
1

CSE 736
Database Seminar

UB CSE 736 Spring 2010

Mohan Kumar Padmanabhan

UB CSE 736 Spring 2010 2

Papers Considered

 Combining Keyword Search and Forms for
Ad Hoc Querying of Databases
  Eric Chu, Akanksha Baid, Xiaoyong Chai, AnHai Doan,

Jeffrey Naughton
  Computer Sciences Department
  University of Wisconsin-Madison

 Keyword Searching and Browsing in Databases
using BANKS
  Gaurav Bhalotia, Arvind Hulgeri, Charuta Nakhe,

Soumen Chakrabarti, S. Sudarshan
  Computer Science and Engineering Dept.
  I.I.T. Bombay

UB CSE 736 Spring 2010 3

Motivation

•  General public is successful at using keyword
search to discovering documents of interest in
Internet search engines

•  It is much more difficult to pose structured
queries to satisfy information requests over
structured databases

•  Goal here is to explore techniques that assist
users in posing ad hoc structured queries over
relational databases

UB CSE 736 Spring 2010 4

Google Example

2

UB CSE 736 Spring 2010 5

Introduction

•  It is easier to recognize a solution when
presented with one
•  than constructing the solution from scratch

•  Use keyword search to help the user find a
manageably small set of relevant forms

user submits a
keyword query

system returns a
ranked list of
relevant forms

user selects and uses one to
build a structured query

UB CSE 736 Spring 2010 6

Example

UB CSE 736 Spring 2010 7

Example (cont’d)

UB CSE 736 Spring 2010 8

Example (cont’d)

widom

3

UB CSE 736 Spring 2010 9

Options and Challenges

•  How can one automatically generate a set of
forms to support a wide range of queries?

•  How specific or general should these forms be?
•  How effective is keyword search in exploring this

set of forms?
•  What challenges arise in ranking the results of

these keyword searches?

•  Can users really use the result of a keyword
search to identify forms useful in satisfying their
information requests?

UB CSE 736 Spring 2010 10

Entity tables: # rows
person(id, name, homepage, title, group, organization, country) 68459
publication(id, name, booktitle, year, pages, cites, clink, link) 108972
topic(id, name) 736
organization(id, name) 163
conference(id, name) 170
Relationship tables:
Records two related persons and strength of this pair
related_people(rid, pid1, pid2, strength) 115436
Records related person-topic pair and strength
related_topic(rid, pid, tid, strength) 114196
Records related person-organization pair and strength
related_organization(rid, pid, oid, strength) 2436
Records a person giving a tutorial in a conference
give_tutorial(rid, pid, cid) 132
Records a person giving a talk in a conference
give_conf_talk(rid, pid, cid) 131
Records a person giving a talk at an organization
give_org_talk(rid, pid, oid) 913
Records a person serving in a conference and the assignment
serve_conf(rid, pid, cid, assignment) 3591
Records a person as an author of a publication and the
position of the person�’s name on the list of authors
write_pub(rid, pid, pub_id, position) 328410
Records a pair of co-authors and strength
co_author(rid, pid1, pid2, strength) 56370

Dataset Considered

UB CSE 736 Spring 2010 11

Approach

•  Form generation
•  Map keyword queries to forms
•  Eliminate forms that do not produce answers

with respect to a given keyword query
•  Ranking and grouping forms
•  Experiments and user study

UB CSE 736 Spring 2010 12

Query Forms

4

UB CSE 736 Spring 2010 13

Query Forms

•  When the form is empty, it maps to the template

SELECT *
FROM person
WHERE name op value AND homepage op value
AND title op value AND group op value AND
organization op value AND country op value

•  A template with user-specified parameters
corresponds to a SQL query

SELECT *
FROM person
WHERE organization = ‘Microsoft Research’

UB CSE 736 Spring 2010 14

Form Generation

•  Let D be a database instance and SD be the
schema of D

•  Form generation:
1.  Specify a subset of SQL as the target language

to implement the queries supported by forms
2.  Determine a set of “skeleton” templates

specifying the main clauses and join conditions
based on the chosen subset of SQL and SD

3.  Finalize templates by modifying skeleton
templates based on the desired form specificity

4.  Map each template to a form

UB CSE 736 Spring 2010 15

SQL’

Let B = (SELECT select-list
 FROM from-list
 WHERE qualification
 [GROUP BY grouping-list
 HAVING group-qualification])

where
•  select-list comprises a list of column names, and, if applicable, a list of

terms having the form aggop(column-name), with aggop being one of
{MIN, MAX, COUNT, SUM and AVG}

