

I

Combining Keyword Search and Forms for Ad Hoc

Querying of Databases

SEMINAR REPORT

CSE 736 – DATABASE SEMINAR

Spring 2010

University at Buffalo

Feb 12th, 2010

Submitted By

Mohan Kumar Padmanabhan

3567-4710

II

Table of Contents

Overview .. 1

Detailed Comments ... 2

Database Seminar Report

 Page 1

Overview

The main paper discussed in the seminar proposes a method to create structured queries on

structural databases to search for required data. The motivation for the paper is to identify a

method to build queries on structured data and fetch the desired search results in a systematic

way without the requirement of knowledge of building structural queries. It describes a method

where the system makes use of forms to input required parameters and build queries which are

later sent to the database to get back the results. The forms are presented based on an initial set of

keywords which are provided by the user.

In the paper they have described a step by step methodology to implement their idea. They

created a subset of SQL, called SQL’, which forms the basis of the queries they create which are

later represented as forms. The SQL’ is later expanded to the dataset they have considered to

contain all types of queries within SQL’ which will enable to fetch data from the database they

have considered. These queries are stored in the back-end as query forms. They have mentioned

that they had created scripts to convert the queries into forms. Later, when a user queries the

database using keywords, the keywords are searched in the query forms and matching queries are

fetched. These forms are displayed in a question format based on what the query forms return.

Depending upon the requirement of the user, he/she selects the appropriate forms and enters the

data that is required in the forms. On submitting the form, the query corresponding to the form,

along with the values entered in the form, is executed and the results are provided to the user.

The paper considers a DBLife dataset containing 5 entity tables and 9 relationship tables. It also

described three algorithms which are used to search the keywords entered within the query

forms. Since the keywords may be data terms or query terms, a methodology is required to

identify the corresponding query terms for the data terms and then search in the collection of

query forms to select the forms. The first algorithm, called Double-Index OR (DI-OR), initially

identifies schema terms for all the data specific terms and adds it to the set of the keywords

entered. It then picks forms which contain any of the words present in this set. Since this was too

inclusive, the second algorithm, called Double-Index AND(DI-AND) augmented the keywords

entered with original query by generating all possible queries that result from replacing user-

supplied data terms with schema terms. It uses AND semantics for each query, and return the

union of the query results to the user. This algorithm created some forms which do not return any

output, particularly, the searches involving data specific terms present only in the entity tables

and not in relationship tables. So, the third algorithm, called Double-Index Join (DIJ) proposes a

method to eliminate these dead forms. This algorithm searches the relationship tables which are

identified to be related to an entity table containing a user-specified data term. Those

combinations of entity-relationship tables which does not contain the data term in the
relationship table are eliminated from the output set of forms.

The results consists of many parameters, most important of them being response time, number of

forms returned, total time to fetch required records and ranking of forms. It was easily

observable that DIJ performed the best, returning the optimum number of forms. Also, the

response time of the entire approach was considerably very good. Grouping forms from same

table and same query type puts the required form in better visibility to get selected and create the

structured query using the forms. Experiment with additional forms proves the better
functionality of the DIJ algorithm.

Database Seminar Report

 Page 2

The second paper discusses about a different approach for viewing and browsing through a

structured database. The Browsing ANd Keyword Searching (BANKS) interface provides a way

in which all the tuples in a database are represented as nodes and the relationships between the

tables as edges of a graph. The results are returned by node identification and a tree is returned as

result. The identification of the tree (Steiner tree) based on a keyword is done by a heuristic

algorithm. After the tree is displayed, other operations on the results are facilitated by

representing the primary keys and column names as hyperlinks.

Detailed Comments

Both the papers have described efficient and faster ways of displaying search results to the user.

The first paper tried to achieve this by allowing the user themselves to query on the database

without requiring the knowledge to construct queries. Since running keyword matching on a

database is not optimal in fetching the exact result and running queries would, the approach

discussed here seems to be able to get the closest result much faster. The second paper enabled

getting the required results by browsing through the tables by means of primary-key hyperlinks
and other functionalities provided in the BANKS interface.

One explanation missing in the primary paper is the approach to generate forms for a given

database schema. It has been mentioned that the forms are generated by scripts, but the
implementation, efficiency or the functionality of these scripts were not discussed in detail.

The paper on query-forms considers only a subset of SQL in its implementation. But this subset

is sufficient to cover the queries on a structured database. Also, as pictures are better than words,

representing the parameters as user input is a better way to create queries that writing the queries

themselves. Also, the forms have some user understandable question to represent the tables in the

query forms which makes identification of forms much easier. The second paper requires a little

more effort in identifying the correct result from the database, primarily because the user needs
to map the relations and the relationships logically to browse through the database.

The paper on query-forms primarily compares with its related work, the efficiency of being able

to create structured queries by the user without the requirement of the knowledge of the database

schema or creating queries. Most of the other work either present the schema or demand the

knowledge of at least the concept of relational databases but this paper appears to require no
knowledge of the database structure.

The questions discussed during the presentation primarily consist of the applications of the

query-forms over large unstructured databases. An example quoted in the presentation, which

displayed a simple form for a keyword search in Google web search was also discussed as to

how that can be extended for at least the example shown in the slides. The three algorithms of

query-forms being simple were made understandable my means of proper examples quoted from

the paper. A methodology to dynamically generate forms as and when the user selects/fills data

was also discussed. The complexity of this methodology was found to be of a complex decision

tree which branches out for every field in each of the table present in the database and so would

result in a very complex algorithm.

