregate counts in the context of their keyword query.

A recent work that has addressed the problem of design-
ing keyword based interfaces that can compute powerful ag-
gregates is KDAP [19]. The KDAP system provides a key-
word based approach to OLAP where the user types in a set
of keywords and the system dynamically determines multi-
ple interesting facets and presents aggregates on a predeter-
mined measure. KDAP is aimed at data warehouses with a
star or snowflake schema. While KDAP focuses on automat-
ically generating a set of interesting facets and presenting
an aggregate result based on that, SQAK focuses on using
the keywords to determine attributes to group the result
by. Furthermore, in KDAP, the measure is predetermined,
while SQAK allows the users to dynamically determine the
aggregates and the measure using simple keywords. SQAK
is more general in the sense that it is not limited to star or
snowflake schemas. At a more basic level, SQAK focuses on
being a querying mechanism while KDAP focuses on being a
Business Intelligence tool for warehouses with large amounts
of text.

XML full-text search has been an area of great recent in-
terest to the research community. Several systems [11, 8,
5, 2] have been proposed to solve the problem of full-text
search in XML databases. Many of these systems focus on
combining structured querying with keyword search prim-
itives such as boolean connectives, phrase matching, and
document scoring and ranking. Efforts such as [3] propose
an algebra to allow complex full-text predicates while query-
ing XML documents. These are powerful systems that allow
much expressive power, but their focus is not on computing
aggregate queries using keywords, but on being able to sup-
port structured queries that can incorporate sophisticated
full-text predicates.

Querying a structured database with limited or no schema
knowledge is a difficult proposition. [16] proposes a solution
in the context of XML databases where the user does not
have any knowledge of the schema using the idea of a mean-
ingful lowest common ancestor. [22] proposes a way to allow
users to write XQuery-like queries using only a summary of
the schema information. These approaches allow sophisti-
cated users with limited schema knowledge great power in
posing complex queries. However, the focus of our work is
in enabling the ordinary user to leverage keyword queries to
compute aggregates on relational data.

A recent effort [21] describes a technique for selecting a
database from a set of different databases based on the terms
in a keyword query and how they are related in the context
of the database. The data source selection problem is some-
what orthogonal to our problem since SQAK assumes that
the user is interested in querying a given database. The
question of whether the techniques in [21] may be used to
extend SQAK to work over multiple data sources is a topic

of future investigation. Another promising area of investiga-
tion is the characterization of rSQL and the kinds of queries
it can and cannot express. Extending SQAK to deal with
multiple aggregates in a single query is fairly straightfor-
ward.

7. CONCLUSIONS
In this paper, we argued that current mechanisms do not

allow ordinary users to pose aggregate queries easily on com-
plex structured databases. Such a mechanism can be an ex-
tremely powerful in enabling non-expert users of large struc-
tured databases. We formally describe the problem of con-
structing a structured query in SQL from a keyword query
entered by a user who has little knowledge of the schema.
We describe algorithms to solve the problems involved and
present a system based on this called SQAK.

We demonstrate through experiments on multiple schemas
that intuitively posed keyword queries in SQAK are trans-
lated into the correct structured query significantly more
often than with a naive approach like Steiner. We show
that the algorithms in SQAK work on different databases,
scale well, and can tolerate real world problems like approx-
imate matches and missing schema information. We also
show that SQAK requires virtually no tuning and can be
used with any database engine.

In summary, we conclude that SQAK is a novel approach
that allows ordinary users to perform sophisticated queries
on complex databases that would not have been possible
earlier without detailed knowledge of the schema and SQL
skills. We expect that SQAK will bring vastly enhanced
querying abilities to non-experts.

8. ACKNOWLEDGEMENTS
The authors are thankful to Prof. Jignesh M. Patel for

initial discussions and to the anonymous reviewers for com-
ments on improving the paper.

9. REFERENCES
[1] S. Agrawal, S. Chaudhuri, and G. Das. DBXplorer: A

System for Keyword-Based Search over Relational
Databases. In ICDE, pages 5–16, 2002.

[2] S. Amer-Yahia, C. Botev, and J. Shanmugasundaram.
TeXQuery: A Full-text Search Extension to XQuery.
In WWW, pages 583–594. ACM, 2004.

[3] S. Amer-Yahia, E. Curtmola, and A. Deutsch. Flexible
and efficient XML search with complex full-text
predicates. In SIGMOD, pages 575–586, 2006.

[4] P. Andritsos, R. J. Miller, and P. Tsaparas.
Information-Theoretic Tools for Mining Database
Structure from Large Data Sets. In SIGMOD, pages
731–742, 2004.

[5] A. Balmin, V. Hristidis, and Y. Papakonstantinou.
ObjectRank: Authority-based keyword search in
databases. In VLDB, 2004.

[6] G. Bhalotia, C. Nakhe, A. Hulgeri, S. Chakrabarti,
and S. Sudarshan. Keyword Searching and Browsing
in Databases using BANKS. In ICDE, 2002.

[7] P. G. Brown and P. J. Haas. BHUNT: Automatic
Discovery of Fuzzy Algebraic Constraints in
Relational Data. In VLDB, 2003.

900

[8] S. Cohen, J. Mamou, Y. Kanza, and Y. Sagiv.
XSEarch: A Semantic Search Engine for XML. In
VLDB, 2003.

[9] W. Dakka, R. Dayal, and P. G. Ipeirotis.

[10] M. R. Garey and D. S. Johnson. Computers and
Intractability: A Guide to the Theory of
NP-Completeness. W.H. Freeman and Company, 1979.

[11] L. Guo, F. Shao, C. Botev, and
J. Shanmugasundaram. XRANK: Ranked keyword
search over XML documents. In SIGMOD, 2003.

[12] V. Hristidis, L. Gravano, and Y. Papakonstantinou.
Efficient IR-style keyword search over relational
databases. In VLDB, 2003.

[13] V. Hristidis and Y. Papakonstantinou. DISCOVER:
Keyword search in relational databases. In VLDB,
2002.

[14] Y. Huhtala, J. Kärkkäinen, P. Porkka, and
H. Toivonen. TANE: An Efficient Algorithm for
Discovering Functional and Approximate
Dependencies. The Computer Journal, 42(2):100–111,
1999.

[15] Y. Li, H. Yang, and H. Jagadish. Constructing a
Generic Natural Language Interface for an XML
Database. In EDBT, 2006.

[16] Y. Li, C. Yu, and H. V. Jagadish. Schema-Free
XQuery. In VLDB, 2004.

[17] F. Liu, C. Yu, W. Meng, and A. Chowdhury. Effective
Keyword Search in Relational Databases. In
SIGMOD, pages 563–574. ACM Press, 2006.

[18] Lucene. http://lucene.apache.org.

[19] Ping Wu and Yannis Sismanis and Berthold Reinwald.
Towards Keyword-driven Analytical Processing. In
SIGMOD, pages 617–628, 2007.

[20] D. Tunkelang. Dynamic Category Sets: An Approach
for Faceted Search. In SIGIR Faceted Search
Workshop, 2006.

[21] B. Yu, G. Li, K. Sollins, and A. K. H. Tung. Effective
Keyword-based Selection of Relational Databases. In
SIGMOD, pages 139–150. ACM, 2007.

[22] C. Yu and H. V. Jagadish. Querying Complex
Structured Databases. In VLDB, pages 1010–1021,
2007.

901