•  from-list is a list of tables
•  qualification is a conjunction of the conditions of the form expression

op expression. An expression is a column name or a constant, and op is
one of the comparison operators {<, <=, =, <>, >=, >, LIKE}
–  Note: we do not allow nested queries in FROM and WHERE clauses

•  grouping-list and group-qualification are as defined in SQL-92 (i.e.,
no every or any in group-qualification)

•  We consider queries of the form B [UNION|INTERSECT B]

UB CSE 736 Spring 2010 16

Skeleton Templates

•  Exbasic: SELECT *
 FROM Ri
 WHERE predicate-list

•  ExFK: SELECT *
 FROM give_tutorial t, person p, conference c
 WHERE t.pid = p.id AND t.cid = c.id AND p.name
 op expr AND … AND c.name op expr

•  ExEQ: SELECT non-key attributes from p
 FROM give_tutorial t, give_conf_talk c,
 give_org_talk o, person p
 WHERE t.pid = c.pid AND c.pid = o.oid AND
 o.pid= p.id AND p.name op expr AND … AND
 p.country op expr

5

UB CSE 736 Spring 2010 17

Form Specificity

•  Fewer, more general forms
  Pro - easier to find a form that supports the query a

user has loosely in their mind
 Con - the user may have difficulty in understanding

and using this form, especially when he or she is not
familiar with the data model and the query language

•  Larger number of more specific forms
 Con - harder to find a form that matches the user’s

specific information need
  Pro - when one is found, the necessary customization

to express the query is minor

UB CSE 736 Spring 2010 18

Form Specificity

•  Form specificity
  Form complexity, which refers to the number of

parameters on a form
 Data specificity, which refers to the number of

parameters with fixed values on a form

UB CSE 736 Spring 2010 19

Form Specificity

•  Map each skeleton template, which has only a SELECT-
FROM-WHERE construct, to one large template supporting
aggregation, GROUP BY and HAVING, and UNION and
INTERSECT

•  Such a multi-purpose query template could be too
complex

•  We reduce form complexity by dividing SQL’ into subsets:
1.   SELECT: the basic SELECT-FROM-WHERE construct
2.   AGGR: SELECT with aggregation
3.   GROUP: AGGR with GROUP BY and HAVING clauses
4.   UNION-INTERSECT: a UNION or INTERSECT of two SELECT

•  We do not consider data specific forms

UB CSE 736 Spring 2010 20

Mapping Query Templates to Forms

•  To build a form for each query template, we use the
following standard form components:
  Label: for displaying text such as description for the

form, the name of an attribute, a database constant, etc.
 Drop-down list: for displaying a list of parameter

values from which users can choose one. For example,
we use a drop-down list to allow users to choose the
target attribute for an aggregation.

  Input box: for specifying a parameter value on the form
 Button: for functions such as submit, cancel, and reset

6

UB CSE 736 Spring 2010 21

Automating Form Generation

•  Template generator uses the aforementioned
specification for SQL’ and query classes

•  Input: a data set and its schema
•  A form designer can specify the desired form

complexity and data specificity
•  Output is a set of templates based on these

configurations
•  Scripts to transform these templates into forms

and to add a form description to each form

UB CSE 736 Spring 2010 22

Keyword Search for Forms

•  Basic idea here is to treat a set of forms as a set
of documents, then let users use keyword
search to find relevant forms

•  Form contains parameters, which are undefined
until users fill out the form at query time

•  Naïve-AND – user specifies a data value, we
will get no answers

•  Naïve-OR – some forms would be returned if
the user includes in the query at least one
schema term
 Data terms would be ignored

UB CSE 736 Spring 2010 23

Example

•  Query: Widom conference
–  We like to know for which conferences a researcher

named Widom has served on the program committee

•  Assume Widom is a data term and conference
is a schema term

•  Using Naïve-AND, we would get no forms, since
Widom does not appear on any forms

•  Using Naïve-OR, we would ignore Widom and
get all forms that contain conference

UB CSE 736 Spring 2010 24

Keyword Search for Forms

•  Data specific form – many combinations and
high storage and maintenance costs

•  Transform a user’s keyword query by checking
to see whether the terms from the query appear
in the database
  user-provided keyword appears both as a schema term

and as a data term
  keyword appears in multiple attributes, possibly of

different tables

•  Use Double-Index OR (DI-OR) and
Double-Index AND (DI-AND)

7

UB CSE 736 Spring 2010 25

Double-Index OR (DI-OR)

Input: A keyword query Q = [q1 q2.... qn]
Output: A set of form-ids F’
Algorithm:

 FormTerms = {}, F’ = {}
 // Replace any data terms with table names
 for each qi ∈ Q
 if DataIndex(qi) returns <table, tuple-id> pairs
 Add each table to FormTerms
 Add qi to FormTerms // qi could be a form term
 // Get form-ids based on FormTerms
 FormIndex(FormTerms) => F’ // OR semantics
 return F’ // Ordered by ranking scores

UB CSE 736 Spring 2010 26

DI-OR Example

•  Query: Widom conference

•  Using DI-OR, we would find that Widom
appears in the person table

•  The resulting rewritten keyword query would be
Widom person conference, evaluated with OR
semantics

UB CSE 736 Spring 2010 27

DI-OR Summary

•  Approach satisfies the new semantics
•  Results are often too inclusive
•  Approach similar to DI-OR but with AND

semantics required
•  Wrong to simply do one AND-query with all the

terms in FormTerms
 A data term may appear in multiple unrelated tables ->

no form returned

UB CSE 736 Spring 2010 28

Double-Index AND (DI-AND)

Input: A keyword query Q = [q1 q2.... qn]
Output: A set of form-ids F’
Algorithm:
 FormTerms = {}, F’ = {}
 // Replace any data terms with table names
 for each qi ∈ Q
 Sqi = {} // Bucket for qi
 if DataIndex(qi) returns <table, tuple-id> pairs
 for each table
 if table ∈ FormTerms
 Add table to Sqi and FormTerms
 if qi ∈ FormTerms
 Add qi to Sqi and FormTerms

8

UB CSE 736 Spring 2010 29

Double-Index AND (DI-AND) (cont’d)

 // Get form-ids based on Sqi
 SQ’ = EnumQueries(∀ Sqi) // Enumerate all

 // unique queries, each having one
 // term from each Sqi

 for each Q’ ∈ SQ’
 FormIndex(Q’) => F’ // AND semantics on FormIndex
 return F’ // Ordered by ranking scores

UB CSE 736 Spring 2010 30

DI-AND Example

•  Query: Widom conference

•  Using DI-AND, we would generate two queries:
1.   person conference and
2.   Widom conference

•  Evaluate each with AND semantics, and return
the union of the results

•  In this case, Widom conference would lead to
an empty result

UB CSE 736 Spring 2010 31

DI-AND Summary

•  Large number of queries generated – but most
of them are duplicates

•  Query – mix of data terms
 Add synonyms to a query based on a thesaurus during

query evaluation
 Add a set of synonyms to each form during form

generation

•  Selected and added a set of keywords to what
we call a form profile for each form

UB CSE 736 Spring 2010 32

DI-AND Summary (cont’d)

•  DI-AND can return forms that can never produce
results with respect to the user query
–  When a search involves a table referenced by many

other tables, DI-AND returns all the forms for all these
tables, even though some may return no answer with
respect to the user query

•  We need to identify and filter these dead forms
from the results

9

UB CSE 736 Spring 2010 33

Dead Forms Example

•  Query: John Doe

•  Assume John Doe appears in the person table,
but is not involved in any relationship
–  That is, the John Doe tuple in person is not

referenced by any tuple in any relationship table

•  In addition to returning forms for the person
table, DI-AND would return forms for all the
relationship tables that reference person

•  Since John Doe appears only in person, if the
user enters John Doe in the person.name field
on any of these join forms, they will return
empty results

UB CSE 736 Spring 2010 34

Double-Index-Join
Input: A keyword query Q = [q1 q2.... qn]
Output: A set of form-ids F’
Algorithm:

 FormTerms = {}, F’ = {}, X = {}
 // Replace any data terms with table names
 for each qi ∈ Q
 Sqi = {}
 if DataIndex(qi) returns <table, tuple-id> pairs
 for each table T
 let I be the set of tuple-ids from T
 if T ∈ FormTerms
 Add T to Sqi and FormTerms
 // New “join” step
 SchemaGraph(T) returns refTables

UB CSE 736 Spring 2010 35

Double-Index AND (DI-AND) (cont’d)
 for each refTable
 if DataIndex(refTable:tid) is NULL for every tid ∈ I
 FormIndex(T AND refTable) => X
 if qi ∈ FormTerms
 Add qi to Sqi and FormTerms
 // Get form-ids based on form terms
 SQ’ = EnumQueries(∀ Sqi)
 for each Q’ ∈ SQ’
 FormIndex(Q’) => F’
 return F’ – X // Filter “dead” forms

UB CSE 736 Spring 2010 36

DISPLAYING RETURNED FORMS

10

UB CSE 736 Spring 2010 37

Ranking Forms

•  The Lucene score for a query Q and a document D is:

Score factor based on # of
query terms found in D Normalizing factor

Term frequency of t in D

Inverse term frequency of t in D

Search time boost of t

Index time boost

UB CSE 736 Spring 2010 38

Lucene Scoring Terms

•  The factors involved in Lucene's scoring
algorithm are as follows:
1.   tf = term frequency in document = measure of how

often a term appears in the document
2.   idf = inverse document frequency = measure of how

often the term appears across the index
3.   coord = number of terms in the query that were

found in the document
4.   lengthNorm = measure of the importance of a term

according to the total number of terms in the field
5.   queryNorm = normalization factor so that queries

can be compared
6.   boost(index) = boost of the field at index-time
7.   boost(query) = boost of the field at query-time

UB CSE 736 Spring 2010 39

Ranking Forms

•  Very specific forms have problems
•  Form specificity increases => number of forms

created from each skeleton template increases
•  Forms based on the same skeleton template

(sister forms) become increasingly similar
•  When a query is relatively vague, there is not

enough information to determine the user’s
intent

•  Many sister forms within each group =>
required form may get pushed low

UB CSE 736 Spring 2010 40

11

UB CSE 736 Spring 2010 41

Grouping Forms

•  Given a list of forms ordered by each form’s
score, our first approach comprises two steps

1.  Form first-level groups by grouping consecutive sister
forms with the same score.

2.  In each first-level group, group forms by the four
query classes described in slide 15, and display the
classes in the order of SELECT, AGGR, GROUP, and
UNION-INTERSECT.

UB CSE 736 Spring 2010 42

UB CSE 736 Spring 2010 43

Grouping Forms

•  When two sister forms have different ranking
scores such that they are not consecutive, they
join different first-level groups

•  These groups still have the same description and
could confuse users

•  Solution: first group the returned forms by their
table, then order the groups by the sum of their
scores

UB CSE 736 Spring 2010 44

12

UB CSE 736 Spring 2010 45

EXPERIMENTS

UB CSE 736 Spring 2010 46

Experimental Setup

•  Search interface implemented with Perl CGI
scripts

•  MySQL as the back-end database
•  Apache Web Server to host the service
•  Forms

  14 Skeleton templates – one for each of the table
  Based on query classes in slide 15, 1 SELECT

template, 5 AGGR templates(one for each aggregate),
6 GROUP templates (one for each aggregate and one
without aggregate) and 2 UNION-INTERSECT
templates

  Totally 14 * 14 = 196 forms

UB CSE 736 Spring 2010 47

Queries Presented

  T1: Find all people who have given a tutorial at VLDB
  “tutorial vldb”

  T2: Find topics of areas related to Jeff Naughton.
  “jeff naughton research area”

  T3: Find people who have served as the SIGMOD PC chair
  “sigmod chair”

  T4: Find the first author of all papers cited more than 5 times.
  “paper citation”

  T5: Find the number of people who have co-authored a paper
with David Dewitt.
  “david dewitt coauthor”

  T6: Find people who have published with David DeWitt or Jeff
Naughton.
  “dewitt naughton

UB CSE 736 Spring 2010 48

Results

0

20

40

60

80

100

120

140

160

180

200

Q1 Q2 Q3 Q4 Q5 Q6

Naïve-OR

Naïve-AND

DI-OR

DI-AND

DIJ

N
o
 o

f
Fo

rm
s

re
tu

rn
ed

Query Slide

13

UB CSE 736 Spring 2010 49

Results

0

20

40

60

80

100

120

140

T1 T2 T3 T4 T5 T6

DI-AND

DIJ

A
vg

.
N

o
.

o
f
Fo

rm
s

re
tu

rn
ed

Query Slide

UB CSE 736 Spring 2010 50

Results

0

20

40

60

80

100

120

Q1 Q2 Q3 Q4 Q5 Q6

Naïve-OR

Naïve-AND

DI-OR

DI-AND

DIJ

R
es

p
o
n
se

 t
im

e(
m

s)

Query Slide

UB CSE 736 Spring 2010 51

Ranking and Displaying Forms

The highest (H), median (M), and the lowest
(L) flat and group ranks for each queries,
and the average number of forms (#F) and
groups (#G) returned, based on the results
of 7 users.

UB CSE 736 Spring 2010 52

User Interaction with Keyword Search
and Forms

The breakdown of the time of using DIJ by 7 users

0

20

40

60

80

100

120

140

Pose Query Find the right
form

Fill out the form Total average
time

Standard
deviation

Median

T1

T2

T3

T4

T5

T6

14

UB CSE 736 Spring 2010 53

Impact of Adding Forms

•  Forms for all combinations of equijoins involving
2 relationship tables and person table

  T7: Find people who have given a conference
talk and given a tutorial.
 “conference tutorial”

UB CSE 736 Spring 2010 54

Impact of Adding Forms - Results

0
50

100
150
200
250
300
350
400
450
500

T1 T2 T3 T4 T5 T6 T7

DI-AND

DIJ

A
vg

.
N

o
.

o
f
fo

rm
s

Data Slide

UB CSE 736 Spring 2010 55

Impact of Adding Forms - Results

0

20

40

60

80

100

120

Q1 Q2 Q3 Q4 Q5 Q6 Q7

DIJ - F1

DIJ - F2

R
es

p
o
n
se

 t
im

e(
m

s)

Data Slide

UB CSE 736 Spring 2010 56

Related Work

•  Query By Example
 Skeleton tables presented to users
 Users fill blanks in tables to specify constraints
 Still require an understanding of relational model

•  Basic keyword search over databases
 Basic query specifications cannot be done

•  Auto distinguish between schema and data
terms
  Little support for structured queries

15

UB CSE 736 Spring 2010 57

Issues Addressed

•  Designing and generating forms in a systematic
fashion

•  Handling keyword queries that are a mix of data
terms and schema terms

•  Filtering out forms that would produce no results
with respect to a user’s query

•  Ranking and displaying forms in a way that help
users find useful forms more quickly

UB CSE 736 Spring 2010 58

Scope of Future Work

•  Developing automated techniques for generating
better form descriptions

•  Exploring the tradeoffs between keyword search
directly over the relational database and the
above explained approach

UB CSE 736 Spring 2010 59

Keyword Searching and Browsing in
Databases using BANKS

UB CSE 736 Spring 2010 60

What is BANKS

•  Browsing ANd Keyword Searching
•  Framework for keyword querying of relational

databases.
•  It makes joins implicit and transparent, and

incorporates notions of proximity and prestige
when ranking answers

•  Novel, efficient heuristic algorithms for executing
keyword queries

16

UB CSE 736 Spring 2010 61

Dataset and Representation

UB CSE 736 Spring 2010 62

BANKS Model

•  Database modeled as directed graphs
  Tuple being a node in the graph
  Foreign-key-primary-key acting as directed edge

•  Weights are assigned to the nodes and edges
•  Nodes are identified corresponding to the search

terms
•  Answer to a query is a rooted directed tree
•  Nodes fetched and ordered by a particular

relevance score
•  A heuristic backward expanding search

algorithm used for computing query results

UB CSE 736 Spring 2010 63

Backward Expanding Search Algorithm

•  For each keyword, set of nodes are identified which
are relevant to the keyword

•  For each node, a copy of Dijkstra’s single source
shortest path algorithm is executed

•  Each copy runs backward to run a common vertex
from which a forward path exists to at least one node
in each set

•  Such paths define a rooted directed tree with the
common vertex as the root and the corresponding
keyword nodes as the leaves

•  The connection trees generated by the algorithm are
only approximately sorted in the increasing order of
their weights.

UB CSE 736 Spring 2010 64

Browsing BANKS

•  Every displayed foreign key attribute value
becomes a hyperlink to the referenced tuple

•  Since the entire database is like a complex
graph, various functionalities are provided
  Projecting away columns
 Selection on a column
  Joining with foreign keys
 Grouping by column
 Sorting by a column

17

UB CSE 736 Spring 2010 65

Example Result

UB CSE 736 Spring 2010 66

Browsing BANKS - Example

UB CSE 736 Spring 2010 67

•  In BANKS, the schema of tables are provided as
hyperlinks. Browsing data is enabled by clicking
these hyperlinks

•  In Keyword-forms, schema is represented as
forms and required data is entered in forms

Comparison: BANKS vs. Keyword-Forms

UB CSE 736 Spring 2010 68

•  In BANKS, grouping of data done as part of the
schema hyperlink while browsing the data

•  In Keyword-forms, aggregate operations are
done through forms. Appropriate forms need to
be selected to get aggregated results

Comparison: BANKS vs. Keyword-Forms

18

UB CSE 736 Spring 2010 69

Comparison: BANKS vs. Keyword-Forms

•  Users need to know the schema in BANKS or the
system needs to be able to map user-specified
attributes to system attributes.

•  In Keyword-Forms, schema elements are
present in forms and no operators required in
keyword search.

UB CSE 736 Spring 2010 70

THANK YOU

